Estimating Exposome Score for Schizophrenia Using Predictive Modeling Approach In Two Independent Samples

Genetic Risk and Outcome of Psychosis (G.R.O.U.P.); Pries, Lotta-Katrin; Lage-Castellanos, Agustin; Delespaul, Philippe; Kenis, Gunter; Luykx, Jurjen J.; Lin, Bochao D.; Richards, Alexander L.; Akdede, Berna; Binbay, Tolga

Published in:
Schizophrenia Bulletin

DOI:
10.1093/schbul/sbz054

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 03-04-2020
Estimating Exposome Score for Schizophrenia Using Predictive Modeling Approach in Two Independent Samples: The Results From the EUGEI Study

1Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands; 2Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; 3Department of Neuroinformatics, Cuban Center for Neuroscience, Havana, Cuba; 4Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 5Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; 6GGNet Mental Health, Apeldoorn, The Netherlands; 7MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Science, School of Medicine, Cardiff University, Cardiff, UK; 8Department of Psychiatry, Dokuz Eylül University School of Medicine, Izmir, Turkey; 9Department of Psychiatry, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey; 10Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey; 11Ankara University Brain Research Center, Ankara, Turkey; 12Department of Psychology, Middle East Technical University, Ankara, Turkey; 13Turkish Federation of Schizophrenia Associations, Ankara, Turkey; 14Dokuz Eylül University, Medical School, Psychiatry Department (Discharged from by statutory decree No:701 at 8th July of 2018 because of signing “Peace Petition”) 15Güven Çaykulu Healthcare Campus, Ankara, Turkey; 16Atatürk Research and Training Hospital Psychiatry Clinic, Ankara, Turkey; 17Faculty of Medicine, University of Belgrade, Belgrade, Serbia; 18Clinic for Psychiatry CCS, Belgrade, Serbia; 19Special Hospital for Psychiatric Disorders Kovin, Kovin, Serbia; 20Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain; 21Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; 22Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain; 23Department of Psychiatry, School of Medicine, University of Oviedo, Oviedo, Spain; 24Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; 25Mental Health Services of Principado de Asturias, Oviedo, Spain; 26Department of Psychiatry, Hospital Clínico Universitario de Valladolid, School of Medicine, Universidad de Valladolid, Valladolid, Spain; 27Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain; 28Universidad de Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain; 29Department of Psychiatry, Instituto de Investigación Sanitaria, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain; 30Fundación Pública Gallega de Medicina Xénonómica, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; 31Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, University of Medicine, University Complutense, Madrid, Spain; 32Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey; 33Department of Psychiatry, Faculty of Medicine, Istanbul University, Istanbul, Turkey; 34Department of Psychiatry Studies, King’s College London, Institute of Psychiatry, London, UK; 35Department of Psychiatry, Yale School of Medicine, New Haven, CT

Exposures constitute a dense network of the environment: exposures. Here, we argue for embracing the exposome paradigm to investigate the sum of nongenetic “risk” and show how predictive modeling approaches can be used to construct an exposome score (ES; an aggregated score of exposures) for schizophrenia. The training dataset consisted

© The Author(s) 2019. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
of patients with schizophrenia and controls, whereas the independent validation dataset consisted of patients, their unaffected siblings, and controls. Binary exposures were cannabis use, hearing impairment, winter birth, bullying, and emotional, physical, and sexual abuse along with physical and emotional neglect. We applied logistic regression (LR), Gaussian Naive Bayes (GNB), the least absolute shrinkage and selection operator (LASSO), and Ridge penalized classification models to the training dataset. ESs, the sum of weighted exposures based on coefficients from each model, were calculated in the validation dataset. In addition, we estimated ES based on meta-analyses and a simple sum score of exposures. Accuracy, sensitivity, specificity, area under the receiver operating characteristic, and Nagelkerke’s \(R^2 \) were compared. The ES performed the worst, whereas the sum score and the ES\(_{\text{LASSO}}\) and ES\(_{\text{RIDGE}}\) were worse than the ES\(_{\text{LR}}\) that performed similar to the ES\(_{\text{GNB}}\). The ES\(_{\text{LR}}\) distinguished patients from controls (odds ratio [OR] = 1.94, \(P < .001 \)), patients from siblings (OR = 1.58, \(P < .001 \)), and siblings from controls (OR = 1.30–1.57) received the highest weights in the training dataset including 1241 healthy controls and 747 patients with a diagnosis of schizophrenia spectrum disorders. Second, we estimated coefficients of binary exposures in the training dataset including 1241 healthy controls and 747 patients with a diagnosis of schizophrenia spectrum disorders. Second, we calculated the weighted sum of the exposures according to each predictive model in an independent validation dataset with 323 healthy controls, 463 patients with a diagnosis of schizophrenia spectrum disorders, and 542 unaffected siblings of the patients. To compare the performance of ES from each model, we also generated an environmental sum score by simply adding each binary exposure per individual as 0 = absent and 1 = present (the sum score is ranging from 0 to 9) and a cumulative environmental score weighted by the meta-analytical estimates for each exposure. Finally, we tested the performance of ESs derived from each model by applying logistic regression in a case-control design in the independent validation dataset by evaluating the area under the receiver operating characteristic (ROC), accuracy (ACC), sensitivity, specificity, and Nagelkerke's pseudo \(R^2 \). In this regard, we prioritized models with better sensitivity than specificity as our main concern was to avoid misclassifying individuals diagnosed with schizophrenia.

Prediction in the Training Dataset

The coefficients of individual models (see figure 1a and supplementary table S2) indicate that cannabis use (coefficients ranging from 1.31 to 1.53), hearing impairment (coefficients: 1.10–1.19), and bullying (coefficients: 1.30–1.57) received the highest weights in the training dataset (the Genetic Risk and Outcome of Psychosis [GROUP] study). We examined the following widely evaluated environmental factors that we also recently investigated individually within the context of gene-environment interaction: hearing impairment, winter birth, cannabis use, and childhood adversities (bullying, emotional, physical, and sexual abuse along with emotional and physical neglect). Our analysis was limited to the environmental exposures that were reliably measured and equally available in both datasets. These environmental factors were defined according to previous studies. The detailed description of each environmental exposure is provided in the supplementary file. We used 4 prediction models to determine to what degree cumulative environmental exposure contributes to the liability for schizophrenia in a case-control design. Logistic regression (LR), Gaussian Naive Bayes (GNB), and penalized logistic regression (least absolute shrinkage and selection operator [LASSO] and Ridge) were applied to data with complete information on environmental exposures. The description of the models and the distribution of exposures are provided in the supplementary file. For each model, the dependent variable was the binary case-control status, whereas binary environmental exposures were features (independent variables). First, we estimated coefficients of binary exposures in the training dataset including 1241 healthy controls and 747 patients with a diagnosis of schizophrenia spectrum disorders. Second, we calculated the weighted sum of the exposures according to each predictive model in an independent validation dataset with 323 healthy controls, 463 patients with a diagnosis of schizophrenia spectrum disorders, and 542 unaffected siblings of the patients. To compare the performance of ES from each model, we also generated an environmental sum score by simply adding each binary exposure per individual as 0 = absent and 1 = present (the sum score is ranging from 0 to 9) and a cumulative environmental score weighted by the meta-analytical estimates for each exposure. Finally, we tested the performance of ESs derived from each model by applying logistic regression in a case-control design in the independent validation dataset by evaluating the area under the receiver operating characteristic (ROC), accuracy (ACC), sensitivity, specificity, and Nagelkerke's pseudo \(R^2 \). In this regard, we prioritized models with better sensitivity than specificity as our main concern was to avoid misclassifying individuals diagnosed with schizophrenia.

Keywords: schizophrenia/psychosis/predictive modeling/machine learning/risk score/environment/childhood trauma/cannabis/winter birth/hearing impairment

Introduction

Several environmental exposures have been associated with psychosis spectrum disorder. Knowledge on this association has thus far been deduced from hypothesis-driven selective one-exposure to one-outcome studies, akin to the candidate-gene approach. However, each exposure constitutes a fraction of a dense network of exposures: the exposome. Here, we argue for embracing the exposome paradigm to investigate the sum of the nongenetic “risk” and show how a predictive modeling approach can be used to construct an exposure score (ES) for schizophrenia, a single metric of aggregated environmental load similar to polygenic risk score.

Approach

Guided by the predictive modeling methods for constructing cumulative environmental exposure scores, we used 2 independent datasets to, first, build a predictive model in the training dataset (the Work-package 6 of the European Network of National Networks studying Gene-Environment Interactions in Schizophrenia [EUGEI]) and, second, construct and test the ES in the validation dataset (the Genetic Risk and Outcome of Psychosis [GROUP] study). We examined the following widely evaluated environmental factors that we also recently investigated individually within the context of gene-environment interaction: hearing impairment, winter birth, cannabis use, and childhood adversities (bullying, emotional, physical, and sexual abuse along with emotional and physical neglect). Our analysis was limited to the environmental exposures that were reliably measured and equally available in both datasets. These environmental factors were defined according to previous studies. The detailed description of each environmental exposure is provided in the supplementary file. We used 4 prediction models to determine to what degree cumulative environmental exposure contributes to the liability for schizophrenia in a case-control design. Logistic regression (LR), Gaussian Naive Bayes (GNB), and penalized logistic regression (least absolute shrinkage and selection operator [LASSO] and Ridge) were applied to data with complete information on environmental exposures. The description of the models and the distribution of exposures are provided in the supplementary file. For each model, the dependent variable was the binary case-control status, whereas binary environmental exposures were features (independent variables). First, we estimated coefficients of binary exposures in the training dataset including 1241 healthy controls and 747 patients with a diagnosis of schizophrenia spectrum disorders. Second, we calculated the weighted sum of the exposures according to each predictive model in an independent validation dataset with 323 healthy controls, 463 patients with a diagnosis of schizophrenia spectrum disorders, and 542 unaffected siblings of the patients. To compare the performance of ES from each model, we also generated an environmental sum score by simply adding each binary exposure per individual as 0 = absent and 1 = present (the sum score is ranging from 0 to 9) and a cumulative environmental score weighted by the meta-analytical estimates for each exposure. Finally, we tested the performance of ESs derived from each model by applying logistic regression in a case-control design in the independent validation dataset by evaluating the area under the receiver operating characteristic (ROC), accuracy (ACC), sensitivity, specificity, and Nagelkerke's pseudo \(R^2 \). In this regard, we prioritized models with better sensitivity than specificity as our main concern was to avoid misclassifying individuals diagnosed with schizophrenia.
The lowest weight was attributed to winter birth with coefficients between 0.01 and 0.06. In comparison with the GNB model, which assumes independence between predictors, the LR, Ridge, and LASSO models yielded lower weights for emotional abuse, sexual abuse, emotional neglect, physical neglect, and bullying. Further, although physical abuse was a strong positive predictor in the GNB model, its predictive value was lost and even yielded a negative weight when using predictive model approaches that account for dependence between the predictors. This is in line with evidence that exposures are weakly to moderately correlated with each other. Consequently, coefficients are overestimated when independence is assumed.

Constructing and Testing the Performance of Exposome Score in an Independent Dataset

The ROC was used to estimate the performance of the calculated ESs in predicting the case-control status in the validation dataset (figure 1b and supplementary table S3). The ES based on meta-analytical estimates (ES\textsubscript{Meta-analyses}), ES\textsubscript{GNB}, and the environmental sum score yielded the lowest ROC, 0.69, 0.71, and 0.71, respectively, whereas all other ESs (ES\textsubscript{LR}, ES\textsubscript{RIDGE}, and ES\textsubscript{LASSO}) had ROC ranging from 0.73 to 0.74. With a chance level of 0.5 (as patients and controls were in balance in the training sample; see supplementary file), all ESs indicated...
an ACC above chance level (ACC: 0.62–0.68) with specificity between 0.42 and 0.72 and sensitivity between 0.56 and 0.86. Compared to the ESRidge and ESLasso, the ESs derived from the models assuming independence between exposures (ESGNB, environmental sum score, and ESMeta-analyses) performed worse on sensitivity and had more false negatives as they incorrectly classified patients as healthy. Given that our priority was reducing false negatives rather than reducing false positives and that the ESLSR, ESRIDGE, and ESSLASSO performed similarly well (figure 1b and supplementary table S3), we reported further analyses with the ESLSR, which was constructed on the basis of a widely available and commonly used statistical model, logistic regression.

To examine whether the ESLSR reflects schizophrenia liability in the validation dataset, we evaluated the ESLSR in patients, siblings, and controls (see figure 1c for an illustration and supplementary table S4 for the other models). The ESLSR discriminated patients from controls (odds ratio [OR] = 1.94; 95% confidence interval [CI] = 1.71–2.20; P < .001, Nagelkerke’s pseudo R² = 0.21), also after adjusting for age and sex (OR = 1.87; 95% CI = 1.64–2.14; P < .001) in the validation dataset. Similarly, logistic regression analysis showed higher ESLSR in patients compared to siblings (OR = 1.58; 95% CI = 1.43–1.74; P < .001) and in siblings compared to controls (OR = 1.21; 95% CI = 1.08–1.36; P = .001; adjusted for age and sex: OR = 1.23; 95% CI = 1.09–1.38; P < .001).

To visually represent the risk stratification properties of the ESLSR, we categorized the ESLSR using the quintiles of the control distribution and measured the case-control ORs using the middle quintile (median ESLSR) as the reference. With an increase of the ESLSR, we noticed a gradient increase in the risk for schizophrenia. In comparison with the median, the fifth quintile had a higher OR (OR = 3.47; 95% CI = 2.22–5.41; P < .001 and age- and sex-adjusted OR = 3.78; 95% CI = 2.34–6.09; P < .001) and the first quintile had a lower OR (OR = 0.30; 95% CI = 0.17–0.53; P < .001 and age- and sex-adjusted OR = 0.34; 95% CI = 0.19–0.62; P < .001; figure 1c). We then dichotomized the ESLSR with cutoff points at 70%, 80%, and 90% of the control distribution. Comparing the top and the bottom part translated to ORs of 3.81, 3.96, and 5.11 (age- and sex-adjusted ORs of 3.72, 3.74, and 4.77) for 70%, 80%, and 90% of the distribution, respectively (supplementary table S5).

Discussion

For the first time, we applied a predictive modeling approach to construct the ES for schizophrenia by leveraging 2 large independent datasets (training and validation data) with similar assessment protocols for environmental exposures. Our findings suggest that predictive modeling can be used to estimate environmental loading of a range of exposures. We found that the ESLSR, ESRIDGE, and ESSLASSO performed similarly well, whereas the ESs derived from the models assuming independence performed worse. Of the ESGNB, ESMeta-analyses, and the simple summation of exposures, the ESMeta-analyses, relying on the external sources for extracting estimates for environmental exposures, showed the worst performance.

The low performance of the ES driven by meta-analyses might be related to the fact that meta-analytical estimates are derived from different studies that use different assessments, different definitions, and different cutoff points for exposures in different study populations, which might not be completely compatible with the dataset at hand. The availability of similar training and validation datasets plays a major role in prediction power—for instance, the predictive performance of polygenic scores for schizophrenia is considerably lower in non-Caucasian ancestry samples. Therefore, a similar situation exists in estimating genetic liability, which, however, has the advantage of using more concrete, uniformly measured genetic variation for prediction in comparison to environmental assessment. Generating a uniform “environmental risk score” is even more challenging. For instance, cannabis use could be scored positive if participants smoke daily, or at least weekly, or at least monthly for lifetime use or exposure during adolescence, whereas childhood adversities could similarly be measured by various methods. Therefore, as weights are determined by how strict or lenient the cutoff points are, it is likely that the inconsistency between sampling and measurement strategies would introduce bias. Further, when individual coefficients from meta-analyses are used for a weighted environmental score, correlations between exposures are ignored, and weights may be overestimated. In line with this, we also show that GNB, which assumes independence between predictors, produces higher weights for exposures than the other data-driven models.

Similar to current results, previous studies show that more contemporary algorithms do not necessarily translate into superior performance over logistic regression for clinical prediction modeling. However, it should be noted that our analysis did not involve a complex data structure with many predictors. Penalized classification models might have led to performance improvement if more complex structures had to be considered (e.g., increasing the number of predictors and adding pairwise interactions). Researchers likewise need to be cautious about overfitting models and be aware that, if environmental exposures are correlated, the initial simple model with a few predictors will show the highest portion of improvement. However, each sequentially added predictor would result in less and less improvement in model performance.

The ESs assuming independence between predictors (sum score, ESMeta-analyses, and ESGNB) had lower sensitivity
than the rest. The ES_{Meta-analyses} indicated the lowest sensitivity (56%). The sensitivity of an environmental score derived from meta-analytical estimates in a previous study was even lower, only around 7%–9%. In other words, predictive models that do not assume independence between exposures may more accurately classify patients as positive by decreasing false negatives. The ESs from the models assuming independence, however, had higher specificity and were better in decreasing false positives. As our main concern was to avoid misclassifying individuals diagnosed with schizophrenia, we chose sensitivity over specificity. Further, if more environmental exposures were to be included in the ES, thus introducing more correlation, the models not assuming independence between predictors (ES_{LR}, ES_{RIDGE}, and ES_{LASSO}) would perform increasingly better than the models assuming independence (sum score, ES_{Meta-analyses}, and ES_{GNB}).

The ES_{LR} generated using an easily accessible method (logistic regression), achieved similar performance results compared with the ES_{RIDGE} and ES_{LASSO}. We used the ES_{LR} to further explore the characteristics of the ES in the follow-up analyses. In general, patients had higher ES_{LR} than both controls and siblings, whereas siblings had higher ES_{LR} than controls. The ES_{LR} explained more variance (Nagelkerke $R^2 = 0.21$) than the ES_{Meta-analyses} (Nagelkerke $R^2 = 0.13$). In accordance with our previous findings showing an additive effect for environmental factors, our results indicate that the ES_{LR} shows a dose-response effect: the odds of schizophrenia increase as a function of the ES_{LR}. Eventually, an individual with ES_{LR} in the top 10% of the control distribution was around 5 times more likely to have schizophrenia compared to an individual below that cutoff.

Limitations of Exposome Score

Our analysis was limited to the environmental exposures that were reliably measurable and equally available in both datasets. The ES can be extended to include other environmental exposures (e.g., obstetric and pregnancy complications and urban environment). We included winter birth as an exposure in the current analyses as previous studies suggest an association between winter birth and psychosis. However, summer birth was also previously associated with deficit schizophrenia and birth and psychosis. However, summer birth was also previously associated with deficit schizophrenia and birth and psychosis. Considering evidence showing that common environmental factors (e.g., childhood adversity) are not specific to the psychosis phenotype but instead are more generally related to psychopathology, the ES would likely (to a degree) be associated with other mental disorders in mixed samples. Therefore, a low discriminant capacity for the ES should be anticipated. Given the nature of observational studies, causality claims should be avoided. Finally, it should be noted that although aggregating exposures leads to an increase in the predictive power and may be particularly beneficial in exploring shared mechanisms, the inherent heterogeneity of a single score may lead to information loss and biological imprecision. Considering the reasons described earlier, we have avoided using the term “risk” and opted for a neutral alternative: ES.

Conclusion

Our findings demonstrate that predictive modeling approaches can be harnessed to evaluate the exposome. In the future, we aim to explore models by including more exposures as well as interaction terms and test the predictive power of the ES in epidemiologically representative general population cohorts.

Funding

The EUGEI project was supported by the grant agreement HEALTH-F2-2010-241909 from the European Community’s Seventh Framework Programme. The authors are grateful to the patients and their families for participating in the project. They also thank all research personnel involved in the GROUP project, in particular J. van Baaren, E. Veermans, G. Driessen, T. Driesen, E. van’t Hag and J. de Nijs. Bart PF Rutten was funded by a VIDI award number 91718336 from the Netherlands Scientific Organisation.

Appendix

GROUP-EUGEI investigators are: Behrooz Z. Alizadeh¹, Therese van Amelsvoort², Richard Bruggeman¹, Wiepke Cahn³, Lieuwe de Haan¹, Jurjen J. Luys²,³,⁶, Ruud van Winkel²,³, Bart P.F. Rutten¹,², Jim van Os²,³,⁹

¹University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research center, Groningen, The Netherlands; ²Maastricht University Medical Center, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands; ³Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; ⁴Altrecht, General Mental Health Care, Utrecht, The Netherlands; ⁵Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands; ⁶Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; ⁷GGNet Mental Health, Apeldoorn, The Netherlands; ⁸KU Leuven, Department of Neuroscience, Research Group Psychiatry, Leuven, Belgium King’s;
References