Asymptotic stability of piecewise affine systems with Filippov solutions via discontinuous piecewise Lyapunov functions
Iervolino, R.; Trenn, S.; Vasca, F.

Published in:
IEEE Transactions on Automatic Control

DOI:
10.1109/TAC.2020.2996597

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Early version, also known as pre-print

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Abstract—Asymptotic stability of continuous-time piecewise affine systems defined over a polyhedral partition of the state space, with possible discontinuous vector field on the boundaries, is considered. In the first part of the paper the feasible Filippov solution concept is introduced by characterizing single-mode Caratheodory, sliding mode and forward Zeno behaviors. Then, a global asymptotic stability result through a (possibly discontinuous) piecewise Lyapunov function is presented. The sufficient conditions are based on pointwise classifications of the trajectories which allow the identification of crossing, unreachable and Caratheodory boundaries. It is shown that the sign and jump conditions of the stability theorem can be expressed in terms of linear matrix inequalities by particularizing to piecewise quadratic Lyapunov functions and using the cone-copositivity approach. Several examples illustrate the theoretical arguments and the effectiveness of the stability result.

I. INTRODUCTION

Lyapunov theory has been widely used for the asymptotic stability analysis of continuous-time piecewise affine (PWA) systems defined over a polyhedral partition of the state space [1], [2]. When the vector fields are not continuous on the boundaries, which is the case considered in this paper, the stability problem becomes more challenging due to the possible occurrence of sliding mode and Zeno behaviors [3], [4]. For this class of discontinuous systems, to find a global Lyapunov function is a nontrivial issue [5], [6], [7] and its existence is not ensured either [8], [9].

The conservativeness in using global functions can be reduced by considering continuous piecewise Lyapunov functions [10]. In particular, piecewise quadratic (PWQ) Lyapunov functions and the S-procedure lead to stability conditions for classical solutions which can be expressed in terms of linear matrix inequalities (LMIs), see [11], [12], [13]; further conditions when dealing with sliding modes are required [1], [14], [15]. Other classes of continuous piecewise Lyapunov functions such as convex combinations of quadratic forms [16] and composition of continuously differentiable functions [17] have been considered in the literature.

In this paper we consider the more general case of possibly discontinuous piecewise Lyapunov functions for discontinuous PWA systems. Discontinuous PWQ Lyapunov functions have been considered in [18] and [19] for the asymptotic stability of planar PWA systems, but the analysis was restricted to the case of continuous vector fields. The stability conditions proposed in [20] allows discontinuities but the a priori knowledge of the sequence of modes is required. In [21] a discontinuous Lyapunov function is designed by exploiting the specific structure of a second order system. The stability analysis in [22] includes jump conditions but only for facets.

The approach proposed in this paper originates from the preliminary arguments presented in [23] where more restrictive classes of PWA systems and PWQ Lyapunov functions were considered. Herein, differently from [18] and [19], we allow the vector field to be discontinuous on the boundaries. For these non-smooth systems the solution definition requires particular attention. We formally introduce the (new) concept of feasible Filippov solutions which includes the cases of single-mode Caratheodory, sliding mode and forward Zeno behaviours. This trajectories characterization is not formally provided in [22], where discontinuous PWQ Lyapunov functions together with the S-procedure are used for the stability analysis. The possibly discontinuous Lyapunov function we consider does not require to have a PWQ form which is the particular structure considered in [18]–[22]. On the other hand, we show that our main stability result can be particularized to that class thus allowing the formulation of the stability conditions in terms of LMIs through the copositive programming approach [24] which is less conservative than the S-procedure adopted in [22], in general.

The rest of the paper is organized as follows. The class of continuous-time discontinuous PWA systems with the relevant solution concepts are presented in Sec. II. The classification of the system modes depending on the trajectory behavior on the boundaries is discussed in Sec. III. The main stability theorem with the conditions for the existence of a possibly discontinuous piecewise Lyapunov function is proved in Sec. IV. Conditions for the characterization of boundaries in terms of inequalities to be satisfied on their relative interior is discussed in Sec. V. The analysis is then particularized to the case of PWQ Lyapunov functions in Sec. VI where numerical results confirm the effectiveness of the approach. Sec. VII concludes the paper.

II. PWA SYSTEM AND SOLUTION CONCEPT

We consider the PWA system

\[\dot{x} = A_s x + b_s, \quad x \in X_s, \quad s \in \Sigma \]

(1)

where \(A_s \in \mathbb{R}^{n \times n} \), \(b_s \in \mathbb{R}^n \) and \((X_s)_{s \in \Sigma} \) is a polyhedral partition of \(\mathbb{R}^n \) with \(S \in \mathbb{N} \) being the finite size of the
partition; let \(\Sigma := \{1, \ldots, S\} \). In particular, every \(X_s \) is a closed convex set with positive measure resulting from the finite intersection of (closed) half-spaces. Furthermore, we assume that the intersection \(X_i \cap X_j \) is empty or a common face of the polyhedra \(X_i \) and \(X_j \) for all \(i,j \in \Sigma \). Since each \(X_s \) is a closed set, neighbouring polyhedra have a nonempty intersection and there is some ambiguity in the system definition on these intersections. This ambiguity needs to be handled carefully when defining solutions and also is crucial in the forthcoming stability analysis. The (dynamic-independent) index set of current modes at \(x \in \mathbb{R}^n \) is defined as \(\Sigma^x := \{ s \in \Sigma \mid x \in X_s \} \). Note that for those \(x \in \mathbb{R}^n \) which are in the interior of a polyhedron, \(\Sigma^x \) just contains the index of that polyhedron. For those \(x \) which are on the boundaries, \(\Sigma^x \) contains the indices of all polyhedra which share that point. Rewriting (1) now as a differential inclusion

\[
\dot{x} \in \{ A_s x + b_s \mid s \in \Sigma^x \},
\]
we introduce the following solution concept for (2).

Definition 1 (Caratheodory solution): We call \(\xi : [t_0, T) \rightarrow \mathbb{R}^n, t_0, T \in \mathbb{R} \cup \{\infty\} \) with \(t_0 < T \), a Caratheodory solution of the PWA system (2) iff

1. \(\xi \) is absolutely continuous and
2. for almost all \(t \in [t_0, T) \):

\[
\xi(t) \in \{ A_s \xi(t) + b_s \mid s \in \Sigma^x(t) \}.
\]

The set of all Caratheodory solutions \(\xi \) defined on \([t_0, T)\) with initial condition \(\xi(t_0) = x_0 \) is denoted by \(\mathcal{CS}(x_0) \).

In particular, a Caratheodory solution \(\xi : [t_0, T) \rightarrow \mathbb{R}^n \) is called single-mode Caratheodory solution iff there exists an \(s \in \Sigma \) such that \(\xi(t) \in X_s \) and \(\xi(t) = A_s \xi(t) + b_s \) for all \(t \in (t_0, T) \).

For the (asymptotic) stability analysis it is necessary to consider global solutions (i.e. where \(T = \infty \) in the above definition); however, for PWA systems (in contrast to usual linear systems) existence of global solutions is not guaranteed. In order to formalize the notion of solutions for which there is a maximal time until when they exist, we recall the maximal solution concept as follows (due to the time-invariant nature of (2) we can restrict ourselves to the case \(t_0 = 0 \)): A Caratheodory solution \(\xi : [0, \omega) \rightarrow \mathbb{R}^n \) is called maximal, if there is no Caratheodory solution \(\xi' : [0, \omega') \rightarrow \mathbb{R}^n \) with \(\omega > \omega' \) and \(\xi = \xi' \) on \([0, \omega) \). The set of all (maximal) Caratheodory solutions starting at \(x_0 \in \mathbb{R}^n \) is denoted by

\[
\mathcal{CS}(x_0) := \{ \xi : [0, \omega) \rightarrow \mathbb{R}^n \mid \xi \text{ is a Caratheodory sol. with } \xi(0) = x_0 \text{ and maximal } \omega > 0 \}.
\]

Note that different solutions in \(\mathcal{CS}(x_0) \) may have different time-intervals on which they are defined, i.e. in general there is no common \(\omega > 0 \) for all solutions in \(\mathcal{CS}(x_0) \). Let

\[
\omega_{\text{min}}^\mathcal{CS}(x_0) := \inf \{ \omega > 0 \mid \xi : [0, \omega) \rightarrow \mathbb{R}^n \in \mathcal{CS}(x_0) \}
\]
be the minimal length of (maximal) solution-existence for initial value \(x_0 \).

In general, there may be initial values for which a Caratheodory solution does not exist (i.e. \(\mathcal{CS}(x_0) = \emptyset \) for some \(x_0 \in \mathbb{R}^n \)). Consider for example the scalar PWA system (2) with \(A_1 = A_2 = 0, b_1 = -1, b_2 = 1, X_1 = \{ x \in \mathbb{R} \mid x \geq 0 \} \), \(X_2 = -X_1 \) for which there is a maximal single-mode Caratheodory solution for all \(x_0 \neq 0 \) but there is no Caratheodory solution with initial value \(\xi(0) = 0 \), see Figure 1a.

![Fig. 1](image-url)

(a) Example for non-existing Caratheodory solutions.

(b) Example to illustrate non-feasible Filippov solutions.

This example also has the property that all trajectories starting away from zero reach the origin in finite time, in particular, although the trajectories remain bounded the maximal solution-interval is finite. This is in contrast to continuous nonlinear differential equations, where a maximal solution has a finite solution interval only if finite escape time occurs (i.e. the solution grows unbounded in finite time).

The following example shows that non-existence of Caratheodory solutions for some initial values can also occur in PWA systems which exhibit maximal non single-mode Caratheodory solutions.

Example 2: Consider the following PWA system on \(\mathbb{R}^2 \) (see also Figure 2):

\[
\dot{x} = (-1) \text{ in } X_1 = \{ x_1 \geq 0, x_2 \geq 0 \},
\]

\[
\dot{x} = (-1) \text{ in } X_2 = \{ x_1 \leq 0, x_2 \geq 0 \},
\]

\[
\dot{x} = (-1) \text{ in } X_3 = \{ x_1 \leq 0, x_2 \leq 0 \},
\]

\[
\dot{x} = (1/2) \text{ in } X_4 = \{ x_1 \geq 0, x_2 \leq 0 \}.
\]

![Fig. 2](image-url)

Fig. 2: Planar backward Zeno (Caratheodory) solution (also called left-Zeno solution) reaching the origin. There is no Caratheodory solution starting from the origin. If the flow direction is reversed, the system exhibits a forward Zeno (Caratheodory) solution (also called right-Zeno solution) starting from the origin.

The trajectories of this example move around the origin with constant speed and since the length halves after each round, the origin is reached in finite time where the Caratheodory solutions stops (i.e. there is no Caratheodory solution starting in the origin). Furthermore, there are infinitely many switches between the different modes in a finite time interval, i.e. a Zeno behavior, which leads to problems when attempting to numerically solve the PWA system.
The problem of non-existence of Caratheodory solutions can neatly be circumvented by convexifying the differential inclusion (2), i.e.

$$x \in \text{conv} \left\{ A_s x + b_s \mid s \in \Sigma^x \right\}, \quad (4)$$

where “conv” indicates the convex hull and passing to so called Filippov solutions (in particular, sliding solutions):

Definition 3 (Filippov solution): We call $\xi : [t_0, T] \to \mathbb{R}^n$, $t_0, T \in \mathbb{R} \cup \{\infty\}$ with $t_0 < T$, a Filippov solution of the PWA system (4) iff

1) ξ is absolutely continuous and
2) for almost all $t \in [t_0, T)$:

$$\dot{\xi}(t) \in \text{conv} \left\{ A_s \xi(t) + b_s \mid s \in \Sigma^{\xi(t)} \right\}. \quad (5)$$

Definition 4 (Sliding solution): A Filippov solution $\xi : [t_0, T) \to \mathbb{R}^n$ is called sliding solution iff it is not a Caratheodory solution on any subinterval of $[t_0, T)$ and there exists an index set $\Sigma^\xi \subseteq \Sigma$ such that $\Sigma^{\xi(t)} = \Sigma^\xi$ for all $t \in (t_0, T)$ and $\dot{\xi}(t) \in \text{conv} \left\{ A_s \xi(t) + b_s \mid s \in \Sigma^\xi \right\}$ for almost all $t \in [t_0, T)$.

Clearly, a Caratheodory solution is a Filippov solution, but a sliding solution is not a Caratheodory solution.

Maximality of a Filippov solution is defined analogously as for Caratheodory solutions and the set of all (maximal) Filippov solutions with initial value $x_0 \in \mathbb{R}^n$ is

$$\mathcal{FS}(x_0) := \left\{ \xi : [0, \omega) \to \mathbb{R}^n \mid \begin{array}{l} \xi \text{ is a Filippov sol.} \\
\text{with } \xi(0) = x_0 \text{ and } \\
\text{maximal } \omega > 0 \end{array} \right\}$$

and any $\xi \in \mathcal{FS}(x_0)$ with $\omega = \infty$ is called global. By definition it holds that $\mathcal{FS}(x_0) \supseteq \mathcal{CS}(x_0)$, $\forall x_0 \in \mathbb{R}^n$.

The more general class of Filippov solutions new at this point $\mathcal{FS}(x_0) \neq \emptyset$ for all initial values $x_0 \in \mathbb{R}^n$, in fact the following even stronger result holds.

Theorem 5: The PWA system (4) has global Filippov solutions for all initial values.

Proof: Existence of a local solution for any initial value is a simple consequence from [3, Thm. 2.7.1].

The ability to extend each local solution to a global solution follows from the fact that $\|A_s x + b_s\| \leq M \|x\| + B$ uniformly in $s \in \Sigma$ where $M := \max_{s \in \Sigma} \|A_s\|$ and $B = \max_{s \in \Sigma} \|b_s\|$, i.e. the right-hand side of the differential inclusion is affinely bounded and finite escape time cannot occur (cf. [25, Prop. 4.12]).

Indeed, we have now shown the initial claim that passing from Caratheodory solutions to Filippov solutions resolves the problem of nonexistence of solutions for certain initial values (and as a bonus we actually get that all solutions are global). For instance, the global Filippov solutions of Example 2 consist of a Caratheodory backward Zeno till the origin is reached (in finite time) and then a sliding mode in the origin. However, it is well possible that for some $x_0 \in \mathbb{R}^n$ we have $\emptyset \subset \mathcal{CS}(x_0) \neq \mathcal{FS}(x_0)$, i.e. we have obtained additional Filippov solutions starting in x_0 although there already existed Caratheodory solutions starting in x_0, see the following example.

Example 6: Consider a second order PWA system in the form (4) with a partition in the following three regions $X_1 = \{x_1 \geq 0, x_2 \geq -x_1\}$, $X_2 = \{x_1 \leq 0, x_2 \geq x_1\}$, $X_3 = \{x_2 \leq -|x_1|\}$ and dynamics $A_1 = A_2 = A_3 = 0$, $b_1 = (-2, 1)^T$, $b_2 = (2, 1)^T$, $b_3 = (0, -1)^T$, see Figure 3. It is easily seen that for any initial value not on the boundary $X_1 \cap X_2$ there is a unique (local) single-mode Caratheodory solution and for any initial value in the relative interior of the boundary $X_1 \cap X_2$ there is a unique sliding solution. There are, however, two Filippov solutions leaving the origin, one single mode Caratheodory solution leaving via region X_3 and one sliding solution leaving along the boundary $X_1 \cap X_2$.

While for Example 6 it seems reasonable to allow the situation that for some initial values it is possible to leave via a Caratheodory and a sliding solution both, in other situation this may not be desirable.

As an example consider the scalar PWA system (4) with $A_1 = A_2 = 0$, $b_1 = -b_2$ and $X_1 = -X_2 = \{x \geq 0\}$, see Figure 1b, where $\xi(t) \equiv 0$ is a Filippov solution starting in $x_0 = 0$. However, this is an “unnecessary” sliding solution because there are already two (global) Caratheodory solutions leaving the origin. These unnecessary sliding solutions are not physically feasible, because they cannot be obtained as a limit of a chattering solution and they also lead to conservative stability conditions. Therefore, we want to restrict our attention to feasible Filippov solutions defined as follows.

Definition 7 (Feasible Filippov solutions): A sliding solution $\xi : [t_0, T) \to \mathbb{R}^n$ of (4) is said to exhibit unnecessary sliding iff $\mathcal{CS}(\xi(t)) \neq \emptyset$ for some $t \in (t_0, T)$, i.e. ifff somewhere along the trajectory it is possible to continue the trajectory with a Caratheodory solution instead of a sliding solution. We now call a Filippov solution $\xi : [t_0, T) \to \mathbb{R}^n$ feasible iff there is no subinterval on which ξ is unnecessarily sliding. Or, in other words, a Filippov solution is called infeasible iff it contains unnecessary sliding.

Let the set of all (maximal) feasible solutions starting in $x_0 \in \mathbb{R}^n$ be denoted by:

$$\mathcal{FS}^f(x_0) := \{ \xi \in \mathcal{FS}(x_0) \mid \xi \text{ is feasible } \}.$$

A natural question rising at this point is whether any global Filippov solution of a PWA system is composed of only Caratheodory (possibly Zeno) and sliding behaviours. Example 2 seems to confirm this claim: for any nonzero initial condition there is a (local) single-mode Caratheodory
solution (whose sequence generates the backward Zeno behaviour) and in the origin there is a sliding solution. A simple generalization of this example shows that a global Filippov solution can also exhibit a non-Caratheodory backward Zeno behavior. For instance think at the picture in Figure 2 as a trajectory in \(\mathbb{R}^3 \) (of a different PWA system) which is constrained to evolve on the plane by the fact that each piece of the trajectory in a quadrant is a sliding motion involving different modes. Then, each piece of the trajectory is a (local) sliding solution but the global Filippov solution cannot be classified as a sliding mode solution since it is not possible to find a common \(\sum_{\text{slide}}^{(\cdot)} \) for the whole trajectory. This would be a backward Zeno behavior composed by pieces of sliding solutions. Clearly one could also have global Filippov solutions with backward Zeno behaviour generated by the sequence of (local) single-mode Caratheodory and sliding solutions. On the contrary, forward Zeno behavior cannot be locally classified neither as a single-mode Caratheodory nor as a sliding mode.

We will now make certain assumptions on the (Filippov) solution behavior of the PWA system (4). We believe that all PWA systems of the form (4) satisfy these assumptions, however, as of now, we are not able to formally prove these properties.

Assumptions:

(A1) The PWA system (4) has for all initial values global feasible Filippov solutions.

(A2) Let \(\xi : [0, \infty) \to \mathbb{R}^n \) be any Filippov solution of the PWA system (4). Then for all \(t \geq 0 \) there is an \(\varepsilon > 0 \) such that exactly one of the three cases holds:

1. \(\xi_{\lfloor t,t+\varepsilon \rfloor} \) is a single-mode Caratheodory solution.
2. \(\xi_{\lfloor t,t+\varepsilon \rfloor} \) is a sliding solution.
3. \(\xi_{\lfloor t,t+\varepsilon \rfloor} \) is a forward Zeno solution, i.e. it is neither a single-mode Caratheodory nor a sliding solution and there exists a sequence of positive and strictly decreasing numbers \((\varepsilon_k)_{k \in \mathbb{N}} \) with \(\varepsilon_0 = \varepsilon, \varepsilon_k \to 0 \) as \(k \to \infty \) and for each \(k \in \mathbb{N} \) the piece \(\xi_{\lfloor t+\varepsilon_{k+1},t+\varepsilon_k \rfloor} \) is either a single-mode Caratheodory or sliding solution.

Assumption (A1) almost looks like the property already shown in Theorem 5; however, although we know that for any initial value there is a global Filippov solution starting in this point, it is not clear, whether this statement is also true when we restrict ourselves to feasible Filippov solutions. In particular, we do not know whether (A1) actually rules out certain PWA systems or not. For example, one could imagine the situation where the only way to leave a point is along a sliding boundary, but after an arbitrarily short amount of time this sliding is unnecessary, because there exist also Caratheodory solutions leaving that boundary; however, we were not able to find a specific example showing this behavior.

The first two cases in Assumption (A2) we have already seen in the simple Examples illustrated in Figure 1 and in Example 2 (Figure 2); the third case in Assumption (A2) is illustrated by the PWA system which has forward Zeno solutions in Example 2 with a reverted vector field (i.e. where all solutions are the ones of the original system running backward in time).

An important consequence of Assumption (A2) is the following technical result about the nature of Filippov solutions.

Lemma 8: Consider the PWA system (4) satisfying Assumption (A2). Then for every Filippov solution \(\xi : [0, \infty) \to \mathbb{R}^n \) there exists a family of open intervals \((I_k)_{k \in K} \) for some index set, such that \([0, \infty) \setminus \bigcup_{k \in K} I_k \) is at most countable and \(\xi \) is on each interval \(I_k \) either a single-mode Caratheodory or a sliding solution.

Proof: We will construct the desired family of intervals as follows. Let \(t_0 := 0 \) and choose \(t_{k,i} > t_k \) inductively by the condition that \(\xi(t) \) is either a single-mode Caratheodory, a sliding or a forward Zeno solution on \([t_k, t_{k,i}] \). If \(\xi(t) \) is a single-mode Caratheodory or a sliding solution we add the open interval \((t_k, t_{k,i}) \) to our family of intervals; for a forward Zeno solution we add the corresponding countable family of open subintervals \((t_k + \varepsilon_k, t_{k,i} + \varepsilon_k) \) for some \(k \in \mathbb{N} \) to the family of intervals. If \(t_{k,i} = +\infty \) for some \(\ell \) or \(t_k \to \infty \) the claim of the lemma is shown. Otherwise repeat the procedure with the new initial time \(t_0 := \lim_{k \to \infty} t_k \). By adding the countably many end-points of the open intervals we completely cover the interval \([0, \infty) \) and on each open interval \(\xi(t) \) is either a single-mode Caratheodory or a sliding solution.

Remark 9 (A “counterexample” to Lemma 8): One may be tempted to argue that the statement of Lemma 8 is a simple corollary from the much more general statement about the membership property of an absolutely continuous trajectory with respect to a compact set in \(\mathbb{R}^n \):

For any absolutely continuous function \(\xi : [0, \infty) \to \mathbb{R}^n \) and any compact set \(X \subseteq \mathbb{R}^n \) there exists a family of open intervals \((I_k)_{k \in K} \) for some index set \(K \) such that

\[
\{ \xi(t) \in X \} = \bigcup_{k \in K} I_k
\]

is countable.

However, this statement is not correct! A counterexample can be constructed already on the interval \([0,1]\) and in \(\mathbb{R}^1 \) as follows:

Let \(Q \cap [0,1] = \{ q_1, q_2, q_3, \ldots \} \) be the (countable) set of rational numbers in the interval \([0,1]\) and let \(r_i := 2^{-(i+1)} \) (then \(\sum_{i=1}^{\infty} r_i = 1/2 \)) and choose \(\phi_i : [0,1] \to \mathbb{R} \) such that

1. \(\phi_i \) is smooth
2. \(\phi_i(q_i) = r_i \)
3. \(\phi_i(t) = 0 \) for all \(t \in [0,1] \) with \(|t - q_i| \geq r_i/2 \)
4. \(0 < \phi_i(t) \leq r_i \) for all \(t \in [0,1] \) with \(|t - q_i| < r_i/2 \).

Then \(\phi := \sum_{i=1}^{\infty} \phi_i \) is well defined (because \(\sum_{i=1}^{\infty} \phi_i \leq 1/2 \) and smooth). Let \(\lambda \) denote the Lebesgue measure, then

\[
\lambda(\{ \ t \in [0,1] \mid \phi(t) \neq 0 \ \}) = \lambda \left(\bigcup_{i \in \mathbb{N}} \{ t \in [0,1] \mid |t - q_i| < r_i/2 \} \right) \leq \sum_{i=1}^{\infty} \lambda(\{ t \in [0,1] \mid |t - q_i| < r_i/2 \}) = 1/2.
\]
Hence the measure of all points \(t \) where \(\phi(t) = 0 \) is positive, in particular, there are uncountably many such points. Furthermore, each \(t \in [0, 1] \) with \(\phi(t) = 0 \) cannot be contained in an interval \((a, b)\) with \(a < b \) and \(\phi \) being identically zero on \((a, b)\), because there exists a rational number \(q \in (a, b) \) and \(\phi(q) \neq 0 \) by construction of \(\phi \). Hence each of the uncountable many points \(t \in [0, 1] \) with \(\phi(t) = 0 \) is not contained in any open interval where \(\phi \) is identically zero.

III. **Pointwise mode classifications**

The existence of a Filippov solution of the PWA system proved in the previous section allows one to provide a pointwise classification of the modes involved in each point of the solution. Such classification will be used in the next section for providing conditions which must be satisfied by the candidate Lyapunov function.

A. (Strict) forward and backward modes

In addition to the current modes \(\Sigma^x \) of a point \(x \in \mathbb{R}^n \) it is useful for the forthcoming stability analysis to introduce also backward and forward modes. Towards this end we first introduce the set of forward and backward feasible Filippov solutions as follows:

\[
\mathcal{FS}_+^f(x_0) := \left\{ \xi : [0, \infty) \to \mathbb{R}^n \bigg| \begin{array}{l}
\xi \text{ is a feasible Filippov sol. of (4)}, \\
\text{with } \xi(0) = x_0
\end{array} \right\},
\]

\[
\mathcal{FS}_-^f(x_0) := \left\{ \xi : [-\omega, 0) \to \mathbb{R}^n \bigg| \begin{array}{l}
\xi \text{ is a feasible Filippov sol. of (4)}, \\
\text{with } \xi(0^-) = x_0, \\
\text{and maximal } \omega > 0
\end{array} \right\}.
\]

Remarks 10: Consider the PWA system (4) and the set of feasible forward and backward solutions as above.

1) Assumption (A1) yields that \(\mathcal{FS}_+^f(x_0) \neq \emptyset \) for all \(x_0 \in \mathbb{R}^n \).

2) If general Filippov solutions would be considered in the definition of \(\mathcal{FS}_+^f(x_0) \) then, by time-reversibility, it follows that \(\mathcal{FS}_-^f(x_0) \neq \emptyset \) for all \(x_0 \in \mathbb{R}^n \) (and the corresponding \(\omega \) would be infinite); however, by restricting to feasible Filippov solutions, there may be initial values \(x_0 \) for which \(\mathcal{FS}_-^f(x_0) = \emptyset \), i.e. these initial values cannot be reached via a feasible Filippov solution (cf. the example illustrated in Figure 1b, where the origin is not reachable via a feasible Filippov solution).

3) The possibility to have \(\mathcal{FS}_-^f(x_0) = \emptyset \) is another motivation to consider only feasible Filippov solutions: Having \(\mathcal{FS}_-^f(x_0) = \emptyset \) will significantly reduce the number of jump-conditions for the forthcoming stability result (in fact, for points which are not reachable the corresponding Lyapunov-functions do not need to satisfy any additional “crossing-condition” in those points).

Definition 11 (Forward and strict forward mode): For \(x \in \mathbb{R}^n \) we call \(s \in \Sigma \) a forward mode for \(x \) with respect to the PWA system (4) if there exists a solution \(\xi \in \mathcal{FS}_+^f(x) \) such that \(\xi(t) \in X_s \) for infinitely many small \(t > 0 \), or, more formally, the set of all forward modes for \(x \) is

\[
\Sigma^x_+ := \bigcup_{\xi \in \mathcal{FS}_+^f(x)} \cap_{\tau > 0} \cup_{\varepsilon(0, \varepsilon)} \Sigma^{\xi(t)}.
\]

We call \(s \in \Sigma \) a strict forward mode for \(x \in \mathbb{R}^n \) if there exists a single-mode Caratheodory solution \(\xi : [0, \varepsilon) \to \mathbb{R}^n \), \(\varepsilon > 0 \), such that \(\xi(t) \in \text{int } X_s \) for all \(t \in (0, \varepsilon) \); the set of all strict forward modes for \(x \) is denoted by \(\Sigma^x_{+.} \).

Definition 12 (Backward and strict backward mode): For \(x \in \mathbb{R}^n \) we call \(s \in \Sigma \) a backward mode of \(x \) with respect to the PWA system (4) if there exists a solution \(\xi \in \mathcal{FS}_-^f(x) \) such that \(\xi(-t) \in X_s \) for infinitely many small \(t > 0 \), or, more formally, the set of all backward modes for \(x \) is

\[
\Sigma^x_- := \bigcup_{\xi \in \mathcal{FS}_-^f(x)} \cap_{\tau > 0} \cup_{\varepsilon(0, \varepsilon)} \Sigma^{\xi(-t)}.
\]

A mode \(s \in \Sigma \) is a strict backward mode for \(x \) if it is a strict forward mode for the time-reversed PWA system (4), i.e. if there exists a single-mode Caratheodory solution \(\xi : (-\varepsilon, 0) \to \mathbb{R}^n \), \(\varepsilon > 0 \) with \(\xi(t) \in \text{int } X_s \) for all \(t \in (-\varepsilon, 0) \); the set of all strict backward modes for \(x \) is denoted by \(\Sigma^x_{-..} \).

It is clear, that strict forward/backward modes are always forward/backward modes, i.e. \(\Sigma^x_{+_+} \subseteq \Sigma^x_+ \) and \(\Sigma^x_{-_+} \subseteq \Sigma^x_+ \). Furthermore, if some point \(x \in \mathbb{R}^n \) is not reachable via a feasible Filippov solution (i.e. \(\mathcal{FS}_-^f(x) = \emptyset \)) then there are no backward modes for \(x, i.e. \Sigma^x_- = \emptyset \).

Concerning some typical solution behaviors around a point \(x \) in the relative interior of a \(n - 1 \)-dimensional boundary \(X_i \cap X_j \) we can formulate the following (informal) “classifications” (cf. a similar classification in [26, Sec. 3.1]):

- \(x \) is a \((i, j) \)-“crossing” point \(\leftrightarrow \Sigma^x_- = \{i\}, \Sigma^x_+ = \{j\} \).
- \(x \) is a “splitting” point \(\leftrightarrow \Sigma^x_- = \emptyset \) and \(\Sigma^x_+ = \{i, j\} \).
- \(x \) is a “sliding” point \(\leftrightarrow \Sigma^x_- = \Sigma^x_+ = \{i, j\} \).

B. Sliding modes

The situation \(\Sigma^x_- = \Sigma^x_+ = \{i, j\} \) for some \(x \in X_i \cap X_j \) which indicates possible sliding behavior along the boundary, can also occur for Caratheodory solutions passing through \(x \) (when at least one vector field is tangential to the boundary). In order to distinguish genuine sliding behavior from “classical” solution behavior, we introduce the following index set.

Definition 13 (Sliding mode): We call \(s \in \Sigma \) a sliding mode for \(x \in \mathbb{R}^n \) with respect to the PWA system (4) if there is a (feasible) sliding solution \(\xi : [t_0, T) \to \mathbb{R}^n \) with \(\xi(t_0) = x \) and \(s \in \Sigma^{\xi(t)} \), \(\Sigma^{\xi(t)} \) as in Definition 4.

Even in the planar case there are much more complicated solution behaviors possible, in particular, for points \(x \) which are located at the boundary of a boundary (i.e. on intersections of boundaries). While in the planar case

\[1\] We use the convention that \(\Sigma^{\xi(-\tau)} = \emptyset \), whenever \(\tau > \omega \) and \(\xi \in \mathcal{FS}_-^f(x) \) is only defined on \([-\omega, 0)\). Furthermore, if \(\mathcal{FS}_-^f(x) = \emptyset \) then we use the convention that a union over an empty index-set is the empty set.
these boundaries of boundaries have dimension zero (i.e. are isolated points), in higher dimension these boundaries can have positive dimension without being \(n - 1 \)-dimensional faces.

Example 14 (Examples 2 and 6 revisited): Consider the PWA system from Example 2 exhibiting backward Zeno behavior. After the trajectory has reached the origin in finite time only a sliding Filippov solution exists (which remains in the origin). For any point \(x \neq 0 \) there is exactly one forward and backward mode, so the solution behavior is rather standard away from the origin. However, for \(x = 0 \) we have \(\Sigma^0_+ = \Sigma^0_- = \Sigma^0 = \{1, 2, 3, 4\} \), \(\Sigma^0_+ = \Sigma^0_- = \emptyset \) and for any solution \(\xi : [-\omega, \infty) \rightarrow \mathbb{R}^2 \) with \(\xi(0) = 0 \) and \(\xi(-t) \neq 0 \) for all \(t \in (0, \omega) \) we have that \(\Sigma^{\xi(-t)}_\pm \) only contains one mode each.

It is also possible to revert the direction of the vector fields, then there will be (many) non-single-mode Caratheodory solutions reaching the origin), i.e. for this different planar system we have \(\Sigma^0_+ = \{1, 2, 3, 4\} \) and \(\Sigma^0_- = \emptyset \) and for any solution \(\xi : [0, \omega) \rightarrow \mathbb{R}^2 \) we have that \(\Sigma^\xi \) only contains one mode each for any \(t > 0 \). Moreover there exists an unnecessary sliding solution starting and remaining in the origin, i.e. an infeasible Filippov solution.

We also discuss the mode sets for Example 6: the sets \(\Sigma^e_+ \) and \(\Sigma^e_- \) contain exactly one element for all \(x \notin \{X_1 \times X_2\} \) and for these \(x \) also \(\Sigma^e_{\pm} = 0 \). \(\Sigma^e_- = \Sigma^e \) and \(\Sigma^e_+ = \Sigma^e_\pm \).

For \(x \in \text{ri}(X_1 \times X_2) \) we have \(\Sigma^e_+ = \Sigma^e_\pm = \Sigma^e_{\pm} \). Then, for \(x = 0 \) the situation is quite interesting: \(0 = \Sigma^e_0 \subseteq \Sigma^e_\pm \subseteq \Sigma^e_0 \). Finally, we have \(\Sigma^e_\pm = \Sigma^e \). Since \(\Sigma^e \) is nonempty because \(\Sigma^e \), but \(\Sigma^e_\pm \neq \emptyset \).

In higher dimension it is also possible (especially on boundaries with dimensions less than \(n - 1 \)) to have that there are multiple forward modes, multiple backwards modes and for example the following situation is possible:

\[\emptyset \neq \Sigma^e_0 \cap \Sigma^e_\pm \subseteq \Sigma^e_- \subseteq \Sigma^e_+ \cup \Sigma^e_. \]

While there is no general subspace-relationship between \(\Sigma^e_+ \) and \(\Sigma^e_- \) the following properties of the backward, current and forward modes are always true:

Lemma 15: Consider the PWA system (4) with corresponding mode sets \(\Sigma^e_+ \) and \(\Sigma^e_- \) for \(x \in \mathbb{R}^n \). Then for any \(x \in \mathbb{R}^n \) and any \(\xi \in FS^e_\xi(x) \) the following holds.

(i) \(\Sigma^e_0 \subseteq \Sigma^e_+ \) and \(\Sigma^e_- \subseteq \Sigma^e_\pm \).

(ii) If \(\Sigma^e(\tau) = \Sigma^e \) for all sufficiently small \(\tau > 0 \) then \(\Sigma^e = \Sigma^e_\pm \).

(iii) For all \(t \in (0, \varepsilon) \):

\[\Sigma^e_+(t_0 - \tau) \subseteq \Sigma^e(t_0) \neq \emptyset, \quad \text{(6)} \]

(iv) For all \(t \in (0, \varepsilon) \):

\[\Sigma^e_+(t_0 + \tau) \subseteq \Sigma^e_+(t_0). \quad \text{(7)} \]

Before proving the above Lemma, we would like to give some remarks about the subspace relationships.

Remarks 16: Concerning the four statements of Lemma 15 we want to highlight the following:

(i) This statement means that trajectories can reach or leave some value \(x \in \mathbb{R}^n \) only through regions in which \(x \) is currently contained in; this is in fact a consequence of continuity of trajectories and closedness of the regions \(X_\tau \).

(ii) This statement clarifies when equality may hold in the subspace relation \(\Sigma^e_+ \subseteq \Sigma^e_\pm \), apart from the trivial case when \(x \in \text{int} X_\tau \).

(iii) In general the subsets \(\Sigma^e_+ \) and \(\Sigma^e_- \) don’t have a specific relationship to each other (apart from being both subsets of \(\Sigma^e \)); in particular, they can be disjoint non-empty sets. However, for points on a trajectory reaching some \(x \in \mathbb{R}^n \) sufficiently close to \(x \) there is always at least one forward mode which is also a backward mode for \(x \). This common mode, however, may depend on the point along the trajectory, cf. Example 2.

(iv) The final subspace relationships means that no additional forward modes can occur for points on a trajectory starting at \(x \) and which are sufficiently close to \(x \).

Proof of Lemma 15. (i) Let \(s \in \Sigma^e_+ \). Then there exists \(\xi = \xi(s) \in FS^e_\xi(x) \) for which for all \(\varepsilon > 0 \) there is a \(\tau \in (0, \varepsilon) \) such that \(\xi(\tau) \in X_\tau \). In particular, there is a sequence \(\xi \in \bigcup \{ s \} \subseteq \mathbb{R}^2 \) of positive numbers with \(k \rightarrow \infty \) and \(\xi(k) \in X_{k+1} \). By continuity of \(\xi \) and closeness of \(X_\tau \) it therefore follows that \(x = \xi(0) \in X_\tau \), and hence \(s \in \Sigma^e_- \). The analogous argument shows that \(\Sigma^e_- \subseteq \Sigma^e \) (unless \(\Sigma^e_+ = \emptyset \), but in this case the subspace inclusion holds trivially).

(ii) By hypothesis, for all \(\varepsilon > 0 \) there exists \(\tau \in (0, \varepsilon) \) such that \(\Sigma^e(\tau) = \Sigma^e \), consequently \(\xi(\tau) \in \bigcap \{ s \} \subseteq X_{\tau+1} \) for all \(s \in \Sigma^e \). Therefore, by definition, \(s \in \Sigma^e_+ \) for any \(s \in \Sigma^e \). This shows \(\Sigma^e_- \subseteq \Sigma^e_- \) and together with (i) the claim is shown.

(iii) First note that \(FS^e_\xi(x) \) is nonempty because \(\xi(t) \neq 0 \) and passing through \(x(t) \) at \(t = 0 \). Clearly, for \(0 < \varepsilon_1 < \varepsilon_2 \), \(\Sigma^e_\xi (\varepsilon_1) \subseteq \Sigma^e_\xi (\varepsilon_2) \subseteq \Sigma^e_\xi \). Since \(\Sigma \) is finite, the sequence \(\Sigma^e_\xi \) must get stationary as \(\varepsilon \rightarrow 0 \). In other words, there exists an \(\tau > 0 \) (depending on \(\xi \) and \(\xi(t) \)) such that for all \(\varepsilon \in (0, \tau) \): \(\Sigma^e_\xi (\varepsilon) = \Sigma^e_\xi \). In particular, for \(\xi \in FS^e_\xi(x) \) with \(\xi(t) = \xi(t + \varepsilon) \) for \(t \in [0, \varepsilon) \) let \(\xi = \xi \), then

\[\Sigma^e(t_0) = \bigcup_{\xi \in FS^e_\xi(x)} \Sigma^e_\xi(\tau), \quad \text{(8)} \]

Now let \(\tau \in (0, \varepsilon) \) and we will show that there is \(\tau \in (0, \tau) \) such that

\[\Sigma^e(t_0 - \tau) \subseteq \Sigma^e_\xi(t_0 - \tau). \quad \text{(9)} \]
We have, using the same finiteness argument as above,
\[\sum_{\tau \in \tau^+} \bigcap_{\varepsilon > 0} \bigcup_{\tau \in (0, \varepsilon)} \sum_{\tau \in \tau^+ + \tau} = \bigcup_{\tau \in (0, \varepsilon)} \sum_{\tau \in \tau^+ + \tau}, \]
where \(\varepsilon > 0 \) is chosen sufficiently small. For some \(\tau \in (0, \min \{\hat{\varepsilon}, \tau^*\}) \) let \(\tau^* := \tau^+ - \tau > 0 \), then (9) holds. Since \(\tau < \tau^* < \varepsilon^* \), we also have
\[\sum_{\tau \in \tau^+} \bigcap_{\tau \in (0, \varepsilon^*)} \sum_{\tau \in \tau^+ + \tau} \subseteq \bigcup_{\tau \in (0, \varepsilon^*)} \sum_{\tau \in \tau^+ + \tau} \]
and together with (8) and (9) we can conclude that
\[\emptyset \neq \sum_{\tau \in \tau^+} \bigcap_{\tau \in (0, \varepsilon^*)} \sum_{\tau \in \tau^+ + \tau} \cap \sum_{\tau \in \tau^+ + \tau}. \]

(iv) Assume there is \(t_0 \geq 0 \) such that for all \(\varepsilon > 0 \) there is \(\tau^* \in (0, \varepsilon) \) such that (7) does not hold, i.e. there is \(s_{\tau^*} \in \sum_{\tau \in \tau^+ + \tau} \) with \(s_{\tau^*} \notin \sum_{\tau \in \tau^+} \). Because \(s_{\tau^*} \) is contained in the finite set \(\Sigma \) for all \(\varepsilon > 0 \), there is a decreasing sequence \((\varepsilon_k)_{k \in \mathbb{N}} \) of positive numbers converging to zero and an \(\tau^* \in \Sigma \) such that
\[\forall k \in \mathbb{N} : \ s^* \in \sum_{\tau \in \tau^+ + \tau} \setminus \sum_{\tau \in \tau^+ + \tau}. \]
By redefining \(\tau^*_k := \tau^*_k \) for \(\varepsilon \in (\varepsilon_k, \varepsilon_{k+1}) \) we therefore have for all \(\varepsilon > 0 \) that there exists a \(\tau^*_1 \in (0, \varepsilon) \) such that \(s^* \in \sum_{\tau \in \tau^+ + \tau} \setminus \sum_{\tau \in \tau^+} \). Consequently there exists \(\xi_{\tau^*_1} \in \mathcal{K}(\xi(\tau^*_0) + \varepsilon^*_1) \) such that
\[\forall \tau > 0 \exists \sigma \in (0, \tau) : \xi_{\tau^*_1}(\sigma) \in X_{\sigma^*}. \]
The latter allows us to choose a sequence \((\tau_k)_{k \in \mathbb{N}} \) converging to zero with \(\xi_{\tau^*_1}(\tau_k) \in X_{\tau_k^*} \). By continuity of \(\xi_{\tau^*_1} \) and closedness of \(X_{\tau_k^*} \), it follows that
\[\xi(\tau_k + \tau_k^*) = \xi_{\tau^*_1}(0) \in X_{\tau_k^*}. \]
Hence there exists a solution \(\xi \) starting at \(\xi(t_0) \), namely \(\xi = \xi(\cdot + t_0) \), such that for all \(\varepsilon > 0 \) there exists \(\tau \in (0, \varepsilon) \), namely \(\tau = \tau^*_1 \), such that \(\xi(\tau) = \xi(\tau_0 + \tau^*_1) \in X_{\tau_k^*} \), i.e. \(\tau^*_1 \in \sum_{\tau \in \tau^+} \). This contradicts our assumption and we have therefore shown that (7) holds.

IV. STABILITY WITH PIECEWISE LYAPUNOV FUNCTIONS
We will now study stability of the PWA system (4) with (feasible) Filippov solutions.

Definition 17 (Global asymptotic stability): The PWA (4) is called stable iff
(S1) \(\mathcal{K}(x_0) \neq \emptyset \) for all \(x_0 \in \mathbb{R}^n \) and all (feasible Filippov) solutions are defined on \([0, \infty) \).
(S2) The origin is stable, i.e. for all \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for all solutions \(\xi \in \mathcal{K}(x_0) \) the following implication holds:
\[\|\xi(0)\| < \delta \quad \Rightarrow \quad \|\xi(t)\| < \varepsilon \quad \forall t \geq 0. \]
It is called globally asymptotically stable if additionally the origin is globally attractive, i.e.
(S3) \(\xi(t) \to 0 \) as \(t \to \infty \) for all \(\xi \in \mathcal{K}(x_0) \) and all \(x_0 \in \mathbb{R}^n \).

Assumption (A1) ensures that condition (S1) is satisfied, this would not be the case when considering Carathéodory solutions or when the partition of \(\mathbb{R}^n \) has infinitely many elements. For linear systems attractivity already implies stability of the origin, however for PWA systems this is not necessarily the case; as an example consider a planar PWA system qualitatively given in Figure 4.

![Fig. 4: A PWA system whose origin is attractive but where solution starting close to zero can first go away by a certain minimal amount before coming back.](image-url)

Our goal is to prove stability of the PWA system (4) via a piecewisely defined Lyapunov function. For this we first define “local” Lyapunov functions.

Definition 18 (Local Lyapunov function): Consider the PWA system (4). We call \(V_s : \mathbb{R}^n \to \mathbb{R} \) a local Lyapunov function for mode \(s \in \Sigma \) if
(L1) \(V_s \) is continuous on \(\mathbb{R}^n \) and continuously differentiable on \(X_s \).
(L2) \(V_s \) is positive definite on \(X_s \), i.e. \(V_s(x) > 0 \) for all \(x \in X_s \setminus \{0\} \) and if \(0 \in X_s \) then \(V_s(0) = 0 \).
(L3) \(V_s \) is radially unbounded in the following sense:
\[\forall \bar{v} \in V_s(X_s) \subseteq \mathbb{R}^n : \ V_s^{-1}(\bar{v}) \cap X_s \text{ is compact}, \]
(L4) \(V_s \) is decreasing along “classical” solutions within \(X_s \) in the following sense
\[\nabla V_s(x)(A_s x + b_s) < 0 \quad \forall x \in X_s \setminus \{0\}, \]

Remark 19: If \(X_s \) is bounded (and hence compact) continuity of \(V_s \) already implies that (L3) is satisfied. Furthermore, conditions (L2) and (L3) together with continuity of \(V_s \) yields that
\[\forall \varepsilon > 0 \exists \gamma^*_\varepsilon > 0 : \ V_s^{-1}([0, \gamma^*_\varepsilon]) \cap X_s \subseteq B_\varepsilon. \quad (10) \]
Note that (10) is trivially satisfied for all modes \(s \in \Sigma \) with \(0 \notin X_s \), because from continuity and (L3) it follows that \(\min_{x \in X_s} V_s(x) > 0 \), hence \(V_s^{-1}([0, \gamma^*_\varepsilon]) \cap X_s \neq \emptyset \) for sufficiently small \(\gamma^*_\varepsilon > 0 \). Finally, condition (L4) can slightly be relaxed, because it is not necessary to require a decreasing local Lyapunov function in points where the trajectory leaves \(X_s \). Finally note, that (L4) can only be satisfied if \(A_s x + b_s \neq 0 \) for all \(x \in X_s \setminus \{0\} \) and all \(s \in \Sigma \); in fact, \(A_s x + b_s \neq 0 \) is obviously a necessary condition for global asymptotic stability.

The challenge is to formulate suitable compatibility conditions for this Lyapunov function on the boundaries. The simplest case (but also most restrictive case) is the assumption that there is a common Lyapunov function for all modes, then stability is obviously guaranteed. It is common to assume continuity of the local Lyapunov functions across
the boundaries, then asymptotic stability is guaranteed if no sliding and no Zeno-behavior occur. However, requiring continuity is neither necessary nor sufficient for proving stability; for the latter see e.g. [1, Example 4.9].

Our main result will not impose continuity of the local Lyapunov functions across the boundaries, but we will now present weaker suitable compatibility conditions which, if satisfied, ensure stability of the PWA system (4) with feasible Filippov solutions; including sliding and Zeno behaviors as well as non-unique solutions.

Theorem 20: Consider the PWA system (4) satisfying Assumptions (A1) and (A2). Assume that for each mode \(s \in \Sigma \) there is a local Lyapunov-function \(V_s : \mathbb{R}^n \to \mathbb{R} \) as in Definition 18. Furthermore, assume that the different Lyapunov functions are compatible in the following sense:

(B1) \(\forall x \in \mathbb{R}^n \forall (i,j) \in \Sigma^x_\pm \times \Sigma^x_\pm : V_i(x) \geq V_j(x) \).

(B2) \(\exists \mu > 0 \forall x \in \mathbb{R}^n \) with \(\Sigma^x_\pm \neq \emptyset \) \(\exists i_x \in \Sigma^x_\pm : \nabla V_{i_x}(x)(A_j x + b_j) \leq -\mu \| x \| \) \(\forall j \in \Sigma^x_\pm \).

Then (4) is globally asymptotically stable.

Before proving our main result, we would like give a few remarks.

Remarks 21: 1) Conditions (B1) and (B2) are trivially satisfied for all \(x \) in the interior of some \(X_s \), hence it need only to be checked for points \(x \) on the boundaries. Furthermore, (B1) is also trivially satisfied for those \(x \) with \(\Sigma_\pm = \emptyset \).

2) We do not explicitly require equality of the Lyapunov function values at sliding points. However, for a sliding solution \(\xi : [0,\omega) \to \mathbb{R}^n \) it will turn out, that for almost all \(t \in [0,\omega) \) the equality \(\Sigma(t) = \Sigma(t-\tau) \) holds; consequently, (B1) implicitly implies equality of the Lyapunov function values.

3) Condition (B2) is satisfied if the in general stronger conditions \(\nabla V_i(x) = \nabla V_j(x) \) for all \(i,j \in \Sigma^x_\pm \) holds. Note that, similar as in [1], we are not requiring (11) to hold for all pairs \((i,j) \in \Sigma^x_\pm \times \Sigma^x_\pm \), this is in contrast to other recent approaches, see e.g. [14].

4) It is straightforward to extend Definition 17 to PWA systems (4) with general Filippov solutions (i.e. not restricting the solution space to feasible Filippov solutions). Then Assumption (A1) can be dropped in the formulation of Theorem 20. However, in that case \(\Sigma^x_\pm \) will never be empty, so that jump condition (B1) have to be satisfied on all boundaries; in particular, for “splitting” boundaries an “unnecessary” sliding can occur, which in turn enforces an “unnecessary” continuity requirement of the Lyapunov function on that boundary.

Proof of Theorem 20. Let

\[V(x) := \max_{s \in \Sigma^x_\pm} V_s(x) \]

We will now prove global asymptotic stability of (4) in several steps.

Step 1: We show that \(V \) is decreasing along solutions.

Let \(\xi : [0,\infty) \to \mathbb{R}^n \) be a feasible Filippov solution of (4) and let

\[v(t) := V(\xi(t)) \]

Note that by positive definitness of the local Lyapunov-functions \(v(t) = 0 \) if, and only if, \(\xi(t) = 0 \).

Step 1a: We show that \(v \) cannot jump upwards anywhere.

Note that at this point it is not clear yet whether \(v \) is left- or right-continuous. In particular, \(v(t^-) \) and \(v(t^+) \) may not be well defined and we therefore have to formulate the property “not jumping upwards at \(t \in [0,\infty) \)” as follows:

\[\lim_{\varepsilon \to 0^-} \inf_{\tau \in (0,\varepsilon)} v(t^-) \geq v(t) \geq \lim_{\varepsilon \to 0^+} \sup_{\tau \in (0,\varepsilon)} v(t+). \] \(\text{(12)} \)

Note that (12) is trivially satisfied (with equality) at all continuity points of \(v \). In order the prove the left inequality of (12) for any \(t > 0 \) we first observe that for sufficiently small \(\tau > 0 \)

\[V(\xi(t-\tau)) = \max_{i \in \Sigma^x_i} V_i(\xi(t-\tau)) \]

We first observe that for sufficiently small \(\varepsilon > 0 \) and \(\tau \in (0,\varepsilon) \)

\[\min_{i \in \Sigma^x_i} V_i(\xi(t-\tau)) = \min_{i \in \Sigma^x_i} V_i(\xi(t)). \] \(\text{(13)} \)

Furthermore, from continuity of \(\xi \) and of each \(V_s \) together with finiteness of \(\Sigma^x_\pm \) we can conclude that

\[\lim_{\varepsilon \to 0^+} \inf_{\tau \in (0,\varepsilon)} \min_{i \in \Sigma^x_i} V_i(\xi(t-\tau)) \geq \min_{i \in \Sigma^x_i} V_i(\xi(t)). \] \(\text{(14)} \)

Altogether we have

\[\lim_{\varepsilon \to 0} \inf_{\tau \in (0,\varepsilon)} v(t-\tau) \geq \min_{i \in \Sigma^x_i} V_i(\xi(t-\tau)) \geq \max_{j \in \Sigma^x_j} v_j(\xi(t)) = v(t). \] \(\text{(B1)} \)

The right inequality of (12) for \(t \geq 0 \) is shown as follows:

\[v(t) = \max_{s \in \Sigma^x_t} V_s(\xi(t)) = \max_{\varepsilon \geq 0} \min_{s \in \Sigma^x_t} V_s(\xi(t+\varepsilon)) \]

\[= \lim_{\varepsilon \to 0} \max_{s \in \Sigma^x_t} V_s(\xi(t+\varepsilon)) \]

\[= \lim_{\varepsilon \to 0} \sup_{\tau \in (0,\varepsilon)} \min_{s \in \Sigma^x_t} V_s(\xi(t+\tau)) \]

\[\geq \lim_{\varepsilon \to 0} \sup_{\tau \in (0,\varepsilon)} v(\xi(t+\tau)) \]

\[= \lim_{\varepsilon \to 0} \sup_{\tau \in (0,\varepsilon)} v(t+\tau). \]

Step 1b: We show that \(v \) is decreasing on intervals where \(\xi \) is a single-mode Carathéodory solution.

Let \(\mathcal{I} \subseteq [0,\omega) \) be an open interval on which \(\xi \) is a single-mode Carathéodory solution not passing through the origin, i.e. \(\xi(t) \in X_s \setminus \{0\} \) for some \(s \in \Sigma \) and all \(t \in \mathcal{I} \) and \(\xi(t) = A_s \xi(t) + b_s \) for almost all \(t \in \mathcal{I} \). We first show that then \(v(t) = V_s(\xi(t)) \). By construction, \(v(t) \geq V_s(\xi(t)) \). Furthermore, from \(\xi(t-\varepsilon) \in X_s \) for all sufficiently small \(\varepsilon > 0 \) it follows that \(s \in \Sigma^x_t \). Hence, by (B1), \(V_s(\xi(t)) \geq \max_{j \in \Sigma^x_t} V_j(\xi(t)) = v(t) \), which shows \(v(t) = V_s(\xi(t)) \).
for all \(t \in \mathcal{I} \). Hence, \(v \) is absolutely continuous on \(\mathcal{I} \) and for almost all \(t \in \mathcal{I} \),

\[
\dot{v}(t) = \nabla V_s(\xi(t))(A_s \xi(t) + b_s) \quad (L4)
\]

Step 1c: We show that \(v \) is decreasing on intervals where \(\xi \) is a sliding solution.

Let \(\mathcal{I} \subseteq [0, \omega) \) be an open interval on which \(\xi \) is a sliding solution not passing through the origin. Hence there exists \(S \subseteq \Sigma \) with \(S = \Sigma^{(t)}_s \) and \(\xi(t) \neq 0 \) for all \(t \in \mathcal{I} \). From Lemma 15 and by assumption we can conclude that \(S = \Sigma^{(t)}_s = \Sigma^{\text{slide}}_s \) for all \(t \in \mathcal{I} \). With an analogous argument as in the proof of Lemma 15(ii) we can also conclude that \(\Sigma^{(t)}_s = \Sigma^{(t)}_\delta \) for all \(t \in \mathcal{I} \). Hence by (B1) we have \(V_i(\xi(t)) = V_j(\xi(t)) \) for all \(i, j \in S \) and all \(t \in \mathcal{I} \). In particular, \(v(t) = V_s(\xi(t)) \) for any \(s \in S \) and all \(t \in \mathcal{I} \) and, therefore, \(v \) is absolutely continuous on \(\mathcal{I} \) and for almost all \(t \in \mathcal{I} \)

\[
\dot{v}(t) = \nabla V_s(\xi(t)) \sum_{j \in S} \lambda_j(t)(A_s \xi(t) + b_j) < 0.
\]

for some \(\lambda_j(t) \in [0, 1] \) with \(\sum_{j \in S} \lambda_j(t) = 1 \) and any \(s \). By Assumption (B2) we can pick for each \(t \) an index \(i(t) \in S = \Sigma^{(t)}_s \) such that \(\nabla V_{i(t)}(\xi(t))(A_s \xi(t) + b_j) < 0 \) for all \(t \in \mathcal{I} \) and all \(j \in \Sigma^{(t)}_s \). Consequently,

\[
\dot{v}(t) = \sum_{j \in S} \lambda_j(t) \nabla V_{i(t)}(\xi(t))(A_s \xi(t) + b_j) < 0.
\]

Step 1d: We show monotonicity of \(v \).

Invoking Lemma 8 we can conclude that \(t \mapsto v(t) \) has at most countable many discontinuities and is differentiable almost everywhere. By Step 1a, \(v \) is not increasing at the discontinuities and has negative derivative for almost all \(t \) where \(v(t) > 0 \) by Steps 1b and 1c. If \(v(t_0) = 0 \) for some \(t_0 > 0 \) then \(v(t) = 0 \) for all \(t \geq t_0 \), because assuming the contrary immediately results in a contradiction to Steps 1a, 1b and/or 1c. Altogether this shows that \(v \) is strictly decreasing as long as \(v(t) > 0 \) and remains at zero once it reaches zero.

Step 2: We show stability of the origin.

We will show that for all \(\varepsilon > 0 \) there exists \(\gamma, \delta > 0 \) such that

\[
\mathbb{B}_\delta \subseteq V^{-1}(\{0, \gamma\}) \subseteq \mathbb{B}_\varepsilon.
\]

It then follows that for any solution \(\xi : [0, \infty) \to \mathbb{R}^n \) of (4) with \(\|\xi(0)\| < \delta \) we have \(V(\xi(t)) \leq V(\xi(0)) \leq \gamma \) and hence \(\xi(t) \in V^{-1}(\{0, \gamma\}) \subseteq \mathbb{B}_\varepsilon \), i.e. \(\|\xi(t)\| \leq \varepsilon \).

For \(s \in \Sigma \) choose \(\gamma_s^* > 0 \) as in (10) and let \(\gamma := \min_{s \in \gamma} \gamma_s^* \) then

\[
\forall s \in \Sigma : \quad V_s^{-1}(\{0, \gamma\}) \cap X_s \subseteq \mathbb{B}_\gamma.
\]

Or in other words, for all \(x \in \mathbb{R}^n \) and all \(s \in \Sigma^x \) it follows from \(V_s(x) \leq \gamma \) that \(x \in \mathbb{B}_\gamma \). The implication remains true if the stronger assumption \(\max_{s \in \Sigma^x} V_s(x) \leq \gamma \) is used instead (taking into account that \(\Sigma_x^s \subseteq \Sigma^x \)), hence we have shown that \(V^{-1}(\{0, \gamma\}) \subseteq \mathbb{B}_\gamma \).

To show \(\mathbb{B}_\delta \subseteq V^{-1}(\{0, \gamma\}) \) we first observe that for those \(s \in \Sigma \) for which \(0 \in X_s \) we have by assumption (L2) that \(V_s(0) = 0 \) and continuity of \(V_s \) at \(x = 0 \) means that there is \(\delta_s > 0 \) such that \(V_s(\mathbb{B}_{\delta_s}) \subseteq \{0, \gamma\} \), and hence also

\[
V_s(\mathbb{B}_{\delta_s} \cap X_s) \subseteq \{0, \gamma\}.
\]

For those \(s \in \Sigma \) with \(0 \notin X_s \) we chose \(\delta_s > 0 \) smaller than the (positive) distance of \(0 \) to \(X_s \); by this choice (15) is trivially satisfied also for those \(s \). Consequently,

\[
V(x) = \max_{s \in \Sigma} V_s(x) \leq \max_{s \in \Sigma} V_s(\xi(t)) = V(\xi(t)) \quad \forall x \in \mathbb{B}_{\delta} \cap X_s
\]

where \(\delta := \min_{s \in \Sigma} \delta_s > 0 \). Since, by definition, \(s \in \Sigma^x \) if, and only if, \(x \in X_s \), the latter implies \(V(\mathbb{B}_\delta) \subseteq \{0, \gamma\} \) which in turn implies the desired subset relationship.

Step 3: We show that \(V \) converges towards zero along solutions.

We first show that any solution \(\xi : [0, \infty) \to \mathbb{R}^n \) evolves within a compact set. For that let

\[
t_s := \inf \{ t \in [0, \infty) \mid s \in \Sigma^t \land V_s(\xi(t)) = V(\xi(t)) \}
\]

be the first time, the local Lyapunov function of mode \(s \) determines the global value of the Lyapunov function (note however, that in general \(V_s(\xi(t_s)) \) may be smaller than \(V(\xi(t_s)) \)). Note that \(t_s = \infty \) is possible, for example, when \(\xi \) is not evolving through \(X_s \). It then follows that for any \(t \in [0, \infty) \) and for any \(s \in \Sigma^t \) with \(t_s < t \) we have by monotonicity of \(V(\xi(\cdot)) \) that

\[
V_s(\xi(t)) \leq V(\xi(t_s)) \leq V(\xi(s + \varepsilon_k)) = V_s(\xi(s + \varepsilon_k))
\]

for a suitable sequence of nonnegative numbers \((\varepsilon_k)_{k \in \mathbb{N}} \) with \(\varepsilon_k \to 0 \) as \(k \to \infty \) and therefore, by continuity of \(V_s \),

\[
V_s(\xi(t_s)) \leq V_s(\xi(t_s)) =: \tau_s.
\]

Since for every \(t \in [0, \infty) \) there is always an \(s_{\max} \in \Sigma^t \) with \(V_{s_{\max}}(\xi(t)) = V(\xi(t)) \) we have \(t \geq t_{s_{\max}} \). In conclusion, for \(\forall t \in [0, \infty) \) we have an \(s \in \Sigma \) such that \(\xi(t) \in X_s \) and (16) holds and

\[
\xi(t) \in \bigcup_{s \in \Sigma, s \leq t_{s_{\max}}} V_s^{-1}(\{0, \tau_s\}) \cap X_s =: K.
\]

By assumption (L3) we have that \(K \) is compact.

Seeking a contradiction we now assume that \(\lim v(t) := \varepsilon > 0 \). As shown in Step 2 there is a \(\delta > 0 \) such that \(V(\mathbb{B}_\delta) \subseteq \{0, \varepsilon\} \), hence we can conclude that \(\xi \) evolves within the compact set \(K := \mathbb{R}^n \setminus \mathbb{B}_\delta \) which does not contain the origin. Hence for each \(s \) where \(t_s < \infty \) the continuous functions \(x \mapsto |\nabla V_s(x)(A_s x + b_s)| \) attain a minimum on \(K \cap X_s \), say \(d_s \). Because of (L4) it holds that \(d_s > 0 \), hence \(v(t) \leq -\min_{s \in \Sigma} d_s =: -d < 0 \) on intervals where \(\xi \) is a single-mode Carathéodory solution (with the convention that \(d_s = \infty \) if \(t_s = \infty \)). On intervals where \(\xi \) is a sliding
solution it follows from Step 1c and \(|\xi(t)| \geq \delta \) that
\[
\dot{v}(t) = \sum_{s \in S} \lambda_s(t) \nabla V_t(\xi(t))(A_s\xi(t) + b_s)
\]
\[
\leq \left \{ \begin{array}{ll}
-\sum_{s \in S} \lambda_s(t) \mu |\xi(t)| & \leq -\mu \delta,
\end{array} \right.
\]
where \(S = \Sigma_{\text{slide}} \), which, as shown in Step 1c, is independent of \(t \) within a given interval on which \(\xi \) is a sliding solution. Altogether we have for almost all \(t \in [0, \infty) \) that
\[
\dot{v}(t) \leq -\min\{d, \mu \delta\} < 0.
\]
However, this contradicts \(v(t) \geq 0 \) and we have shown that
\[
0 = v = \lim_{t \to \infty} v(t).
\]

Step 4: We show that all solutions converge to zero. We have already shown in Step 2 that for all \(\varepsilon > 0 \) there is \(\gamma > 0 \) such that \(V(x) \leq \gamma \) implies \(|x| < \varepsilon\), hence \(V(\xi(t)) \to 0 \) as \(t \to \infty \) implies \(\xi(t) \to 0 \) as \(t \to \infty \).

Remark 22: In the proof of Theorem 20 we did not explicitly utilize linearity of the individual modes, the polyhedral nature of the partition, nor the assumption that the interior of the intersection \(X_i \cap X_j \) is empty. Therefore, we believe that Theorem 20 can be significantly generalized. However, the formal extension to the most general case is outside the scope of this paper as we would like to also present a constructive method to prove stability.

V. BOUNDARIES CHARACTERIZATIONS

The implementation of Theorem 20 requires tools for: i) checking the sign of candidate local Lyapunov functions in the corresponding polyhedra and their derivatives along the trajectories, and ii) verifying the pointwise conditions (B1) and (B2). The former issue will be tackle in Sec. VI by using the cone-copositive approach with quadratic functions. The pointwise conditions (B1) and (B2) can be recast in the same framework for verifying them on all points in some boundaries. This approach heavily relies on the assumption that the partition is chosen suitable in the sense that most of the boundaries have a uniform behavior with respect to pointwise conditions (B1) and (B2). Towards this goal we first use the short hand notation \(\Sigma^b(X_B), \Sigma^p(X_B), \ldots \) to implicitly assume that \(\Sigma^b, \Sigma^p, \ldots \) are the same for all \(x \in \text{ri}(X_B) \). Now we can introduce the following boundary classification:

Definition 23 (Boundary classification): A (non-empty) boundary \(X_B \) for \(B \subseteq \Sigma \) is called

(i) unreachable boundary iff \(\Sigma^p(X_B) = \emptyset \);
(ii) crossing boundary iff it is not unreachable and \(\Sigma^b(X_B) \cap \Sigma^p(X_B) = \emptyset \);
(iii) Caratheodory boundary iff \(\Sigma^b(X_B) = \emptyset \) and \(\mathcal{F}S_t^p(x) = \emptyset \) for all \(x \in \text{ri}(X_B) \);
(iv) sliding boundary iff \(\Sigma^s(X_B) = \emptyset \);
(v) unclassified boundary otherwise.

Definition 23(i) means that no solutions can reach that type of boundary. Definition 23(ii) means that for a crossing boundary there exists at least one backward mode and one (different) forward mode, although the type of backward and forward solutions could be different and each of them can be single-mode Caratheodory, sliding or Zeno. Definition 23(iii) means that all forward solutions (possibly Zeno) starting from the relative interior of that boundary are Caratheodory solutions. Therefore from Caratheodory boundaries cannot start sliding solutions neither forward Zeno solutions with pieces of sliding. Definition 23(iv) means that all solutions lying on that boundary are characterized by sliding.

The remainder of the section will present results which may assist the classification of the boundaries. However, there is no general method available yet to fully characterize a given boundary, so far we can only provide sufficient conditions; in particular some boundaries may remain “unclassified”. However, this doesn’t prevent our method to work in the sense that this will just impose stricter (possibly unnecessary) continuity assumptions on the sought PWQ Lyapunov function. Nevertheless, if the stability conditions return a solution it will result in a PWQ Lyapunov function proving asymptotic stability of the PWA system, even if too many boundaries were “unclassified”.

Consider a boundary \(X_B \) of the partition with \(B \subseteq \Sigma \) the set of indices of all polyhedra sharing the relative interior of that boundary, say \(\text{ri}(X_B) \), i.e. \(B = \Sigma^p \) for all \(x \in \text{ri}(X_B) \). Consider a generic \(s \in B \). By definition, \(X_B \) is a face of \(X_s \). In particular, it can be written as a finite intersection of some facets of \(X_s \). Each of these facets is itself an intersection of \(X_s \) with another polyhedron \(X_{\ell} \), say \(X_{\ell} = X_s \cap X_{\ell} \), for some \(\ell \in B \). More specifically, for each boundary \(X_B \) and for each \(s \in B \), consider the set of indices
\[
\Lambda_s = \{\ell_1, \ell_2, \ldots, \ell_{\alpha_s}\} \subseteq B
\]
that
\[
X_B = \bigcap_{\ell \in \Lambda_s} X_{\ell s},
\]
where \(X_{\ell s}, \ell \in \Lambda_s \), are facets of \(X_s \). As an example, consider \(x \in \mathbb{R}^3 \) and the semiaxis \(X_B = \{x_1 \geq 0, x_2 = x_3 = 0\} \) as a boundary of the polyhedron \(X_s = \{x_1 \geq 0, x_2 \geq 0, x_3 \geq 0\} \). Then (17) holds with \(\Lambda_s = \{\ell_1, \ell_2\}, X_{\ell_1} = \{x_1 \geq 0, x_2 \leq 0, x_3 \geq 0\}, X_{\ell_2} = \{x_1 \geq 0, x_2 \geq 0, x_3 \leq 0\} \).

Consider now the affine hull of each facet \(X_{\ell s} \) which is an affine hyperplane
\[
H_{\ell s} = \{x \in \mathbb{R}^n \mid h_{\ell s}^T x + g_{\ell s} = 0 \}
\]
for some normal vector \(h_{\ell s} \in \mathbb{R}^n \) and offset \(g_{\ell s} \in \mathbb{R} \). For any normal vector \(h_{\ell s} \) of \(H_{\ell s} \) also \(\lambda h_{\ell s} \) for any \(\lambda \in \mathbb{R} \setminus \{0\} \) is a normal vector of \(H_{\ell s} \) (with offset \(\lambda g_{\ell s} \)). Hence it is no restriction of generality to assume that \(h_{\ell s} \) is chosen such that it points from \(X_{\ell s} \) to \(X_s \), i.e. we can assume that
\[
\begin{array}{ll}
h_{\ell s}^T x + g_{\ell s} > 0, & x \in X_s \setminus X_{\ell s}, \\
h_{\ell s}^T x + g_{\ell s} < 0, & x \in X_{\ell s} \setminus X_s.
\end{array}
\]
(18a)
Note that with this convention the normal vectors \(h_{\ell s} \) and \(h_{\ell s}^T \) will have opposite directions.

For the pointwise case, in the Appendix we report some conditions to determine whether for a given \(x \in X_B \) it is \(s \in \Sigma^b_+, s \in \Sigma^b_- \) or neither of the two, see Lemma 32...
and Lemma 33. In particular, if Lemma 32 is not satisfied for all $s \in B$ then $\Sigma_{++} = \emptyset$. Analogously, if Lemma 33 is not satisfied for all $s \in B$ then $\Sigma_{--} = \emptyset$. Even if we have $\Sigma_{++} = \Sigma_{--} = \emptyset$, i.e. the point x can be classified to be "non single-mode Caratheodory", there are still three quite different cases possible:

- It is possible to leave x via a forward Zeno solution.
- There is a sliding solution from x along the boundary X_B.
- There is sliding solution from x leaving X_B and evolving along $X_{B'}$ for some proper $B' \subset B$.

We are now ready to characterize the boundaries where a single-mode (forward and/or backward) Caratheodory solution exists, i.e. $\Sigma_{++} \neq \emptyset$ and/or $\Sigma_{--} \neq \emptyset$ for the points x belonging to the boundary. For a boundary X_B such that the sets Σ_{++} and Σ_{--} do not depend on x for all $x \in \text{ri}(X_B)$, it is possible to define the sets $\Sigma_{++}(x) \subseteq B$ and $\Sigma_{--}(x) \subseteq B$. In the following we provide sufficient conditions for $s \in \Sigma_{++}(x)$.

Lemma 24: Consider the PWA system (4), a boundary of the partition X_B, with $B \subseteq \Sigma$, a generic $s \in B$, $\ell \in \mathcal{L}_s$ as in (17), $\{h_{k \ell s}\}_{\ell \in \mathcal{L}_s}$ the normal vectors according to the convention in (18). If for each $\ell \in \mathcal{L}_s$ there exists an integer $k_{\ell s} \in \{1, 2, \ldots, n\}$ such that $\forall k \in \{1, \ldots, k_{\ell s} - 1\}$, for all vertices $\{v_i\}_{i=1}^n$ of X_B and for all rays $(r_j)_{j=1}^\rho$ of X_B it is

$$
\begin{align*}
&h_{k_{\ell s}^+} A_{k_{\ell s}^+}^{-1} (A_s v_i + b_s) = 0 \quad (19a) \\
&h_{k_{\ell s}^-} A_{k_{\ell s}^-}^{-1} (A_s r_j) = 0 \quad (19b)
\end{align*}
$$

$$
\forall x \in \text{ri}(X_B) : h_{k_{\ell s}^+} A_{k_{\ell s}^+}^{-1} (A_s x + b_s) > 0, \quad (19c)
$$

$i = 1, \ldots, \lambda$, $j = 1, \ldots, \rho$, then $s \in \Sigma_{++}(x)$.

Proof: Recall that the boundary can be written as

$$
X_B = \text{conv}\{v_i\}_{i=1}^\lambda + \text{cone}\{r_j\}_{j=1}^\rho,
$$

i.e. any $x \in X_B$ can be expressed as the sum of a convex combination of the vertices of X_B and the conical combination of its rays. Then conditions (19a)–(19b) imply that $h_{k_{\ell s}^+} A_{k_{\ell s}^+}^{-1} (A_s x + b_s) = 0$ for any $x \in X_B$ and the proof follows by applying Lemma 32.

Sufficient conditions for $s \in \Sigma_{--}(x)$ can be obtained analogously.

Lemma 25: Consider the PWA system (4), a boundary of the partition X_B, with $B \subseteq \Sigma$, a generic $s \in B$, $\ell \in \mathcal{L}_s$ as in (17), $\{h_{k \ell s}\}_{\ell \in \mathcal{L}_s}$ the normal vectors according to the convention in (18). If for each $\ell \in \mathcal{L}_s$ there exists an integer $k_{\ell s} \in \{1, 2, \ldots, n\}$ such that $\forall k \in \{1, \ldots, k_{\ell s} - 1\}$, for all vertices $\{v_i\}_{i=1}^n$ of X_B and for all rays $(r_j)_{j=1}^\rho$ of X_B it is

$$
\begin{align*}
&h_{k_{\ell s}^+} A_{k_{\ell s}^+}^{-1} (A_s v_i + b_s) = 0 \quad (21a) \\
&h_{k_{\ell s}^-} A_{k_{\ell s}^-}^{-1} (A_s r_j) = 0 \quad (21b)
\end{align*}
$$

$$
\forall x \in \text{ri}(X_B) : h_{k_{\ell s}^-} A_{k_{\ell s}^-}^{-1} (A_s x + b_s) < 0, \quad (21c)
$$

$i = 1, \ldots, \lambda$, $j = 1, \ldots, \rho$, then $s \in \Sigma_{--}(x)$.

Proof: The proof follows through steps similar to Lemma 24 by considering the time-reversed variant of the PWA system (4), i.e. $\dot{x}(t) = A_s x(t) - b_s$ with $x(t) \in X_s$.

Indeed, s being a strict backward mode for x is equivalent to s being a strict forward mode for the same x in the time-reversed system. Then the proof directly follows by applying Lemma 33.

Remark 26 (Relative interior): The verification of (19c) (condition (21c), respectively) also on the boundary of the boundary of X_B it is not sufficient for concluding that $s \in \Sigma_{++}^B$ ($s \in \Sigma_{--}^B$), i.e. to extend Lemma 24 (Lemma 25) to the boundary of the boundary of X_B. As an example consider the planar PWA given by $\dot{x} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, $x \in \bigcup_{s=1}^4 X_s$ where X_1, X_2, X_3, X_4 are the four canonical quadrants, see Figure 5. Clearly, for all $x \in \text{ri}(X_{41})$ it is $\{1\} \in \Sigma_{++}^{\text{ri}(X_{41})}$ and the inequalities (19c) hold for $k_{41}^- = 1$. However, such inequalities also hold for $x = 0$, but there does not exist a solution starting in the origin and evolving for some positive time in X_1, i.e. $\{1\} \notin \Sigma_{++}^0$. Moreover, the origin can be written as the intersection of the facets X_{12} and X_{32}. Then it is easy to verify that conditions of Lemma 24 are satisfied for $s = 2$, i.e. $\{2\} \subseteq \Sigma_{++}^0$.

Fig. 5: Illustration that (19c) is not sufficient for points on the boundary of a boundary.

Lemmas 24 and 25 are sufficient conditions which could be used for searching boundaries which are both crossing and Caratheodory. The sets satisfying the conditions in the lemmas, say $\overline{\Sigma_{++}(x)}$ and $\overline{\Sigma_{--}(x)}$, are subsets of $\Sigma_{++}(x)$ and $\Sigma_{--}(x)$, respectively. In the case that $\overline{\Sigma_{++}(x)}$ and $\overline{\Sigma_{--}(x)}$ are nonempty, disjoint, and $\overline{\Sigma_{++}(x)} \cup \overline{\Sigma_{--}(x)} = B$, the boundary can be classified as crossing and Caratheodory type, see Definition 23. Clearly, in this case it will be $\Sigma_{++}^B = \overline{\Sigma_{++}(x)}$ and $\Sigma_{--}^B = \overline{\Sigma_{--}(x)}$. More in general, it could be that $\overline{\Sigma_{--}(x)} \cup \overline{\Sigma_{++}(x)} \subset B$. In this case, if the sets are nonempty, one can define the Caratheodory trajectories moving from any mode of $\overline{\Sigma_{++}(x)}$ to any other mode of $\overline{\Sigma_{--}(x)}$, although it is not possible to state that the boundary is of crossing type for all trajectories. Another interesting case is when the condition $h_{k_{\ell s}^+} A_{k_{\ell s}^+}^{-1} (A_s x + b_s) = 0$ holds $\forall x \in \text{ri}(X_B)$ and for $k_{\ell s}^+ = 1, \ldots, n$. This corresponds to Caratheodory trajectories lying on the boundary for mode s.

VI. PWQ Lyapunov function

The conditions in Theorem 20 on the local-Lyapunov functions are pointwise and then not easily implementable. In order to formulate practical conditions, we look for guaranteeing conditions (B1) and (B2) in Theorem 20 on the whole boundaries by exploiting the classification from Definition 23 and local quadratic Lyapunov functions.
A. Positivity test for quadratic functions on polyhedral sets

Consider a general quadratic function

\[q(x) = x^T P x + 2 \nu^T x + \omega \] \quad (22)

and a polyhedral set \(X \subseteq \mathbb{R}^n \). In the following we assume \(\omega = 0 \) if \(0 \in X \). We want to find a sufficient conditions in terms of \(P, \nu, \omega \) and the vertices and rays of \(X \) which guarantees that \(q(x) > 0 \) \(\forall x \in X \setminus \{0\} \) or \(q(x) \geq 0 \) \(\forall x \in X \).

Sufficient conditions for the positivity of \(q(x) \) in \(X \) can be obtained by using the cone-copositive approach. Each polyhedron \(X \) can be represented in the form (20) which identifies the so-called \(V \)-representation of the polyhedron. If the origin is the only vertex, then the polyhedron is a polyhedron be obtained by using the cone-copositive approach. Each polyhedron \(X \) can be written in terms of LMIs, so as shown in Definition 18 which are a prerequisite for Theorem 20. In particular, we distinguish the cases when the origin belongs to \(X \), i.e. \(s \in \Sigma^0 \), and when it does not, i.e. \(s \in \Sigma \setminus \Sigma^0 \).

Lemma 27: Consider (22), \(x \in X \), \(\omega = 0 \) if \(0 \in X \), \(\hat{R} \) the ray matrix of the cone \(\mathcal{C}_X \), the symmetric matrix \(\hat{P} \in \mathbb{R}^{(n+1)\times(n+1)} \) defined as

\[
\hat{P} = \begin{pmatrix} P & \nu^T \\ \nu & \omega \end{pmatrix}.
\] \quad (25)

If there exists a symmetric (entrywise) nonnegative matrix \(\hat{N} \) such that

\[
\hat{R}^T \hat{P} \hat{R} - \hat{N} \not\succ 0
\] \quad (26)

holds, then \(q(x) \geq 0, \ x \in X \).

If \(0 \not\in X \), the implication in Lemma 27 is valid for strict inequalities if \(\hat{N} \) is replaced by a matrix \(N \) with (strictly) positive entries. To obtain a strict inequality also for the case that \(0 \in X \) an additional condition is required:

Lemma 28: Consider (22), \(x \in X \), \(0 \in X \), \(\omega = 0 \), \(R \) the ray matrix of the cone \(\mathcal{C}_X \). Let \(e_i \in \mathbb{R}^{n+\rho} \) be the \(i \)-th unit vector. If there exists a symmetric matrix \(N \) with (strictly) positive entries such that the following conditions

\[
\begin{aligned}
R^T PR - N &\not\succ 0 \\
2\nu^T Re_i &\geq 0, \ i = 1, \ldots, \lambda + \rho
\end{aligned}
\] \quad (27)

hold, then \(q(x) > 0, \ x \in X \setminus \{0\} \).

B. Local quadratic Lyapunov function for a mode

Let us associate to the mode \(s \in \Sigma \) the quadratic function

\[V_s(x) = x^T P_s x + 2 \nu_s^T x + \omega_s \] \quad (28)

with \(P_s \in \mathbb{R}^{n \times n} \) symmetric matrix, \(\nu_s \in \mathbb{R}^n \), \(\omega_s \in \mathbb{R} \). In the following we verify that (28) satisfy the conditions in Definition 18 which are a prerequisite for Theorem 20. In particular, we distinguish the cases when the origin belongs to \(X_s \), i.e. \(s \in \Sigma^0 \), and when it does not, i.e. \(s \in \Sigma \setminus \Sigma^0 \).

Lemma 29: Consider the PWA system (4) and for each mode \(s \in \Sigma \) a quadratic function \(V_s: \mathbb{R}^n \to \mathbb{R} \) as in (28). Furthermore, define the following conditions:

\[
\begin{aligned}
\tilde{R}_s^T \tilde{P}_s \tilde{R}_s - N_s &\not\succ 0, \\
-\tilde{R}_s^T (\tilde{A}_s \tilde{P}_s + \tilde{P}_s \tilde{A}_s) \tilde{R}_s - M_s &\not\succ 0
\end{aligned}
\] \quad (29a, 29b)

with \(\tilde{R}_s \) defined according to (24), \(N_s \) and \(M_s \) unknown symmetric entrywise positive matrices,

\[
\tilde{A}_s = \begin{pmatrix} A_s & b_s \\ 0 & 0 \end{pmatrix}, \quad \tilde{P}_s = \begin{pmatrix} P_s & \nu_s \\ \nu_s^T & \omega_s \end{pmatrix};
\] \quad (29c)

\[
\begin{aligned}
R_s^T P_s R_s - N_s &\not\succ 0 \\
2\nu_s^T R_s e_i &\geq 0, \ i = 1, \ldots, \lambda_s + \rho_s
\end{aligned}
\] \quad (30a)

\[
\begin{aligned}
- R_s^T (A_s^T P_s + P_s A_s) R_s - M_s &\not\succ 0, \\
- 2\nu_s^T A_s R_s e_i &\geq 0, \ i = 1, \ldots, \lambda_s + \rho_s
\end{aligned}
\] \quad (30b)

with \(R_s \) defined through (23), \(e_i \) the unit vectors, \(N_s \) and \(M_s \) unknown symmetric entrywise positive matrices.

If the set of LMIs (29)–(30) have a solution \(\{P_s, \nu_s, \omega_s, N_s, M_s\}_{s \in \Sigma} \) then the quadratic functions (28) are local Lyapunov functions for the PWA system (4).

Proof: The proof consists of verifying that conditions in Definition 18 are satisfied.

Condition (L1) in Definition 18 is trivially satisfied by (28).

As regards (L2) we get \(V_s(0) = 0 \) by imposing \(\omega_s = 0 \) if \(s \in \Sigma^0 \). It is trivial to verify that it is always possible to find a quadratic function which is positive in a polyhedron. In particular, the LMIs (29a) and (30a) allows one to “construct” such a positive \(V_s(x) \) in \(X_s \) by using Lemma 27 and Lemma 28, respectively, with \(X = X_s, \ R = R_s, \ P = P_s, \ \nu = \nu_s, \ \omega = \omega_s, \ N = N_s \).

The radial unboundedness condition (L3) in Definition 18 has to be verified for all unbounded \(X_s \) of the (finite) polyhedral partition of the state space. The quadratic nature of \(V_s \), its continuity and positive definiteness implied by (29a) and (30a) allows us to prove the radially unboundedness property. First consider the case \(s \in \Sigma^0 \) with \(X_s \) unbounded. Clearly the radially unboundedness on \(\mathcal{C}_X \) implies that on \(X_s \subseteq \mathcal{C}_X \). For any \(\tilde{x} \in \mathcal{C}_X \), then also \(\tau \tilde{x} \in \mathcal{C}_X \) with \(\tau \) any positive real number. Therefore for all \(x = \tau \tilde{x} \) it is

\[
\lim_{\|x\| \to +\infty} V_s(x) = \lim_{\tau \to +\infty} (\tau^2 \tilde{x}^T P_s \tilde{x} + 2\nu_s^T \tilde{x}) = +\infty
\]
where we used the conditions in Lemma 28. In the case $s \in \mathcal{N}^0$ and X_s unbounded consider $\lim_{\|x\| \to +\infty} V_s(x) = \lim_{\|x\| \to +\infty} \bar{x}^T \hat{P}_s \bar{x}$ where $\bar{x} = \text{col}(x, 1)$ and $x \in X_s$. Since $\bar{x} \in \mathcal{C}_X$, by using (26), with \mathcal{N}_s replaced by a matrix N_s with (strictly) positive entries, we can conclude that V_s is radially unbounded for any unbounded X_s.

As regards condition (L4) in Definition 18, by using (28) one can write

$$\nabla V_s(x)(A_s x + b_s) = x^T (A_s^T P_s + P_s A_s) x + 2(b_s^T P_s + \nu_s^T A_s) x + 2\nu_s^T b_s$$

which is a quadratic function. The conditions (29b) and (30b) imply the sign condition of $\nabla V_s(x)(A_s x + b_s)$ on X_s by using Lemma 27 and Lemma 28 with $P = A_s^T P_s + P_s A_s$, $\nu^T = b_s^T P_s + \nu_s^T A_s$ and $\omega = 2\nu_s^T b_s$.

The existence of $\{P_s, \nu_s, \omega_s\}$ such that (L2) and (L4) are both satisfied is not ensured for any polyhedron X_s and pairs $\{A_s, b_s\}$. In the case of quadratic forms, i.e. $\nu_s = 0$ and $\omega_s = 0$, it is easy to verify that if A_s has some unstable eigenvector whose eigenspace has a nontrivial intersection with X_s, then it is not possible to find any P_s which satisfies (L2) and (L4). The same holds for unbounded polyhedra containing the origin and quadratic functions, if the eigenspace is contained in X_s.

On the contrary there are cases when the existence of a positive V_s with negative derivative in a polyhedron is guaranteed. For instance, if X_s is bounded and it does not contain the origin, it is enough to choose a sufficiently large $\omega_s > 0$ for having a positive V_s. Moreover from $\nabla V_s(x)(A_s x + b_s) \leq \lambda_s^{\text{max}} \|x\|^2 + 2\|b_s^T P_s\| \|x\| + \nu_s^T (A_s x + b_s)$ with λ_s^{max} the maximum eigenvalue of P_s, $P = A_s^T P_s + P_s A_s$, $\nu^T = b_s^T P_s + \nu_s^T A_s$ and $\omega = 2\nu_s^T b_s$, one can choose $P_s = 0$ and ν_s such that $\nu_s^T \text{max}\{A_s x + b_s\}_{x \in X_s} < 0$, where max must be intended componentwise. This result is not dependent on the eigenvalues of A_s.

C. PWQ stability with jump conditions

In order to apply Theorem 20 we need to guarantee the compatibility conditions (B1) and (B2) for all local quadratic Lyapunov functions. From Remark 21 it is enough to consider these conditions on the polyhedral boundaries. The characterization of the boundaries allows one to obtain operative conditions in terms of LMIs.

Corollary 30: Consider the PWA system (4) satisfying Assumptions (A1) and (A2) and consider for each mode $s \in \Sigma$ a quadratic function $V_s : \mathbb{R}^n \rightarrow \mathbb{R}$ as in (28). Furthermore, define the following conditions:

(D1) for each $s \in \Sigma$ the LMIs (29)–(30);

(D2) for each boundary X_B which can be classified as an unreachable boundary according to Definition 23(i), there are no additional conditions;

(D3) for each boundary X_B which can be classified as a crossing boundary according to Definition 23(ii),

$$\hat{R}_B (\hat{P}_i - \hat{P}_j) \hat{R}_B - N_{ij} \succcurlyeq 0,$$ (32)

with N_{ij} unknown symmetric entrywise nonnegative matrix, for all pairs $(i, j) \in \Sigma^{-}(X_B) \times \Sigma^{+}(X_B)$ with \hat{R}_B being the ray matrix of the conic homogenization of X_B;

(D4) for each remaining boundary X_B which can be classified as a Caratheodory boundary according to Definition 23(iii), the continuity conditions

$$\hat{R}_B (\hat{P}_i - \hat{P}_j) \hat{R}_B = 0,$$ (33)

for all pairs $i, j \in B$;

(D5) for all other boundaries X_B, including those which can be classified as a sliding boundaries according to Definition 23(iv), the pairwise continuity conditions (33) for all pairs $i, j \in B$, together with

$$-\hat{R}_B (A_i^T \hat{P}_i + \hat{P}_i A_j + \mu I) \hat{R}_B - M_{ij} \succcurlyeq 0,$$ (34)

for an arbitrary $i \in B$ and for all $j \in B$, with unknowns symmetric entrywise positive matrices M_{ij} and $\mu > 0$.

If the set of LMIs with equality constraints in (D1)–(D5) have a solution, then all solutions of the PWA system (4) converge asymptotically to zero.

Proof: From (D1) and Lemma 29 it follows that V_s for all $s \in \Sigma$ are local Lyapunov functions for the system. The rest of the proof consists of verifying that the local Lyapunov functions are compatible on the polyhedra boundaries, i.e. (D2)–(D5) imply (B1) and (B2) of Theorem 20 for all boundaries. The verification of (32) implies that (B1) is satisfied for all crossing boundaries. Indeed, by using (28) the inequality $V_i(x) \geq V_j(x)$ can be rewritten as

$$x^T (P_i - P_j) x + 2(\nu_i^T - \nu_j^T) x + \omega_i - \omega_j \geq 0$$

for all $x \in X_B$, which follows from (32) by using Lemma 27 with $P = P_i - P_j$, $\nu^T = \nu_i^T - \nu_j^T$, $\omega = \omega_i - \omega_j$ and the \mathcal{V}-representation of the boundary. For all the other boundaries which are not unreachable, the continuity conditions in (D3) imply that (B1) is satisfied.

Assume that (D3)–(D5) are satisfied. Then (B2) holds for all remaining boundaries. By picking an arbitrary $i \in B$ the inequalities (11) can be rewritten as

$$x^T (A_i^T P_i + P_i A_j + \mu I) x + 2(b_i^T P_i + \nu_i^T A_j) x + 2\nu_i^T b_j \leq 0$$

for all $x \in X_B$ and for all $j \in B$, which follows from (34) by using Lemma 27 with $P = -(A_i^T P_i + P_i A_j + \mu I)$, $\nu^T = -(b_i^T P_i + \nu_i^T A_j)$, $\omega = -2\nu_i^T b_j$ for all $j \in B$, and the \mathcal{V}-representation of the boundary.

The LMIs for the asymptotic stability are (29), (30), (32) and (34). These LMIs are coupled through the ray matrices because some polyhedra could share some vertices and/or rays, see (24). Moreover the constraints (33) must be considered too. The unknown variables are $\{P_s, \nu_s, \omega_s, N_s, M_s\}_{s \in \Sigma}$ together with the matrices N_{ij}, M_{ij} and the scalar μ in (D3)–(D5). If the LMIs have no solution, one could try with a refined partition by considering the same dynamics for each refined polyhedron, thus increasing the degrees of freedom of the candidate PWQ Lyapunov function. Moreover, the refinement could be obtained by partitioning boundaries which cannot be classified as crossing or unreachable but allow a classification for the derived subsets.
D. Example

The following example is shown to not have a continuous PWQ Lyapunov function for the given state-space decomposition, whereas our approach provides a positive answer for the asymptotic stability. The PWA system has the \mathbb{R}^2 state space partitioned as in Figure 6: $X_0 := \{x_1 \leq 1, |x_2| \leq 1\}$, $X_1 := \{x_2 \geq \max\{|x_1|, 1\}\}$, $X_2 := \{x_1 \geq \max\{|x_2|, 1\}\}$, $X_3 := -X_1$, $X_4 := -X_2$. The dynamics are given by (1), where $s \in \Sigma = \{0, 1, 2, 3, 4\}$ and $A_0 = -I$, $A_1 = A_2 = A_3 = A_4 = 0$, $b_0 = 0$, $b_1 = (\frac{-1}{0^+}, b_2 = (\frac{0}{-1}), b_3 = (\frac{1}{0}), b_4 = -b_2$.

Fig. 6: PWA system for which only a discontinuous PWQ Lyapunov function exists.

Note that it is easy to check that for each initial point there exists a feasible Filippov solution starting there, i.e. Assumptions (A1) and (A2) are satisfied. The following Lemma excludes the existence of a continuous PWQ Lyapunov function.

Lemma 31: The above example does not allow a continuous PWQ Lyapunov function (including linear and constant terms) defined on the given state space partition.

Proof: Let the candidate Lyapunov function on region $i \in \{0, 1, 2, 3, 4\}$ be given by

$$V_i(x) = \alpha_i x_1^2 + \beta_i x_2^2 + 2\gamma_i x_1 x_2 + \delta_i x_1 + \eta_i x_2 + r_i.$$

Note that $V_0(0) = 0$ requires $\alpha_0 = 0$ and $V_0(x) \geq 0$ in a ball around the origin requires $\delta_0 = 0$ and $\eta_0 = 0$; it is also clear that positive definiteness of V_0 implies $\alpha_0 > 0$ and $\beta_0 > 0$. Furthermore, continuity on the intersection $X_0 \cap X_2$ and $X_0 \cap X_3$ means that for $h_j^i(\lambda) := V_i((1, 1)^T)$, $i = 0, 2,$ and $h_j^3(\lambda) := V_j((\lambda, -1)^T)$, $j = 0, 3, h_0^2(\lambda) = h_2^3(\lambda)$ and $h_0^3(\lambda) = h_3^2(\lambda)$ $\forall \lambda \in [-1, 1]$. Consequently, also the derivatives of the corresponding function have to be equal on $[-1, 1]$:

$$2\lambda \beta_0 + 2\gamma_0 = h_0^{2'}(\lambda) = h_2^3'(\lambda) = 2\lambda \beta_2 + 2\gamma_2 + \eta_2,$$

$$2\lambda \alpha_0 - 2\gamma_0 = h_0^3'(\lambda) = h_3^2'(\lambda) = 2\lambda \alpha_3 - 2\gamma_3 + \delta_3.$$

Therefore, continuity yields $\alpha_0 = \alpha_3$, $\beta_0 = \beta_2$, $\gamma_0 = \gamma_2 + \frac{1}{2} \eta_2$, $\gamma_0 = \gamma_3 - \frac{1}{2} \delta_3$. Evaluating the decreasing condition of V_2 and V_3 along solutions yields

$$0 > \dot{V}_2(x) = \nabla V_2(x) \left(\begin{array}{c} 0 \\ -1 \end{array} \right) = -2\beta_2 x_2 - 2\gamma_2 x_1 - \eta_2,$$

$$0 > \dot{V}_3(x) = \nabla V_3(x) \left(\begin{array}{c} -1 \\ 0 \end{array} \right) = -2\alpha_3 x_1 - 2\gamma_3 x_2 - \delta_3,$$

which has to hold for all $x \in X_2$ or $x \in X_3$, respectively. In particular, it has to hold for $x = (1, -1)^T \in X_2$ and $x = (-1, -1) \in X_3$, resulting in the following constraints $\gamma_2 + \frac{1}{2} \eta_2 > \beta_2$ and $\gamma_3 - \frac{1}{2} \delta_3 < -\alpha_3$. By invoking the equalities above and positivity of α_0 and β_0 we arrive at the contradiction $\gamma_0 > \beta_0 > 0$ and $\gamma_0 < -\alpha_0 < 0$.

The existence of boundaries which are not facets, the discontinuity of the vector fields and the absence of a continuous PWQ Lyapunov function proved in Lemma 31 make this example not directly tractable through the other PWQ approaches presented in the literature.

Table I: Characterization of facets for the example in Fig. 6.

<table>
<thead>
<tr>
<th>X_B</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_0 \cap X_1$</td>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>$X_0 \cap X_2$</td>
<td>[0]</td>
<td>[0, 2]</td>
<td>[0]</td>
<td>[2]</td>
</tr>
<tr>
<td>$X_0 \cap X_3$</td>
<td>[0]</td>
<td>[0, 3]</td>
<td>[0]</td>
<td>[3]</td>
</tr>
<tr>
<td>$X_0 \cap X_4$</td>
<td>[0]</td>
<td>[0, 4]</td>
<td>[0]</td>
<td>[4]</td>
</tr>
</tbody>
</table>

Table II: Characterization of points which are boundaries for the example in Fig. 6.

<table>
<thead>
<tr>
<th>X_B</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_0 \cap X_1 \cap X_2$</td>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>$X_0 \cap X_2 \cap X_3$</td>
<td>[0]</td>
<td>[0, 2]</td>
<td>[0]</td>
<td>[2]</td>
</tr>
<tr>
<td>$X_0 \cap X_3 \cap X_4$</td>
<td>[0]</td>
<td>[0, 4]</td>
<td>[0]</td>
<td>[4]</td>
</tr>
<tr>
<td>$X_0 \cap X_1 \cap X_4$</td>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
</tbody>
</table>

Table III: Characterization of facets for the example in Fig. 6.

<table>
<thead>
<tr>
<th>X_B</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
<th>$\Sigma^i_+(X_B)$</th>
<th>$\Sigma^i_-(X_B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_0 \cap X_1$</td>
<td>[0]</td>
<td>[0]</td>
<td>[1]</td>
<td>[1]</td>
</tr>
<tr>
<td>$X_0 \cap X_2$</td>
<td>[0]</td>
<td>[0, 2]</td>
<td>[0]</td>
<td>[2]</td>
</tr>
<tr>
<td>$X_0 \cap X_3$</td>
<td>[0]</td>
<td>[0, 3]</td>
<td>[0]</td>
<td>[3]</td>
</tr>
<tr>
<td>$X_0 \cap X_4$</td>
<td>[0]</td>
<td>[0, 4]</td>
<td>[0]</td>
<td>[4]</td>
</tr>
</tbody>
</table>

By using Corollary 30 and the modeling system for convex programs CVX with the solver SDPT3 within the Matlab environment we obtained the asymptotic stability of the origin with the following matrices:

$$P_0 = \begin{pmatrix} 15.0320 & 1.0085 \\ 1.0085 & 15.2899 \end{pmatrix}, P_1 = \begin{pmatrix} 0.2193 & 6.7605 & 0.4975 \\ 6.7605 & 81.0087 & 7.1308 \end{pmatrix},$$

$$P_2 = \begin{pmatrix} 88.1042 & 1.3678 & 6.8188 \\ 1.3678 & -0.9845 & 0.57816 \\ 6.8188 & 0.5195 & 5.8716 \end{pmatrix}, P_3 = \begin{pmatrix} -0.1254 & -0.9845 & 0.3704 \\ -0.9845 & 79.6640 & -6.4175 \\ 0.3704 & -6.4175 & 6.2516 \end{pmatrix},$$

$$P_4 = \begin{pmatrix} 72.9043 & 0.7773 & -6.1179 \\ 0.7773 & -0.1354 & -0.4988 \\ -6.1179 & -0.4988 & 5.3389 \end{pmatrix}.$$
exploitation of the stability theorem for control design is a further interesting direction for future studies.

APPENDIX

Lemma 32: Consider the PWA system (4) and a point \(x \) in some boundary \(X_b \). Choose \(s \in \mathcal{B} \), the set of indices \(\mathcal{L}_s = \{ \ell_1, \ell_2, \ldots, \ell_{|\mathcal{L}_s|} \} \) as in (17). Then \(s \) is a strict forward mode for \(x \), i.e. \(s \in \Sigma_{\mathcal{L}_s}^+ \), if, and only if, for each \(\ell \in \mathcal{L}_s \) there exists an integer \(k_{\ell s}^k \in \{ 1, 2, \ldots, n \} \) such that

\[
\forall k \in \{ 1, \ldots, k_{\ell s}^k - 1 \} : h_{\ell s}^T A_{s}^{k_{\ell s}^k-1}(A_s x + b_s) = 0 \tag{35}
\]

and

\[
h_{\ell s}^T A_{s}^{k_{\ell s}^k-1}(A_s x + b_s) > 0, \tag{36}
\]

where \(h_{\ell s} \) with \(\ell \in \mathcal{L}_s \) are normal vectors according to the convention in (18).

Proof: Necessity. Let \(\xi : [0, \varepsilon) \to \mathbb{R}^n \) be a single-mode Caratheodory solution with \(\xi(t) \in \text{int} \ X_s \) for all \(t \in (0, \varepsilon) \) for some \(s \in \mathcal{B} \). Since \(X_s \) is locally an intersection of halfspaces defined by the normal vectors \(h_{\ell s} \) with \(\ell \in \mathcal{L}_s \) it follows that \(0 < h_{\ell s}^T(\xi(t) - x) \) \(\forall \ell \in \mathcal{L}_s \) and, hence

\[
0 \leq \lim_{t \to 0^+} h_{\ell s}^T(\xi(t) - \xi(0)) = h_{\ell s}^T(\dot{\xi}(0^+)) = h_{\ell s}^T(A_s x + b_s)
\]

with \(\xi(0) = x \). If \(h_{\ell s}^T(\dot{\xi}(0^+)) > 0 \), then the claim is shown for \(k_{\ell s}^k = 1 \). If on the other hand \(h_{\ell s}^T(\dot{\xi}(0^+)) = 0 \) we proceed inductively and show that if \(h_{\ell s}^T(\dot{\xi}(k_{\ell s}^k)(0^+)) = 0 \) for \(k = 1, 2, \ldots, k_{\ell s}^k - 1 \) and \(h_{\ell s}^T(\dot{\xi}(k_{\ell s}^k)(0^+)) \neq 0 \) for some \(k_{\ell s}^k \leq n \), then (36) holds. From \(h_{\ell s}^T(\dot{\xi}(k_{\ell s}^k)(0^+)) = 0 \) for \(k = 1, 2, \ldots, k_{\ell s}^k - 1 \) it follows that

\[
0 \leq \lim_{t \to 0^+} h_{\ell s}^T(\xi(t) - \xi(0)) \frac{k_{\ell s}^k - 1}{k_{\ell s}^k} = h_{\ell s}^T(e^{k_{\ell s}^k T_{\ell s}})(0^+)
\]

and consequently (as it was assumed that \(h_{\ell s}^T(\dot{\xi}(k_{\ell s}^k)(0^+)) \neq 0 \) the desired inequality (36) is shown.

Sufficiency. Let \(\xi(t) := e^{A_s t} x + \int_0^t e^{A_s(t-t')} b_s dt \) for \(t \geq 0 \), then \(\dot{\xi} = A_s \xi + b_s \) and by considering the Taylor-expansion, we have for all \(t > 0 \)

\[
h_{\ell s}^T(\xi(t) - x) = h_{\ell s}^T(A_s x + b_s) t + h_{\ell s}^T A_s(A_s x + b_s) \frac{t^2}{2} + \ldots + h_{\ell s}^T A_{s}^{k_{\ell s}^k-1}(A_s x + b_s) \frac{k_{\ell s}^k t^{k_{\ell s}^k}}{k_{\ell s}^k!} + o(t^{k_{\ell s}^k}).
\]

Then for all sufficiently small \(t \) we have \(h_{\ell s}^T(\xi(t) - x) > 0 \).

Since \(x \) is in the relative interior of \(X_{\ell s} \) this implies \(\xi(t) \in \text{int} \ X_s \).

Lemma 33: Consider the PWA system (4) and a point \(x \) in some boundary \(X_b \). Choose \(s \in \mathcal{B} \), the set of indices \(\mathcal{L}_s = \{ \ell_1, \ell_2, \ldots, \ell_{|\mathcal{L}_s|} \} \) as in (17). Then \(s \) is a strict backward mode for \(x \), i.e. \(s \in \Sigma_{\mathcal{L}_s}^- \), if, and only if, for each \(\ell \in \mathcal{L}_s \) there exists an integer \(k_{\ell s}^k \in \{ 1, 2, \ldots, n \} \) such that (35) is satisfied and

\[
h_{\ell s}^T(-A_s) A_{s}^{k_{\ell s}^k-1}(A_s x + b_s) < 0.
\]
where $h_{\ell s}$ with $\ell \in L_s$ are normal vectors according to the convention in (18).

Proof: The proof follows through steps similar to Lemma 32 by considering that s being a strict backward mode for x is equivalent to s being a strict forward mode for the same x in the time-reversed system $\hat{x}(\tau) = -A_s x(\tau) - b_s$ with $x(\tau) \in X_s$. ■

REFERENCES

Raffaele Iervolino received his laurea degree cum laude in Aerospace Engineering from the University of Naples, Italy, in 1996, where he also obtained his Ph.D. in Electronic and Computer Science Engineering in 2002. Since 2003 he is an Assistant Professor of Automatic Control at the University of Naples. From 2005 he is also Adjunct Professor of Automatic Control with the Department of Electrical Engineering and Information Technology at the same University. His research interests are piecewise affine systems, opinion dynamics and consensus in social networks, and human telemetry systems.

Stephan Trenn received his Ph.D. (Dr. rer. nat.) within the field of differential algebraic systems and distribution theory at the Ilmenau University of Technology, Germany, in 2009. Afterwards, he held Postdoc positions at the University of Illinois at Urbana-Champaign, USA (2009-2010) and at the University of Würzburg, Germany (2010-2011). After being an Assistant Professor (Juniorprofessor) at the University of Kaiserslautern, Germany, he became Associate Professor for Systems and Control at the University of Groningen, Netherlands, in 2017. He is Associate Editor for the journal Systems & Control Letters and member of the editorial board of the Springer book series Differential Algebraic Equations Forum.

Francesco Vasca received the Ph.D. degree in Automatic Control from the University of Napoli Federico II, Italy, in 1995. Since 2015, he has been a Full Professor of Automatic Control with the Department of Engineering, University of Sannio, Benevento, Italy. His research interests include the analysis and control of switched and networked dynamic systems with applications to power electronics, railway control, automotive control and social networks. From 2008 to 2014 he has been an Associate Editor for the IEEE Transactions on Automatica.