Patterns of LRF in elderly HNSCC patients treated with definitive RT in relation to dose distribution
Sommers, L.; Steenbakker, R.; Bosch-van den, L.; Bijl, H.; Mohamed, A.; Fuller, C.; Rooij-de, S.; Langendijk, J.

Published in:
Radiotherapy and Oncology

DOI:
10.1016/S0167-8140(18)31488-9

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 16-05-2020
Conclusion
Today, for a variety of indications in the head region, e.g. metastases, meningiomas, vestibular schwannoma, or brain tumors, stereotactic high-precision radiation therapy can offer the most precise and particularly gentle therapy. Through the close interdisciplinary network with the surgical as well as the imaging disciplines, innovative concepts are implemented into personalized medicine in modern radiooncology. In further analysis steps, we plan to examine toxicity rates and compare them with other RT treatment strategies.

EP-1178 Patterns of LRF in elderly HNSSC patients treated with definitive RT in relation to dose distribution

L. Sommers1, R. Steenbakker1, L. Bosch-van den1, H. Bijl1, A. Mohamed2, C. Fuller1, S. Rooij-de3, J. Langendijk1
1UMCG University Medical Center Groningen, Radiation Oncology, Groningen, The Netherlands
2The University of Texas M.D. Anderson Cancer Center, Radiation Oncology, Houston, USA
3UMCG University Medical Center Groningen, University Center for Geriatric Medicine, Groningen, The Netherlands

Purpose or Objective
The primary aim of this study was to report on loco-regional tumor failure (LRF) rates of elderly head and neck squamous cell carcinoma (HNSCC) patients treated with definitive radiation therapy compared with those of young patients, in relation to the original dose distribution, referred to as the centroid-based method. The second aim was to determine the most important prognostic factors for LRF, local tumor failure (LF) and regional tumor failure (RF) for the elderly HNSCC patients.

Material and Methods
Prospectively collected data was retrospective analyzed of all consecutive HNSCC patients treated between April 2007 and December 2014 treated with definitive radiation therapy (66-70 Gy) in our department. A total of 662 patients were included in the study. 165 patients were 70 years of age and older, including 35 patients (21.2%) with LRF classified as tumor failure type A or type B. Nine patients (6.1%) with LRF classified as tumor failure type C or type D and 15 patients (10.2%) with LRF outside the original CTVs. There was no difference in distribution of the LRF classifications between the elderly and young patients (p=0.482). Multivariable Cox regression analysis for LRF type A and B showed WHO-PS (p=0.001), primary tumor volume, (p=0.002), N-classification (p=0.003), smoking habits (p=0.008) treatment technique (p=0.042) as statistical significant prognostic factors. Multivariable Cox regression analysis for only LF type A and B showed primary tumor volume (p=0.001), WHO performance score (p=0.036) and smoking habits (p=0.043) as statistical significant prognostic factors. Age was not found to be statistically significant in both multivariable cox regression analysis for LRF and LF (p=0.385 and p=0.391 respectively). No multivariable Cox regression analysis for RF could be dose.

Conclusion
Patterns of LRF and LF in elderly HNSSC patients do not differ from the young patients group. Elderly have statistically significant better 3-year cumulative rates of RF compared to young patients. Multivariable prediction model for LRF type A & B and LF type A and B for all patients could be made.

EP-1179 Usefulness of [18F]FDG-PET/CT/MRI in clinical evaluation of head and neck cancer (HNC) patients (pts)

E. Sierke1, Z. Konrad2, P. Gugnacki2, N. Samołyk3, D. Hempel1, D. Dzielmanczyk-Pakiel1, D.H. Jurgilewicz4, P. Szumowski5, M. Mojsak5, B. Kubas5, M. Hladunski6, T. Filipowski1, M.Z. Wojtkiewicz2
1Medical University of Bialystok- Comprehensive Cancer Center, Department of Oncology- Department of Radiotherapy, Bialystok, Poland
2Medical University of Bialystok, Scientific Student's Association affiliated with Department of Oncology, Bialystok, Poland
3Comprehensive Cancer Center, Department of Radiotherapy, Bialystok, Poland
4Medical University of Bialystok- Comprehensive Cancer Center, Department of Oncology- Department of Radiotherapy, Bialystok, Poland
5Medical University of Bialystok, Department of Maxillofacial and Plastic Surgery, Bialystok, Poland
6Medical University of Bialystok, Laboratory of Molecular Imaging- Nuclear Medicine Department, Bialystok, Poland
7Medical University of Bialystok, Department of Oncology, Bialystok, Poland

Purpose or Objective
The optimal treatment of HNC patients is based on proper diagnosis and appropriate clinical staging. PET/CT as a novel hybrid imaging technique which enables simultaneous whole body high resolution molecular MR and metabolic PET examinations performed during one session.

The purpose of this study was the assessment of the impact of [18F] fluorodeoxyglucose-d-glucose (FDG) PET/MR hybrid (FDG-PET/MR) hybrid examination on the staging, qualification for surgery, radiotherapy (RT), chemotherapy or combined treatment of HNC pts and target volume delineation during modern VMAT RT planning.

Material and Methods
Twenty-two pts (F/M: 12/10, mean age: 60 ± 45 13,2 with detected clinically, pathologically and in computed tomography (CT) squamous cell HNC underwent FDG-PET/MR using Biograph mMR (Siemens, Germany) system before the decision on the treatment. Whole body PET/MR scans were obtained 60 min after [18F] FDG injection of mean activity of 295 ± 45 MBq. Additionally, all pts underwent [18F] FDG PET/MR and gadolinium contrast enhanced (CE) MR of the head and neck in the