van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.

Published in:
Journal of Computational and Applied Mathematics

DOI:
10.1016/j.cam.2012.11.022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Erratum

Erik A. van Doorn a,*, Nicky D. van Foreest b, Alexander I. Zeifman c

a Department of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
b Faculty of Economics and Business, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands
c Vologda State Pedagogical University, and Vologda Scientific Coordinate Centre of CEMIRAS, S. Orlova 6, Vologda, Russia

A R T I C L E I N F O

MSC:
primary 42C05
secondary 60J80

Keywords:
Orthogonal polynomials
True interval of orthogonality
Birth–death process
Decay parameter

A B S T R A C T

We correct representations for the endpoints of the true interval of orthogonality of a sequence of orthogonal polynomials that were stated by us in the Journal of Computational and Applied Mathematics 233 (2009) 847–851.

© 2013 Elsevier B.V. All rights reserved.

In [1, Theorem 1] representations are given for the smallest zero \(x_{n_1}\) and the largest zero \(x_{n_2}\) of the polynomial \(P_n, n > 0\), for when these polynomials satisfy a three-term recurrence relation of the type

\[
P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x), \quad n > 1,
\]

\[
P_0(x) = 1, \quad P_1(x) = x - c_1,
\]

(1)

where \(c_n\) is real and \(\lambda_n > 0\), and therefore constitute a sequence of orthogonal polynomials. Since the smallest point \(\xi_1\) and largest point \(\eta_1\) of the true interval of orthogonality for these polynomials are the limits as \(n \to \infty\) of \(x_{n_1}\) and \(x_{n_2}\), respectively, the representations for \(x_{n_1}\) and \(x_{n_2}\) lead to representations for \(\xi_1\) and \(\eta_1\). However, an unjustified step in the limiting procedure has led to two incorrect statements in [1, Corollary 2]. Specifically, the second representation for \(\xi_1\) is not correct and should be replaced by

\[
\xi_1 = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} + \delta_{in}a_{n+1} \right\} \right\},
\]

(2)

where \(\delta_{in}\) denotes Kronecker’s delta and \(a \equiv (a_1, a_2, \ldots)\). Also, the second representation for \(\eta_1\) is not correct and should be replaced by

\[
\eta_1 = \lim_{n \to \infty} \max_{a > 0} \left\{ \min_{1 \leq i \leq n} \left\{ c_i + a_{i+1} + \frac{\lambda_i}{a_i} - \delta_{in}a_{n+1} \right\} \right\}.
\]

(3)

DOI of original article: http://dx.doi.org/10.1016/j.cam.2009.02.051.

* Corresponding author.

E-mail addresses: e.a.vandoorn@utwente.nl (E.A. van Doorn), n.d.van.foreest@rug.nl (N.D. van Foreest), a_zeifman@mail.ru (A.I. Zeifman).

0377-0427/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2012.11.022
These corrections have consequences for the applications in [1, Section 4]. Thus the second representation for the decay parameter δ of a nonergodic birth–death process with killing in [1, Theorem 3] should be replaced by
\[
\delta = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{0 \leq i \leq n} \left(\alpha_i + \beta_i - a_{i+1} - \frac{\alpha_{i-1} \beta_i}{a_i} + \delta_n a_{n+1} \right) \right\},
\] (4)
and the second representation for the decay parameter δ of an ergodic birth–death process in [1, Theorem 4] should be replaced by
\[
\delta = \lim_{n \to \infty} \min_{a > 0} \left\{ \max_{0 \leq i \leq n} \left(\alpha_i + \beta_i - a_{i+1} - \frac{\alpha_i \beta_i}{a_i} + \delta_n a_{n+1} \right) \right\}.
\] (5)
Here α_i, β_i and γ_i are, respectively, the birth, death and killing rate of the process in state i.

The hitch in the argument leading to the erroneous representation for ξ_1 in [1, Corollary 2] was caused by neglecting the requirement $a_{n+1} = 0$ when taking limits as $n \to \infty$ in [1, Eq. (11)], that is, in the inequalities
\[
\min_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\} \leq x_{n1} \leq \max_{1 \leq i \leq n} \left\{ c_i - a_{i+1} - \frac{\lambda_i}{a_i} \right\}.
\] (6)
This oversight invalidates the resulting upper bound for ξ_1 but not the lower bound, and therefore affects the second representation for ξ_1 but not the first. Similar remarks pertain to the representations for η_1.

One can easily see that the second representation for δ in [1, Theorem 3], and hence the second representation for ξ_1 in [1, Corollary 2], cannot be correct by considering a transient, pure birth–death process with $\gamma_0 = 0$, and noting that, on choosing $a_i = a_{i-1}$, this representation leads to the conclusion $\delta \leq 0$, and hence $\delta = 0$, which is well known to be false in general.

References