Congenital heart defects and pulmonary arterial hypertension
Kerstjens-Frederikse, Wilhelmina

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Chapter 10

Summary, discussion, and future perspectives
SUMMARY

Chapter 1 is a general introduction on congenital heart defects and pulmonary arterial hypertension, with emphasis on the aetiology.

PART I of this thesis focuses on the genetic and environmental factors involved in the aetiology of congenital heart defects.

Chapter 2 is a review of the known causes of syndromic and non-syndromic heart defects. Numerical chromosomal anomalies (e.g. trisomy 21 or Down’s syndrome), microdeletions (e.g. velocardiofacial syndrome), monogenic anomalies (e.g. \textit{NKX2-5} mutations in atrial septal defects) and complex or multifactorial inheritance (in the majority of non-syndromic congenital heart defects) can all play a role.

Chapter 3 reports a prospective study in children with left-sided congenital heart defects (left ventricular outflow tract obstructions, LVOTO), including aortic valve stenosis, bicuspid aortic valve, coarctation of the aorta and hypoplastic left heart syndrome. After cardiac screening of first-degree relatives, 20% of the children with non-syndromic LVOTO appeared to have one or more affected relatives. This study showed that heredity is an important factor in LVOTO and that cardiac screening in relatives is justified. This may help prevent sudden cardiac death or life-threatening complications in relatives with undetected bicuspid aortic valves.

Chapter 4 describes the results of mutation analysis of the \textit{NOTCH1} gene in 427 index patients with LVOTO and the phenotypes of index patients and family members with mutations. In 7% of familial LVOTO cases, and in 1% of sporadic LVOTO cases, we found a truncating or RNA splicing mutation. The phenotypes of family members not only included LVOTO, but also conotruncal heart defects like Fallot’s tetralogy and truncus arteriosus.

In chapter 5 we report how we found the causative gene in a pair of twins presenting with a syndromic atrioventricular septal defect. They had consanguineous parents. The syndrome resembled Smith-Lemli-Opitz syndrome (SLOS), which is known to result from a cholesterol biosynthesis defect that hampers sonic hedgehog signalling. After SLOS was excluded, we discovered \textit{SMO} as a candidate gene by homozygosity mapping and exome sequencing. \textit{SMO} is a member of the GLI/sonic hedgehog signalling cascade. Functional studies showed that the homozygous mutation in \textit{SMO} affects the translocation of SMO into the cilia and disturbs the GLI-mediated signalling pathway.

Chapter 6 focuses on the role of \textit{CHD7} in heart development. A heart defect is present in 74% of the patients with CHARGE syndrome caused by mutations in the \textit{CHD7} gene, and significantly more often in patients with truncating mutations than in those with missense or RNA splicing mutations. The cardiac phenotypes in 299 patients with CHARGE syndrome were compared with heart defects in a population-based birth defects registry in the Northern Netherlands (European Registration of Congenital Anomalies and Twins, Eurocat NNL). We found a wide range of heart defects in patients
with CHARGE syndrome, but AVSD and conotruncal heart defects were over-represented compared to the population in the birth defects registry.

In chapter 7 we analyse environmental factors associated with CHD, again using the population-based birth defects registry, Eurocat NNL. It covers approximately 19,000 annual births. We found that the risk for a congenital heart defect was significantly increased in the offspring of women with a high BMI (>25) who also smoked. This risk was higher than could be expected from high BMI or smoking alone, suggesting that maternal smoking and overweight might have a synergistic adverse effect on foetal cardiac development.

PART II of this thesis focuses on the contribution of genetic factors to pulmonary arterial hypertension (PAH).

Chapter 8 reports the finding of a novel gene associated with childhood-onset PAH. By meticulous phenotypic characterisation of the patients and subsequently using a technique detecting small chromosomal deletions and duplications (Array Comparative Genome Hybrization, aCGH), we found partially overlapping deletions of chromosome 17 in three PAH patients with associated mental retardation and/or dysmorphic features. Sequencing of candidate genes from the region of overlap in a larger cohort of PAH patients revealed mutations in TBX4, a gene previously associated with small patella syndrome (SPS), a lower limb skeletal malformation syndrome, not associated with mental retardation. TBX4 mutations or deletions were present in 30% of childhood-onset PAH, compared to only 2% of cases with adult-onset PAH.

Chapter 9 reports the results of a study on 1203 patients with an ASD from the Dutch nationwide registry of adult patients with congenital heart defects. PAH had developed in 68 patients (6%). Sinus venosus type of ASD, a larger ASD and a higher age at ASD-repair predicted a higher risk for PAH. We did not find any mutations in BMPR2 to be associated with the development of PAH in 56 ASD-PAH patients and concluded there must be other factors, possibly genetic, that determine the development of PAH in patients with unclosed ASD.

DISCUSSION

This thesis contributes to the unravelling of the aetiology of congenital heart defects and pulmonary arterial hypertension (PAH). Our knowledge about the aetiology of both diseases is still limited, due to the complexity and heterogeneity of the genetic and other mechanisms involved. Recent advances in molecular technology and in bioinformatics have opened the way to a broader exploration of the aetiology of both diseases.1,2
Chapter 10

PART I
GENES, ENVIRONMENT AND HEREDITY IN CONGENITAL HEART DEFECTS

In the last decade huge amounts of information have been gathered about cardiac development and the protein pathways regulating these developmental processes. At the same time, family studies have corroborated these findings and shown that heredity plays an important role in the aetiology of congenital heart defects (CHD). However, in many patients with a CHD it is still not clear what caused the malformation and therefore recurrence risks in sibs or offspring, and health risks for other relatives, are unclear and can only be estimated.

Quite often a cause can be found if the CHD is part of a syndrome with extracardiac malformations and/or mental retardation, if the phenotype is clinically recognized (for instance, a microdeletion 22q11.2 in velocardiofacial syndrome, or a mutation in TBX5 in Holt Oram syndrome), or if screening methods detect a microdeletion or microduplication which can be related to the phenotype.

In non-syndromic CHD it is far more difficult to find the factors contributing to the malformation. Although some non-syndromic CHDs are inherited in a Mendelian (monogenic) pattern, the majority of congenital heart defects have a more complex aetiology, which may be oligogenic (mutations in a small number of genes in one individual cause the CHD) or multifactorial (the CHD is caused by a combination of genetic factors and environmental factors). Moreover, because so many genes are involved in the development of the heart and an infinite number of environmental influences may play a role, finding the causes of a patient’s CHD is indeed like searching for a few needles in a haystack. Nowadays, molecular technology and bioinformatics have the power to elucidate many factors contributing to CHD, but they also contribute to building a bigger haystack by finding many variants with unknown effects. A huge amount of data poses a huge challenge to interpreting it. The phenomenon of variants with unknown effect is not new: “classical” sequencing also had to deal with finding variants with unknown effect on the function of the protein and thus, unknown pathogenicity. However, high throughput techniques multiply this challenge many-fold.

How do we classify variants in genes?

Mutations that cause premature truncation (nonsense and frameshift mutations) or a complete deletion of the protein are considered to be pathogenic. Moreover, mutations within two base pairs upstream or downstream from the exon boundaries are considered to affect splicing and therefore also as pathogenic. Though this “dogma” has been a stronghold for a long time, it may not always be true, as illustrated by data on truncating mutations in the titin gene (TTN) in cardiomyopathy, which may not always be pathogenic.

Nonetheless, these types of mutations are still considered to be relatively “plain sailing”, in contrast to non-synonymous (or missense) mutations, which are much harder to classify because the change in the sequence does not truncate the protein, but just changes one amino acid. It is difficult to predict whether or not such a change in the protein hampers the function. Prediction software has been developed to combine data on evolutionary conservation, differences in physical
properties of the amino acids, and the structure of the protein to help predict pathogenicity and it is used by most molecular laboratories. Some common programs are SIFT (Sorting-Intolerant-from-Tolerant) (http://sift.jcvi.org), Polyphen (Polymorphism Phenotyping) (http://genetics.bwh.harvard.edu/pph2/), and align-GVGD (Grantham-Variation-Grantham-Distance) (http://agvgd.iarc.fr/agvgd_input.php). However, even with the aid of these prediction programs, it is often not possible to draw a conclusion about pathogenicity and many variants are classified as “variants of unknown significance” (VUS). Data on the segregation of a variant in a family may be helpful, if available, but can introduce a new problem as to how to weigh these data. Researchers have tried to develop classification systems to deal with this problem, as shown in the paper by Bergman et al. on missense variants in CHD7 in CHARGE syndrome.

Apart from these mutations in exons and in the regions known to be involved in splicing, variants in introns may also have an effect on gene function and expression, but seldom reach the level of evidence needed to be accepted as pathogenic.

How do we classify copy number variants?

A copy number variant (CNV) means that the whole or part of a chromosome is deleted or duplicated/multiplied. The pathogenicity of a copy number variant depends on its size and position. In the past, karyotyping revealed only large or whole chromosome CNVs, but in the last decade techniques to detect small CNVs have been adopted by most diagnostic laboratories in developed countries (array-Comparative Genome Hybridization (aCGH), Single Nucleotide Polymorphism array (SNPa)). Submicroscopic CNVs are detected in syndromic as well as non-syndromic CHD. A CNV in a patient with a certain phenotype is classified as pathogenic if it is reported in the literature in association with the same phenotype. If such data are not available, the prediction of pathogenicity is based on the function of known genes in the CNV region and the presence of the CNV in the parents (who may or may not be affected). This leaves us with many CNVs of unknown significance.

Are these classification systems sufficient for CHD?

If we consider CHD to be a complex disease, many factors are expected to contribute to it. These may be strong factors, with full penetrance, or weak, with low penetrance, or anything in between. A CNV in a region that harbours genes with an unknown function, or a VUS in a gene known to be associated with CHD or with cardiac development, may be “discarded” if it is found to be present in an unaffected parent. However, these variants might still be important in the development of the CHD, in combination with other, unknown factors. On the other hand, a non-synonymous variant in a gene associated with CHD or cardiac development that segregates with disease in the family may not be the major factor in causing the disease, but could simply co-segregate with CHD by chance. The intronic variants detected by sequencing are often ignored, but these might well influence gene expression, for instance by hampering the binding of regulating elements.

High throughput techniques (next generation sequencing, exome sequencing, whole genome
sequencing) in current use or being introduced in diagnostics and research settings increase the problems in classification described above, but much can be learnt from the analyses of the data which are assembled. There is a large gap between the data produced and the data that can be interpreted and we need to find ways to bridge it. Sharing data from exome sequencing studies will provide better analyses, but does not solve the problem of VUSs. Functional studies, as shown in chapter 5, are helpful, but also time-consuming and expensive, and they therefore cannot be used on a large scale. Testing potentially pathogenic mutations by transfecting them in cell models or animal models is an effective way to determine the pathogenicity. New tools for genome engineering (ZNF, TALEN, CRISPR) will facilitate this approach.

How can genetic knowledge on CHD be used in clinical practice?

Good clinical observation is the cornerstone of all further investigations, as shown in chapter 5 which describes how a syndrome resembling Smith-Lemli-Opitz-syndrome was recognized in a dizygotic twin, suggesting a disturbance in the sonic hedgehog pathway. Focusing on this pathway, we found our most promising candidate gene to be SMO, a member of the sonic hedgehog signalling pathway, after homozygosity mapping and exome sequencing. However, this finding also shows that it may take years to reach a diagnosis and we realize that this kind of effort cannot be made for all patients. In clinical practice, decisions and choices have to be made, even if there is little evidence to support them and there are uncertainties. The flow diagram presented here is not evidence-based, but is a suggestion how to decide in everyday clinical practice. The difference in strategy between non-familial LVOTO, AVSD, TOF, PA and TGA in one group and other non-familial CHDs in another one is not meant to be definite, but is based on the published pedigrees with Mendelian inheritance in these CHDs and on the frequent occurrence of unrecognised disease in these families, e.g. bicuspid aortic valve (BAV) in LVOTO or congenitally corrected TGA in TGA families.

Genetic studies on CHD have taught us that, in some patients, a clear diagnosis can be made in syndromic as well as in non-syndromic CHD. A CHARGE syndrome diagnosis in a child, confirmed by finding a CHD7 mutation, enables appropriate genetic counselling, informing the parents on the child’s prognosis and on the recurrence risk for future children. A truncating NOTCH1 mutation segregating in families with autosomal dominant left ventricular outflow tract obstructions (LVOTO), as presented in chapter 4, predicts a high risk for LVOTO in offspring and other first-degree relatives of mutation carriers. This may facilitate prenatal diagnosis in offspring, but may also prevent death due to complications from a previously unrecognized BAV with aortic valve stenosis or thoracic aneurysm in older relatives.

However, genetic testing is not always clear cut, as described in the sections on the classification of mutations in genes and CNVs and is the cause of dilemmas in clinical practice. Techniques producing data we cannot easily interpret have disadvantages and confront us with uncertainty. We have to weigh the advantages and disadvantages of using these techniques in the first place, but also the best way to communicate these results to patients and referring physicians. Telling a patient...
about the presence of a variant of unknown pathogenicity may be beneficial in some families, but may just as easily cause uncertainty, stress and even anger in others. The medical adagium “do no harm” must guide our actions and prevail over scientific curiosity. To handle these issues, clear protocols on pathogenicity classification and good communication between physicians and laboratory staff are needed.

Even if no genetic defect has been found, knowledge on the heredity of specific heart defects can be used as the basis to discuss reproductive options and to advise on the screening of relatives. Screening of apparently healthy individuals is a controversial issue and has to be decided upon on good grounds. The factors that need to be weighed are: the risk of a health problem occurring, the potential severity of that problem, and the options for prevention if the problem is diagnosed. In chapter 3 we conclude that the screening of first-degree relatives of patients with LVOTO is justified. This advice is based on our findings that 20% of probands with LVOTO have one or more first-degree relatives who are apparently affected and that 75% of these new cases were previously unrecognized but were found during cardiac screening. This advice is also based on data from the literature that suggests that patients with a BAV, the most frequent diagnosis found in relatives, have a high risk of complications or even of sudden cardiac death from arrhythmia or aortic dissection. So we decided that screening was justified based on a high risk of the health problem occurring (in 20% of the families of a proband, and in 8% of a proband’s first-degree relatives) and it being a

Figure 1. Flow diagram for genetic counselling of patients with CHD
potentially severe problem (sudden cardiac death) with good options for prevention (medication to lower blood pressure and/or surgery to replace the aortic valve and dilated section of the aorta). However, knowing one carries these risks may also harm a healthy person and cause stress and anxiety, which is an outcome we did not measure. In general, genetic counselling in patients with CHD is judged to be positively received, but we have to be alert to the negative effects of counselling and screening. Moreover, although we expect early detection to be beneficial to patients with BAV, there are no prospective studies to support this, so we need to follow these patients and study their complication rates. Another issue that needs to be addressed is health economics. One may debate whether it is worth screening 100 individuals in order to diagnose eight people with a BAV. As long as we do not know whether morbidity and/or mortality are reduced by detecting BAV at an early stage, we cannot answer this question. Once again, follow-up of these patients is needed to determine the answers. In the meantime, we have to advise and inform patients and discuss the advantages and disadvantages of screening with them. For some, cost is a limiting factor because, although genetic screening is covered by statutory health insurance in the Netherlands, there is a substantial annual own risk to pay for each insured adult. From a broader perspective, knowing that the prevalence of BAV is approximately 1% in the general population, we should realize we have to screen an average of three first-degree relatives per 100 individuals in the population to identify all affected relatives. This may exceed the capacity of the Dutch health care system as it is organized and financed today.

PART II
HEREDITY IN PULMONARY ARTERIAL HYPERTENSION

Part II of this thesis focuses on the contribution of genetic factors to pulmonary arterial hypertension (PAH). Mutations in the major gene for PAH, BMPR2, explain just a limited proportion of PAH cases. Apart from mutations in BMPR2, mutations in other genes are reported infrequently (ALK1, SMAD9, CAV1, KCNK3). Only 10-16% of childhood-onset PAH is caused by mutations in BMPR2, compared with 10-40% in sporadic adult-onset disease and 69-75% in familial PAH. Unlike in adult patients, PAH in children is often accompanied by mental retardation and/or dysmorphic features. This suggests that the genetic factors associated with childhood-onset PAH might differ from adult-onset PAH. Both genetic and non-genetic factors may contribute to PAH. Atrial septal defect (ASD) is a known risk factor for PAH, with the left to right shunt causing an overload of the pulmonary vasculature. However, only 6-20% of the patients with an unclosed ASD go on to develop PAH and the factors that determine the development of PAH in ASD patients are largely unknown.

Current treatment of PAH aims to augment vasodilation, reduce cell proliferation, and prevent thrombosis in order to reduce disease progression. Endothelin-receptor blockers, prostanoids, phosphodiesterase inhibitors, angiotensin-converting-enzyme inhibitors, calcium channel blockers and anticoagulation therapy all influence different parts of the pathway that is assumed to be involved in the development of PAH. However there is no cure for this disease; mortality is still high
and it is hard to predict disease progression in individual patients. The issues described in Part I in the discussion on the difficulties of interpreting results from genetic testing also apply to PAH. However, the clinical genetic perspective is a little different, because there is only one major gene involved in heritable PAH.

How can genetic knowledge on PAH be used in clinical practice?

The distinction between syndromic and non-syndromic patients, as in CHD, is the basis for further investigations in patients presenting with PAH, especially childhood-onset PAH. The observation of a relative high number of patients with PAH who also have dysmorphic features and/or mental retardation underlines this statement. In contrast to CHD, the number of syndromes already known to be associated with pulmonary hypertension (PH) (for instance, Noonan syndrome) is limited. However, several patients with PAH present with associated features, but we cannot recognize a clinical syndrome. This observation was reason to screen for CNVs in these patients, as described in chapter 8. We found overlapping CNVs that helped us to identify a novel gene for childhood-onset PAH.

In non-syndromic, childhood-onset, PAH patients, a genetic diagnosis is only found in a minority of cases. Mutation analysis of the *BMPR2* gene is usually performed, but the yield is low. If a mutation is detected, the screening of relatives may be considered, but they need careful genetic counselling, because the advantages and disadvantages of testing are difficult to weigh up. Due to the reduced penetrance of *BMPR2* mutations, a relative with a mutation does not necessarily develop the disease. Moreover, the age of onset is variable and there is no cure for the disease. Clinical features occur late in the development of the disease. On the other hand, survival in PAH has much improved since modern therapies have been introduced and early treatment has been shown to reduce disease progression and improve outcome, but little is known about preventive treatment. Presymptomatic screening should therefore be monitored critically and follow-up of mutation carriers is mandatory, to improve the information for future relatives of PAH patients. Unfortunately, in many patients no causative mutation is found in *BMPR2*, or in the other genes associated with PAH, which leaves questions regarding the recurrence risk for relatives.

FUTURE PERSPECTIVES

How can we identify more of the genes and mechanisms involved in CHD and PAH?

Although tremendous advances in the knowledge of cardiac development and development of PAH have been made in the last decades, the harvesting from the results of techniques enabling high throughput analysis in terms of a better understanding CHD and PAH has yet to begin. Several strategies have been used to find new genes for CHD, for example, linkage studies have revealed some genes, but they require large families with many affected persons, which are scarce in CHD. Genes known from syndromes with CHD occasionally cause isolated CHDs, as shown in Holt Oram syndrome (*TBX5*) and Alagille syndrome (*JAG1*), so these may be screened for in CHD cohorts, but
the yield of mutations is usually low.33-36

Copy number variations
An increasing number of heart defects, not only in syndromic, but also in non-syndromic CHD and PAH appears to be caused by small copy number variations.16, 37-41 These small chromosomal anomalies (deletions and duplications) can be detected by aCGH or SNP array. Analysing these regions in large cohorts, followed by the sequencing of candidate genes from overlapping regions (comparable to the method we used in PAH and described in chapter 8), may help us to find genes associated with both CHD and PAH.

Genome-wide association studies
Genome-wide association studies can help to find a locus for a disease, by comparing single nucleotide polymorphisms between a target population and a control population. Large numbers of patients and controls are required for this strategy and these can only be recruited by collaboration of multiple research groups in consortia. This approach has recently been successful in PAH and a locus on chromosome 18 has been identified.42 The CBLN2 gene in this locus has been suggested to be a candidate gene, but further studies are needed to confirm a causative association with PAH.

Next generation sequencing
Exome sequencing, i.e. the massive parallel sequencing of all the protein coding DNA of an individual, has helped to find genes in CHD and PAH43-45 and will no doubt help us to find many novel variants in the near future, but we have to deal with the difficulties in classifying these variants, as described above. Testing potentially pathogenic mutations by transfecting them in cell models or animal models is an effective way to determine the pathogenicity, as mentioned before.19, 20 New tools for genome engineering (ZNF, TALEN, CRISPR) will facilitate this approach.21 When novel genes are identified, we will need the help from developmental biologists, to find out whether the given gene has a role in cardiac development.46

Even if cost-effective approaches are developed, we will have to decide on the selection criteria to use. One strategy may be to focus on \textit{de novo} mutations, because these may more often be pathogenic, as shown in a study on CHD in parent-offspring trios.45

Incorporating next generation sequencing in diagnostic gene panels, as implemented in genetic diagnostics for cardiomyopathies, shows the huge potential of these techniques, but also the challenges in interpreting the data.47 The high number of genes involved in CHD, and probably also in PAH, and the numerous possible combinations of multiple genetic variants giving rise to disease demands a multidisciplinary collaboration in large consortia, with intensive support from bioinformaticians.48 Nonetheless, it will take time to analyse the true meaning of these variants and their combinations; this will probably cause a lot of uncertainty about the clinical interpretation in the beginning, but should ultimately lead to a better understanding of the diseases.
Epigenetics and micro-RNA

Epigenetic factors influence gene expression without altering the DNA sequence. Several studies on chromatin remodelling and microRNA implicate epigenetic factors in the aetiology of CHD and PAH.49-52 *De novo* mutations involving genes that mediate methylation of histones are reported to cause 10\% of CHD.45 Further research on epigenetic factors influencing gene expression in cardiac and pulmonary development will contribute to the understanding of CHD and PAH.

Disease models

Animal models, especially in mice and zebrafish, have contributed enormously to our understanding of cardiac development, but have limited similarity with human CHD. Models from cardiomyocytes derived from induced pluripotent stem cells (IPS cells) can be used to study factors that influence the development of the malformation in humans and these methods may be promising, as recently shown for hypoplastic left heart syndrome (HLHS).53 HLHS-IPS cell-derived cardiomyocytes show a lower level of myofibrillar organization, persistence of a foetal gene expression pattern, and changes in commitment to ventricular versus atrial lineages. Other heart defects, for instance AVSD and laterality defects, may also be investigated in this way and this will hopefully provide more insight into the factors causing maldevelopment of the AV-valves and disturbance of the left-right axis in the heart, respectively.

Pharmacogenetics

There are many environmental factors that can potentially damage the foetus but these are hard to identify and analyse. Finding mechanisms that determine the teratogenic effects of toxins and drugs by investigating the maternal (drug) metabolism and maternal-foetal transport mechanisms may help us to discover general principles that predispose the foetus to damage from environmental factors. Large registries, like Eurocat (European Registry Of Congenital Anomalies and Twins), are indispensable to find associations between environmental factors and congenital anomalies.

Systems biology

Systems biology is a promising tool to augment our understanding of CHD and PAH. This approach integrates complex datasets into multidimensional pathways that lead to disease. It has been shown that CHD risk factors, derived from several types of datasets related to CHD (molecular networks of cardiac development, human cardiac disease and environmental factors), show a functional convergence in the protein networks driving the development of specific anatomical structures of the heart.54 The advances in molecular technology and bioinformatics enable us to expand the data on copy number variations, single gene mutations, variants in non-coding DNA, and environmental factors influencing gene expression, and will add to the power of a systems biology approach.
And how does the patient benefit from this knowledge?

In the end, we have to realize that patients with CHD or PAH need adequate care, now and in the future, and that we have to decide on the best ways of providing this care with budgets that will be limited by the increasing health care demands of an aging society. The efforts made towards unravelling the aetiology of disease will not be cost-effective at the beginning. However, patients will hopefully benefit from a better understanding of CHD and PAH, as it will enable a better counselling of individual risks and prognosis, and enable more informed choices: ultimately it may reveal new ways for prevention and treatment. Especially in PAH, each factor contributing to the disease will be a potential target for drug therapy. The collaboration and open minds of physicians and researchers in the various fields is indispensable for maximizing the benefits achievable from our resources and for reaching the ultimate goal of the optimal care of present and future patients.

REFERENCES

Nederlandse samenvatting
Dit proefschrift levert een bijdrage aan het ophelderen van de oorzaken van aangeboren hartafwijkingen en hoge bloeddruk in de longen (pulmonale hypertensie). In hoofdstuk 1 wordt een algemene inleiding gegeven over beide onderwerpen, daarna worden deze onderwerpen apart behandeld in deel I en deel II.

Deel I (hoofdstuk 2 t/m 7) focust op genetische factoren en omgevingsfactoren die betrokken zijn bij het ontstaan van aangeboren hartafwijkingen.

Ongeveer 8 op de 1000 kinderen worden geboren met een hartafwijking. Dit betekent dat er in Nederland jaarlijks ongeveer 1500 kinderen met een hartafwijking worden geboren. De diagnostiek en behandeling is in de afgelopen decennia enorm verbeterd, waardoor steeds meer kinderen de volwassen leeftijd bereiken. De vraag naar de oorzaak van de hartafwijking en de kans op herhaling bij het nageslacht wordt daardoor steeds meer van belang en is terecht, want veel van de aangeboren hartafwijkingen hebben een genetische oorsprong.

Een deel van de erfelijke hartafwijkingen komt voor als onderdeel van een syndroom, een syndroom is een combinatie van aangeboren afwijkingen met één gezamenlijke oorzaak. Dit kan erfelijk zijn, de afwijking in het DNA wordt verkregen van één van de ouders, maar kan ook niet erfelijk zijn zoals bv bij Down syndroom waarbij de chromosoom afwijking niet voorkomt bij de ouders maar nieuw is ontstaan bij het kind (de novo). Een syndroom waarbij ook een hartafwijking wordt gezien kan, zoals net vermeld, worden veroorzaakt door een chromosoomafwijking (zoals bij Down syndroom, een extra chromosoom 21), maar het kan ook ontstaan door een verdubbeling of een verlies van een klein stukje van een chromosoom (microduplicatie of microdeletie) of door een kleine verandering op één plaats in het DNA (een mutatie in een gen).

Hoofdstuk 2 geeft een overzicht van genetische aspecten bij volwassenen met een aangeboren hartafwijking. Er worden voorbeelden gegeven van de verschillende categorieën van genetische oorzaken van aangeboren hartafwijkingen. Het focus bij de voorbeelden van syndromale hartafwijkingen ligt op syndromen die niet (altijd) op de kinderleeftijd worden herkend, veelal met normale intelligentie.

In hoofdstuk 3 rapporteren we over een studie waarin kinderen met een hartafwijking aan de linkerkant van het hart en hun familieleden werden onderzocht. Hieruit bleek dat in 20% van de kinderen één of meer eerstegraads familieleden (vader, moeder, broertje of zusje) ook een
Nederlandse samenvatting

hartaanwijking hadden. In de meeste gevallen bleek dit niet eerder vastgesteld te zijn. Omdat 1/5 van de naaste familieleden ook een hartprobleem bleek te hebben concludeerden wij dat erfelijkheid een grote rol moet spelen bij dit type hartaanwijking en dat het zinvol is om familieleden van personen met een linkszijdige hartaanwijking cardiologisch te screenen, om plotselinge gezondheidsproblemen en mogelijk acute dood van deze familieleden te kunnen voorkomen.

In hoofdstuk 4 laten we zien welke rol DNA veranderingen (mutaties) in het NOTCH1 gen spelen bij het ontstaan van hartaanwijkingen. Bij 3% van de patiënten met een linkszijdige hartaanwijking werd een mutatie gevonden; als de aandoening echter familie voorkwam was de mutatiefrequentie ruim twee maal zo hoog, namelijk 7%. Een groot aantal familieleden van de patiënten met een mutatie is vervolgens onderzocht en de familieleden met een mutatie bleken verschillende typen hartaanwijkingen te hebben, onder andere afwijkingen van de longslagaderklep (rechtszijdig). We concluderen hieruit dat er bij patiënten met familiare hartaanwijkingen een hogere kans is op een mutatie in het NOTCH1 gen en dat het spectrum van hartaanwijkingen bij NOTCH1 mutaties breder is dan tevoren gedacht.

In hoofdstuk 5 beschrijven we hoe we bij een twee-eigige tweeling met een hartaanwijking (atrio-ventriculair-septum-defect, AVSD) en verscheidene andere aangeboren afwijkingen een nieuw gen vonden. Het gen was nog nooit eerder in verband gebracht met een ziekte bij mensen. We vonden het gen door uit te gaan van de hypotheses dat: i) we op zoek moesten naar een recessief ziekte gen, wat zoveel betekent dat beide ouders een mutatie hebben waar je niet ziek van wordt; ii) dat de kinderen van beide ouders de (zelfde) mutatie krijgen en daardoor ziek worden. Wij gingen hier vanuit, omdat we wisten dat de ouders bloedverwant waren. Deze hypothese bleek juist. De aangedane kinderen hadden ieder twee (dezelfde) mutaties, één van moeder en één van vader gekregen. Het gen dat we identificeerden heet SMO. We hebben vervolgens in een muizenembryo kunnen aantonen dat het SMO eiwit aanwezig is ter plaatse van de atrio-ventriculaire kleppen, die afwijkend zijn bij een AVSD. Vervolgens hebben we met een test op gekweekte cellen van de aangedane kinderen en van gezonde controlepersonen aangetoond dat de functie van het SMO eiwit bij de aangedane kinderen verstoord is. We hebben hiermee laten zien dat mutaties in het SMO gen een tot nu toe onbekend syndroom met een AVSD kunnen veroorzaken.

In hoofdstuk 6 wordt de rol van het CHD7 gen bij het ontstaan van hartaanwijkingen belicht. Mutaties in CHD7 veroorzakenCHARGE syndroom, een combinatie van aangeboren afwijkingen, waaronder ook hartaanwijkingen. De gegevens van 299 personen met een CHD7 mutatie en CHARGE syndroom werden geanalyseerd en vergeleken met gegevens uit een grote bevolkingsregistratie van aangeboren afwijkingen in Noord-Nederland (Eurocat NNL). Deze registratie beschrijft aangeboren afwijkingen in een gebied met jaarlijks ongeveer 19000 geboortes. Uit het onderzoek blijkt dat 74% van de personen met een CHD7 mutatie een hartaanwijking heeft en dat het atrio-ventriculair-septum-defect en afwijkingen in het uitstroomgedeelte van het hart vaker voorkomen bij personen met een CHD7 mutatie dan bij kinderen met een hartaanwijking in de Eurocat registratie.

In hoofdstuk 7 analyseren we omgevingsfactoren die een rol kunnen spelen bij het ontstaan
van hartafwijkingen, opnieuw met behulp van de Eurocat NNL registratie van aangeboren afwijkingen. We laten zien dat moeders met overgewicht (BMI ≥ 25) die ook roken, een verhoogde kans hebben op een kind met een aangeboren hartafwijking. Dit effect is sterker dan op basis van de opgetelde risico’s (alleen BMI>25 of alleen roken) kon worden verwacht, wat wijst op een wederzijdse beïnvloeding van deze beide risicofactoren.

Deel II (hoofdstuk 8 en 9) van dit proefschrift focust op de bijdrage van genetische factoren aan het ontstaan van pulmonale arteriële hypertensie.

Pulmonale hypertensie (“hoge bloeddruk in de longen”) is een ziekte met vele verschillende subtypen en oorzaken. Pulmonale arteriële hypertensie (PAH) is een subgroep met een geschat voorkomen van tussen de 15 en 26 gevallen per 1 miljoen mensen in Europa. Het is een zeer ernstige bloedvatziekte, en ondanks de verbeterende behandelingsmethoden is de jaarlijkse sterfte nog steeds ongeveer 15%. PAH kan ontstaan als gevolg van een hartafwijking, die toegenomen doorstroming van de longen tot gevolg heeft, of andere ziekten waaronder auto-immuunziekten en leverziekten. Maar vaak kan ook geen onderliggende aandoening gevonden worden; dan wordt gesproken over idiopathische PAH. Als PAH op volwassenen leeftijd begint wordt dit vaak veroorzaakt door een mutatie in het BMPR2 gen (in 70-75% van de familiaire PAH en 10-40% van de niet familiaire PAH), maar bij PAH die op de kinderleeftijd begint worden mutaties in BMPR2 veel minder vaak gevonden.

In hoofdstuk 8 beschrijven we hoe we in een landelijk cohort van 20 kinderen met idiopatische PAH (zonder BMPR2 mutatie) aanvullend genetisch onderzoek deden. Omdat een deel van de patiënten ontwikkelingsachterstand en/of bijzondere uiterlijke kenmerken had, hebben we eerst gekeken of er chromosomale afwijkingen aanwezig waren. Dit bleek inderdaad het geval. We vonden bij 3 van de 20 kinderen dat er een zelfde klein stukje op chromosoom 17 ontbrak (“deletie”). We hebben vervolgens de genen die in dat gebiedje op chromosoom 17 lagen bekeken en de genen geselecteerd, waarvan het het meest waarschijnlijk was dat ze bij PAH betrokken waren. Vervolgens hebben we die genen onderzocht op mutaties in de hele groep kinderen. We vonden in totaal bij 30% van de kinderen met PAH een deletie of een mutatie in het TBX4 gen. Het TBX4 gen was niet eerder beschreven in verband met PAH, maar wel als oorzaak van “small patella syndrome” (kleine knieschijf syndroom), een aandoening met afwijkingen van de onderste ledematen. Bij lichamelijk onderzoek en röntgenfoto’s van de PAH patiënten met een TBX4 mutatie bleken ze inderdaad naast PAH ook verschijnselen van “small patella syndrome” te hebben, deze kenmerken waren echter niet eerder opgemerkt. We hebben hiermee dus een nieuw gen voor PAH bij kinderen gevonden en we hebben vastgesteld dat PAH deel uit kan maken van “small patella syndrome” op de kinderleeftijd.

In hoofdstuk 9 analyseren we de gegevens van ruim 1200 volwassen patiënten met een specifieke hartafwijking (atrium-septum-defect, ASD, een gat in het tussenschot tussen de linker en rechter hartboezem), die verhoogde longdoorstroming veroorzaakt en daarmee een risico vormt voor het ontwikkelen van PAH. Slechts 5-15% van deze ASD patiënten ontwikkelt PAH. De vraag was
of genetische aanleg (bijvoorbeeld een BMPR2 mutatie) hierbij een rol speelt. Zes procent van de onderzochte patiënten bleek inderdaad PAH te hebben. De kans op PAH blijkt gedeeltelijk te worden voorspeld door de plaats van het gat in het tussenschot (een grotere kans op PAH bij zogenaamde “sinus venosus defecten”), de grootte van het gat in het tussenschot, en de tijdsspanne dat het gat (voor eventuele operatieve sluiting) aanwezig is geweest. We hebben bij deze groep geen mutaties gevonden in het BMPR2 gen en we concluderen daaruit dat andere, mogelijk genetische factoren een rol spelen bij een subgroep van de ASD patiënten, die PAH ontwikkelt.
List of authors and affiliations
LIST OF AUTHORS AND AFFILIATIONS

- P.C. van den Akker, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- M.E. Baardman, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics, EUROCAT
- M.K. Bakker, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics, EUROCAT
- B. Bartelds, University of Groningen, University Medical Center Groningen, the Netherlands, Center for Congenital Heart Diseases
- R.M.F. Berger, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics, Center for Congenital Heart Diseases
- J.E.H. Bergman, University of Groningen, University Medical Center Groningen, Department of Genetics, EUROCAT, the Netherlands
- K.A. Bergman, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics
- C.M. Bilardo, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Obstetrics and Gynaecology
- E.M. Bongers, Radboud University Nijmegen Medical Centre, the Netherlands, Department of Human Genetics
- R.W.W. Brouwer, Erasmus Medical Center, Rotterdam, the Netherlands, Center for Biomics
- E. Corpeleijn, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Epidemiology
- N. Corsten-Janssen, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- K.K. Dijk-Bos, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- A. van Dijk, Radboud University Nijmegen Medical Centre, the Netherlands, Department of Cardiology
- J.M. Douwes, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics, Center for Congenital Heart Diseases
- A.J. van Essen, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- I.M. Frohn-Mulder, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Pediatric Cardiology
- J.J. Gille, VU Medical Center, Amsterdam, the Netherlands, Department of Genetics
- K.R. Heimdal, Oslo University Hospital, Oslo, Norway, Department of Medical Genetics
- R.C.M. Hennekam, University of Amsterdam, Academic Medical Center, the Netherlands, Department of Pediatrics and Genetics
List of authors and affiliations

• B.P. Hierck, Leiden University Medical Center, the Netherlands, Department of Anatomy and Embryology
• H.L. Hilleg, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Epidemiology
• L.H. Hoefsloot, 1. Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands, Department of Human Genetics 2. Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
• E.S. Hoendermis, University of Groningen, University Medical Center Groningen, the Netherlands, Center for Congenital Heart Diseases
• R.M.W. Hofstra, 1. University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics 2. Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics 3. UCL Institute of Child Health, London, UK, Neural Development and Gastroenterology Units
• M.C.G.N. van den Hout, Erasmus Medical Center, Rotterdam, the Netherlands, Center for Biomics H.D. Hove, Rigshospitalet, Copenhagen, Denmark, Department of Clinical Genetics
• W.F.J. van IJcken, Erasmus Medical Center, Rotterdam, the Netherlands, Center for Biomics
• J.H.P. Janssen, Sint Anna Hospital, Geldrop, the Netherlands, Department of Cardiology
• L. Kapusta, 1. Radboud University Nijmegen Medical Center, the Netherlands, Children’s Heart Center 2. E. Wolfson Medical Center, Holon, Israel, Pediatric Cardiology Unit
• J.S. Klein Wassink-Ruiter, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
• C.E.M. Kockx, Erasmus Medical Center, Rotterdam, the Netherlands, Center for Biomics
• I.M.B.H. van de Laar, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
• E.M. Leter, 1. VU Medical Center, Amsterdam, the Netherlands, Department of Genetics 2. Maastricht University Medical Center, the Netherlands, Department of Clinical Genetics
• K.D. Lichtenbelt, University of Utrecht, University Medical Center Utrecht, the Netherlands, Department of Genetics
• G. J. du Marchie Sarvaas, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics, Center for Congenital Heart Diseases
• F.J. Meijboom, University of Utrecht, University Medical Center Utrecht, the Netherlands, Department of Cardiology
• J.P. van Melle, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Cardiology, Center for Congenital Heart Diseases
• K. Pricker, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics, Center for Congenital Heart Diseases
• C.M.A. van Ravenswaaij-Arts, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
List of authors and affiliations

- M.T.R. Roofthooft, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Pediatrics, Center for Congenital Heart Diseases
- J.W. Roos-Hesselink, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Cardiology
- C.F. Rustad, Oslo University Hospital, Norway, Department of Medical Genetics
- B. Sikkema-Raddatz, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- K.Y. van Spaendonck-Zwarts, 1. University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics 2. University of Amsterdam, Academic Medical Center, the Netherlands, Department of Genetics
- Y. Sribudiani, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
- A.M. Temmerman, University of Groningen, University Medical Center Groningen, the Netherlands, Center for Congenital Heart Diseases
- L.M.A. van Unen, Erasmus Medical Center, Rotterdam, the Netherlands, Center for Biomics
- J.M.A. Verhagen, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
- F.W. Verheijen, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
- A. Vonk-Noordegraaf, VU Medical Center, Amsterdam, the Netherlands, Department of Respiratory Medicine
- Y.J. Vos, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
- H.E.K. de Walle, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics, EUROCAT
- M.W. Wessels, Erasmus Medical Center, Rotterdam, the Netherlands, Department of Clinical Genetics
- P.A. van der Zwaag, University of Groningen, University Medical Center Groningen, the Netherlands, Department of Genetics
Dankwoord
Dankwoord

De afgelopen 8 jaar heb ik naast de patiëntenzorg met veel plezier aan dit proefschrift gewerkt. Ik voel mij bevoorrecht dat ik dit heb kunnen doen; zonder de hulp van velen, van werkvloer tot thuisfront, was het nooit gelukt. Tijdens het hele proces hebben veel mensen me geholpen, die ik hieronder graag wil bedanken.

In de eerste plaats wil ik alle patiënten en hun familieleden bedanken, die bereid zijn geweest om mee te werken aan de diverse onderzoeken; zonder hen was onderzoek niet mogelijk geweest!

Mijn twee promotores wil ik danken voor hun steun en vertrouwen, het begeleiden van een “oudere jongere” is vast niet altijd makkelijk geweest.

Hooggeleerde Hofstra, beste Robert, ik wens elke promovendus een eerste promotor toe als jij. Jouw relaxte en positieve houding en je humor waren de beste stimulans die ik me kon wensen. Ook op de momenten dat het tegen zat was je er. Je was bovendien altijd snel en duidelijk met je commentaar, daar heb ik veel van geleerd. Bovenal ben je een betrouwbare en integer mens. Dankjewel dat je mijn eerste promotor wilde zijn.

Hooggeleerde Berger, beste Rolf, wie had kunnen denken toen wij in 1977 samen aan de studie geneeskunde begonnen aan de RUG, dat het dit vervolg zou krijgen? Jaren daarna, op een zomeraavond bij ons in de tuin bespraken we de eerste opzet van dit proefschrift. Het was vervolgens een hele uitdaging om beetje bij beetje de harten “te veroveren” maar het is gelukt, met dit proefschrift als resultaat. Dank je wel dat je mijn tweede promotor wilde zijn.

I am grateful to the members of the assessment committee, Prof. Dr Han G. Brunner, Prof. Dr Maarten P. van den Berg, Prof. Dr Damien Bonnet, thank you very much for judging this thesis: sending the final PDF file to you was a relief for me, but at the same time I realised how much effort and time was asked from the three of you.

De medeauteurs van de artikelen die zijn opgenomen in dit proefschrift dank ik allen heel hartelijk voor hun constructieve bijdragen. Enkelen van hen wil ik hier toch apart noemen. J.S. Klein Wassink-Ruiter, beste Jolien, in de dossiers van de vele patiënten die jij hebt gezien voor de LVOTO studie waren er nooit “losse eindjes”. Ik ben je dankbaar voor de leuke samenwerking die we hadden en gelukkig nog steeds hebben en ben stiekem jaloers op jouw geweldig gestructureerde geest! Dr
Dankwoord

Y.J. Vos, beste Yvonne, veel dank voor je bijdrage aan de NOTCH1 studie, waarvoor jij de analyse in het lab hebt opgezet en voor je eindeloze geduld om de data toe te lichten. Het was een klus, maar we hebben het uiteindelijk geklaard! Dr M.W. Wessels, Dr I.M.B.H. van de Laar, Dr K.D. Lichtenbelt, beste Marja, Ingrid en Klaske, dank voor jullie bijdrage aan deze studie, door het samenvoegen van onze patiënten werd het een krachtig verhaal. Dr M.E. Smilde-Baardman, beste Marlies, wat was het leuk om jou als wetenschappelijke stage student te hebben en je vervolgens te zien stralen in het onderzoek, dat intussen is afgerond met een prachtige promotie. Ik heb genoten van jouw jeugdige enthousiasme, maar ook van het vanzelfsprekende vertrouwen dat je me gaf, het was een verademing en een warm bad en het heeft me op vele momenten inspiratie gegeven, als die ergens diep was weggezonken tussen de patiëntendossiers. Ik heb met veel plezier met je samengewerkt, en dat heeft ook nog geleid tot een paar mooie publicaties. En ja, we houden zeker contact! Dr Y. Sribudiani, dear Yunia, it was great to work with you and I am very grateful for your hard work on the SMO paper. I wish you all the best back in Indonesia. Dr F.W. Verheijen, beste Frans, veel dank voor je inhoudelijke bijdrage aan de SMO studie. Ik was je bovendien enorm dankbaar toen je me in Boston vlak voor mijn presentatie op de ASHG kon helpen aan betere plaatjes van de cilia, die last minute date bij de roltrap zal ik niet snel vergeten! N. Corsten-Janssen, beste Nicole, het had een haar gescheeld of ook jij was mij voorgegaan, maar gelukkig heeft de geboorte van Twan dat eventjes weten te vertragen. Door je onderzoek naar CHARGE syndroom kwam je focus mede op aangeboren hartafwijkingen te liggen en zo konden we op dat gedeelte samenwerken. Het was fantastisch om te zien hoe jij, naast de opleiding tot klinisch geneticus, je promotieonderzoek, onder begeleiding van Conny van Ravenswaaij, prachtig op de rails kreeg. Ik verheug me erop om jou ook binnenkort je proefschrift te horen verdedigen! Dr P.A. van der Zwaag, beste Paul, dank voor je werk aan de homozygosity mapping en voor je laagdrempelige steun bij digitale problemen. Je no-nonsense en recht-door-zee houding is een groot goed in de research en is fantastisch in de spreekkamer. Ik ben er trots op om je mentor te zijn en als ons etentje heeft moeten wijken voor mijn laatste proefschrift hobbels, dan komt het heel snel na de zomer! Dr M.T.R. Roofthooft, beste Marc, het was leuk om met je samen te werken voor de stukken over pulmonale hypertensie en om gelijk met jou in het promotietraject te zitten. Ons contact over patiënten met pulmonale hypertensie verliep altijd heel plezierig, dank daarvoor.

J. Senior-Rogers, beste Jackie, het was een zegen dat jij met jouw scherpe editor-blik over mijn stukken ging. De opbouw en het Engels bleken elke keer nog wezenlijk beter te kunnen. Heel veel dank daarvoor!

De expertise binnen het centrum voor congenitale hartafwijkingen en het nationaal centrum voor pulmonale hypertensie bij kinderen in het UMCG was een onmisbare basis bij het tot stand komen van dit proefschrift. Dankzij het hoge niveau van de cardiologische diagnostiek en de klinische patiëntenzorg was er een fundament om onderzoek te doen. De collega’s van de
Dankwoord

afdelingen kindercardiologie, congenitale cardiologie voor volwassenen, thoraxchirurgie, obstetrie
en neonatologie van het UMCG dank ik voor de plezierige samenwerking in de afgelopen jaren. Er is
nog zo veel te doen, dus ik hoop dat we die samenwerking kunnen voortzetten!

De medewerkers van EUROCAT NNL dank ik voor hun bijdrage aan dit proefschrift: de kwaliteit
en kwantiteit van de geregistreerde aangeboren afwijkingen is indrukwekkend. Dr M.K. Bakker en
Dr H.E.K. de Walle, beste Marian en Hermien, ik dank jullie voor de prettige samenwerking en ook
voor jullie geldt: er is nog zo veel te doen, ik hoop dat we die samenwerking kunnen voortzetten.

A. Claus, M. Six-Meinema, van het secretariaat genetica, en J. van Mil, destijds van het secretariaat
kindercardiologie, beste Annette, Marthine en Jessica, wat hebben jullie in de afgelopen jaren veel
werk verzet op allerlei terreinen, om de patiënten en hun familieleden die meededen aan het
onderzoek binnenboord te krijgen en te houden. Heel veel dank daarvoor! En wat zullen jullie me
af en toe vervloekt hebben om mijn niet altijd even gestructureerde verzoeken. Hoewel jullie de
hoofdrol hadden dank ik ook alle andere medewerkers van beide administraties voor hun hulp bij
de meest uiteenlopende zaken, jullie zijn de motor van de afdelingen en zonder een motor valt alles
stil.

De leidinggevenden en opleiders van de afdeling Genetica dank ik voor de vele mogelijkheden
die ze op onze afdeling hebben geschapen. Dr A.J. van Essen, beste Ton, je was mijn opleider en
ik heb ontzettend veel van je geleerd. Je hebt een grote kennis van de klinische genetica en het
voelt nog steeds vertrouwd om bij je aan te kloppen als ik er klinisch/diagnostisch niet uitkom. Prof.
Dr C.H.C.M. Buys, beste Charles, enkele jaren na je emeritaat en vlak voor het gereed komen van
dit proefschrift hebben we definitief afscheid van je moeten nemen. Jij hebt mij gestimuleerd tot
onderzoek, en me destijds het vertrouwen gegeven om een jaar naar Toronto te kunnen gaan. Mijn
dank daarvoor breng ik over aan Anneke. Prof. Dr T.N. Wijmenga en Prof. Dr I.M. Van Langen, beste
Cisca en Irene, dank jullie voor het in mij gestelde vertrouwen. Een proefschrift ontstaat niet zomaar,
daar is het juiste klimaat voor nodig en zonder jullie intensieve bijdrage aan onze afdeling zou dat
klimaat er niet zijn.

Mijn collega’s klinisch genetici Anne Herkert, Conny van Ravenswaaij-Arts, Corien Verschuuren-
Bemelmans, Irene van Langen, Irene Stolte-Dijkstra, Irma Veenstra-Knol, Jan Oosterwijk, Joke
Verheij, Jolien Klein Wassink-Ruiter, Katelijne Bouman, Maran Olderode-Berends, Mirjam de Jong,
Patrick Rump, Peter van Tintelen, Peter van den Akker, Rolf Sijmons, Sascha Vermeer, Ton van
Essen en Yvonne Hoedemaeker dank jullie voor de steun en de flexibiliteit. Het was fantastisch
dat ik de laatste jaren een dag in de week aan het proefschrift kon werken. Maar misschien nog
wel belangrijker is de positieve sfeer die er heerst “op de gang”, een tandje erbij gaat een stuk
makkelijker als de stemming goed is. J.B.G.M. Verheij, lieve Joke “maatje van het eerste uur”, dank
Dankwoord

voor je vriendschap en je solidariteit, en ja, betrouwbaar en integer, dat ben jij ook. K. Bouman, lieve Katelijne, we delen van alles, de Caroliweg, Dehillerin in Parijs, “op reis en met vakantie” en noem maar op, maar bovenal ben je een warme collega en vriendin en ben ik je dankbaar voor je heerlijke relativierende kijk op het leven.

Alle collega’s van het cardioteam dank ik voor velerlei bijdragen. De cardioresearch bespreking is een inspiratiebron en stimulans voor mij geweest. Dr F. Gerbens, beste Frans, jij hebt me ongelofelijk gesteund in de beginfase van het onderzoek en jouw ziekte en vervolgens je overlijden in 2008 heeft ons allen geschokt. Ik hoop dat je gezin een beetje troost uit de waardering die ook na al die jaren nog steeds voor jou als persoon en voor je werk wordt gevoeld. Dr J.P. van Tintelen, beste Peter, zonder jou zou er geen cardioteam zijn, je hebt samen met de cardiologen in de afgelopen jaren het cardiogenetisch onderzoek bij volwassenen in Groningen op de kaart gezet. Ik dank je voor je steun.

Dr Y.J. van Spaendonck-Zwarts, lieve Karin, paranimf, ik vond het een eer om op jouw promotie naast jou te staan, super dat je nu naast mij wilt staan! We hadden vanaf het moment dat je in Groningen aan je opleiding tot klinisch geneticus begon een klik, en dat kwam niet alleen door de gedeelde cardiogenetische belangstelling. We zijn heel wat samen op pad geweest, of het nu naar Leeuwarden, Chicago of Stockholm was, we hadden echte gesprekken en veel plezier. Dank je voor je zuivere collegialiteit en vriendschap!

Lieve vrienden, schoonfamilie en familie. Wat heerlijk dat jullie er waren en zijn, al die jaren. Jullie houden mij met de voeten op de grond, er is veel meer in het leven dan een promotie en dat is maar goed ook. Lieve Agaath en Gert-Jan, onze vriendschap heeft niets met dit proefschrift te maken, maar heeft me wel menig maal op de been gehouden! Lieve schoonouders, Pak en Mak, dank voor jullie liefdevolle support in de afgelopen jaren. Lieve Jan en Jorien, we hebben hier in het noorden toch een beetje een bondgenootschap, niet alleen omdat Jorien en ik tegelijkertijd aan ons proefschrift werkten. Dank voor alle gezelligheid! Mijn ouders dank ik voor de liefde en het grote vertrouwen waarmee ze me hebben omringd, dat is misschien wel het belangrijkste wat je je kinderen kunt meegeven. Het is jammer dat ze dit niet meer kunnen meemaken, ze zouden vast en zeker heel trots zijn geweest. Lieve Marijke, dierbare,loyale en bescheiden zus. Wij zijn niet echt opgevoed met lofredes, maar gelukkig wel met warmte. Dank voor je onvoorwaardelijke steun en vriendschap, die dit proefschrift ver overstijgt.

Lieve Gijs en Daan, jullie hebben het bij mij altijd gewonnen van welke ambitie dan ook. Wat was het heerlijk om af en toe ongegeneerd met jullie te soggen. En wat wens ik jullie toe om straks werk te vinden dat je heel veel vreugde geeft, maar nooit uit het oog te verliezen hoe verkwikkend soggen kan zijn.
Lieve Huib, mijn liefste maatje, paranimf, we zijn samen de Oostzee en de Alpen overgestoken en ook dit hebben we weer samen gered. Een proefschrift lijkt wel wat op de Splügenpas: het is enorm “samen” en toch moet je wel zelf naar boven fietsen. Ik ben heel blij dat je ook vandaag weer naast me wilt staan.
Curriculum vitae
List of publications

List of publications

