Endovascular approaches to complex aortic aneurysms

de Niet, Arne

DOI:
10.33612/diss.111895510

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
CHAPTER 6

THE FENESTRATED ANACONDA™ FOR THE TREATMENT OF COMPLEX ABDOMINAL AORTIC ANEURYSM REPAIR

Arne de Niet
Michel M.P.J. Reijnen
Clark J. Zeebregts

Endovascular Today, 2018;6[Suppl]:4-9
Introduction

Endovascular aneurysm repair (EVAR) for the treatment of abdominal aortic aneurysms (AAAs) has developed significantly since its introduction in the early 1990s. Applicability of standard EVAR is restricted to anatomic configurations. Features such as a short neck (< 10 mm), a neck angle over 60°, neck thrombus or calcification, nonparallel neck configuration, or large neck diameter jeopardize an adequate sealing, consequently increasing the risk of migration, type Ia endoleak, and reinterventions. To treat patients with hostile neck anatomy, endografts were developed with fenestrations to the renal arteries, superior mesenteric artery (SMA), and/or celiac artery (CA). Stenting of the fenestrations with balloon-expandable covered stents into the target vessel instead of bare-metal stents has improved apposition and prevented blockage of fenestrations by graft material and main device rotation and migration. To support the target vessels' stents and prevent ripping of the fabric, fenestrations were reinforced with a nitinol ring. The large variation in visceral artery configuration requires customization of fenestrated endografts to the patients’ anatomy. One of the current commercially available and extensively used customized endografts is the Fenestrated Anaconda™ (Vascutek Ltd.).

The Fenestrated Anaconda™

Design
Planning is done by preoperative CTA scanning of the total aorta and iliac arteries with a recommended maximum of 1-mm slides. Using dedicated software, clock positions and angles of the aorta, aortic side branches, and access vessels are measured. After preliminary design, an acrylic 3D model of the aneurysm is printed to test the custom-made endograft, allowing minor modifications to the final design (Figure 1).

The Fenestrated Anaconda™ consists of independent circular nitinol stents and woven polyester graft material. The proximal end of the main body consists of two lateral peaks and two valleys. The two proximal rings are specifically designed to deliver the appropriate radial force on each aortic diameter and can be oversized to achieve optimal sealing. The proximal rings can be parallel (Figure 2A and 2C) or augmented (Figure 2B) in case of planned sealing between the SMA or CA. To prevent migration, three or four pair of hooks are attached to
these proximal rings (Figure 2A–2C). The standard endograft requires a landing zone of at least 15 mm in length and an aortic diameter between 17.5 and 31 mm, and the design allows a landing zone angle up to 90°. With Fenestrated Anaconda, however, proximal sealing configurations with an augmented valley allow for a greatly reduced landing zone between visceral vessels; this is dependent on the geometry of the specific anatomy being treated. The unsupported region below the rings contains the nitinol-reinforced fenestrations (Figure 2A). The absence of stents in this area enables the use of an unlimited number of fenestrations at any location but can also make it susceptible to folding of the graft. To prevent this, reinforcement rings can be placed around one (halo configuration, Figure 2B) or a combination of two proximate fenestrations (jelly bean configuration, Figure 2C). In addition, endografts can be pleated to remove excess fabric where deemed appropriate; the pleats also add an element of columnar stiffness and rigidity to the main body (Figure 2B). The endograft can be recollapsed after deployment or when required and can be repositioned at the desired location. The delivery system (ONE-LOK™) enables easy access in the contralateral limb by magnetically linking the guidewires, potentially reducing cannulation time.

After cannulation of the contralateral limb, the fenestrations and target vessels are cannulated and stented with balloon-expandable covered stents. The stents are flared to prevent type III endoleak. The system enables cannulation from femoral and/or brachial or axillary access without releasing the main device. The endograft can be designed as a cuff, uni-iliac, or bi-iliac endograft. Limb extension(s) can be tapered, straight, or flared to be sized to the iliac diameter. These extensions consist of multiple independent circular nitinol rings, allowing them to be used in very tortuous iliac arteries.10 Figure 3 shows a CTA and 3D reconstruction of a complex AAA before and after implantation of the Fenestrated Anaconda™. Fenestrated variants of the limb extensions have also been provided upon request as custom devices.

Study Results

Since the first report by Bungay et al in 2011,11 a number of case series evaluating the Fenestrated Anaconda™ have been published (Table I and Table II).11-20 Although these studies include over 450 patients, the total number of implantations worldwide already exceeds 2,200 cases. All of these published studies include both results of primary AAA repair and redo after previous EVAR, either with a cuff, uni-iliac, or bi-iliac endograft. Pooled technical success was
Figure 1: Three-dimensional model of a patient's aorta. The custom-made device remains connected to the delivery device (purple), while fenestrations and target vessels are cannulated with guidewire and catheter (green) to check for any mismatch. Permission for use granted by Vascutek Ltd.

Figure 2: Three custom-made Fenestrated Anaconda™ endografts. Anterior view of the endograft showing the parallel proximal rings with attached hooks and the unsupported fabric with three standard nitinol-reinforced fenestrations for the CA, SMA, and left renal artery (A). Left-sided view of the endograft with the augmented proximal rings and the "halo" configuration of a left renal fenestration, which prevents shuttering of the fenestrations. Pleats are shown on posterior of the endograft for diameter reduction of the main body at the renal arteries (B). Anterior view of the endograft showing the "jelly bean" configuration for two proximate fenestrations (CA and SMA); a radiopaque marker is in between (C). Permission for use granted by Vascutek Ltd.
89.3%, and successful target vessel cannulation was 96.7%. Despite the increasing number of fenestrations over time (Figure 4), the procedural time and contrast volume remained the same. The pooled percentage of accepted type Ia endoleaks at completion angiography can be observed in 8.6% of cases, but in only 1.5% of cases at 30 days postprocedure. At 30 days postprocedure, pooled mortality was 4.7% (Table II).

Survival, reintervention-free survival, and target vessel patency were analyzed in four studies. At 1 year, pooled patient survival, reintervention-free survival, and target vessel patency was 88.9%, 91.4%, and 97%, respectively (Table II). Three of these studies also presented 3-year analysis for patient survival (pooled rate, 84.7%) and reintervention-free survival (pooled rate, 84.2%). In one study, 3-year target vessel patency was 96.3%.

Discussion

The current available data on the Fenestrated Anaconda™ demonstrate a satisfying technical success rate and high patient survival, reintervention-free survival, and target vessel patency rates during follow-up.

Technical success is described by Chaikof et al as successful access and planned deployment of the endograft without any type I or III endoleak. The tendency for the Fenestrated Anaconda™ to have a lower technical success is due to higher prevalence of immediate type Ia endoleaks. As mentioned by Dijkstra et al and Blankensteijn et al, the Fenestrated Anaconda™ is designed with proximal nitinol rings, and it seems they need time to fully expand. This overview supports this theory by demonstrating the high percentage of type Ia endoleaks at completion angiography and their spontaneous disappearance at early follow-up (Table 2).

A perioperative mortality rate around 4% seems inevitable, because patients are usually older and have multiple comorbidities (Table I). Adequate case selection, both based on anatomical configuration and the patient’s clinical state, is crucial. Open surgery should always be considered as an alternative for fit patients; consequently, patients treated with a fenestrated endograft have more preoperative comorbidities and postoperative outcomes might be altered.

Katsargyris et al. showed that more complex cases including three or more fenestrations did not influence perioperative outcomes for technical success (96.2% versus 98% in “standard” double-fenestrated endografts) and 30-day mortality (0.5% versus 0.5%, respectively). Nor
TABLE I: PRE-OPERATIVE PATIENT CHARACTERISTICS

<table>
<thead>
<tr>
<th>1st Author, Year</th>
<th>No. Of patients</th>
<th>Gender (M/F)</th>
<th>Age</th>
<th>ASA (score)</th>
<th>Hypertension (%)</th>
<th>Hypercholesterolemia (%)</th>
<th>Diabetes Mellitus (%)</th>
<th>History of cerebrovascular disease (%)</th>
<th>Cardiac history (%)</th>
<th>Pulmonary history (%)</th>
<th>Renal disease (%)</th>
<th>Glomerular filtration rate (ml/min/1.73m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bungay, 2011¹¹</td>
<td>4</td>
<td>3/1</td>
<td>76.5</td>
<td>2.5</td>
<td>100.0</td>
<td>0.0</td>
<td>50.0</td>
<td>0.0</td>
<td>50.0</td>
<td>0.0</td>
<td>25.0</td>
<td>-</td>
</tr>
<tr>
<td>Dijkstra, 2014¹²</td>
<td>25</td>
<td>22/3</td>
<td>73.0</td>
<td>2.6</td>
<td>60.0</td>
<td>36.0</td>
<td>12.0</td>
<td>-</td>
<td>72.0</td>
<td>12.0</td>
<td>32.0</td>
<td>61.0</td>
</tr>
<tr>
<td>Rolls, 2014¹³</td>
<td>20</td>
<td>8/5</td>
<td>75.0</td>
<td>3.1</td>
<td>100.0</td>
<td>23.1</td>
<td>7.7</td>
<td>7.7</td>
<td>46.2</td>
<td>23.1</td>
<td>7.7</td>
<td>-</td>
</tr>
<tr>
<td>Gallitto, 2015¹⁴</td>
<td>5</td>
<td>-</td>
<td>78.4</td>
<td>3.2</td>
<td>100.0</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
<td>40.0</td>
<td>80.0</td>
<td>20.0</td>
<td>88.4</td>
</tr>
<tr>
<td>Shahverdyan, 2016¹⁵</td>
<td>48</td>
<td>37/11</td>
<td>73.0</td>
<td>2.8</td>
<td>77.1</td>
<td>8.3</td>
<td>-</td>
<td>20.8</td>
<td>18.8</td>
<td>92.0</td>
<td>43.8</td>
<td>-</td>
</tr>
<tr>
<td>Kotelis, 2016¹⁶</td>
<td>39</td>
<td>36/3</td>
<td>74.0</td>
<td>3.0</td>
<td>87.0</td>
<td>13.0</td>
<td>-</td>
<td>61.0</td>
<td>17.0</td>
<td>41.0</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Blankensteijn, 2017¹⁷*</td>
<td>60¹⁴</td>
<td>52/8</td>
<td>72.0</td>
<td>2.7</td>
<td>65.0</td>
<td>56.7</td>
<td>13.3</td>
<td>-</td>
<td>55.0</td>
<td>26.7</td>
<td>28.3</td>
<td>60.0</td>
</tr>
<tr>
<td>Falkensammer, 2017¹⁸</td>
<td>94</td>
<td>76/18</td>
<td>73.0</td>
<td>2.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>59.6</td>
<td>-</td>
</tr>
<tr>
<td>Colgan, 2017¹⁹</td>
<td>101</td>
<td>86/15</td>
<td>76.0</td>
<td>2.9</td>
<td>71.0</td>
<td>13.0</td>
<td>8.0</td>
<td>52.0</td>
<td>-</td>
<td>39.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Midy, 2017²⁰</td>
<td>86</td>
<td>82/4</td>
<td>73.4</td>
<td>2.8</td>
<td>76.7</td>
<td>68.6</td>
<td>22.1</td>
<td>4.7</td>
<td>60.5</td>
<td>41.3</td>
<td>15.1</td>
<td>-</td>
</tr>
<tr>
<td>Pooled results†</td>
<td>450</td>
<td>380/65</td>
<td>73.9</td>
<td>2.8</td>
<td>75.7</td>
<td>57.8</td>
<td>11.8</td>
<td>6.8</td>
<td>55.6</td>
<td>29.5</td>
<td>27.4</td>
<td>67.9</td>
</tr>
</tbody>
</table>

Abbreviations: -, not clearly stated; 30-day, within 30-day postoperative period; EL, endoleak.

*Partially including the same patients from. †Pooled analysis excluding Dijkstra et al.¹²

Number of patients, fenestrations, and gender are presented in totals.
was there any statistically significant difference in 1-year patient survival (94% versus 95%, respectively), reintervention-free survival (95% versus 98%, respectively) or target vessel patency (99% versus 99%, respectively). The presented data in this study support an increased experience over recent years, as reflected by the higher number of complex cases with more fenestrations, without an altered technical success rate, operating time, or contrast volume in the later and larger studies (Table II). Follow-up results from literature are similar to the available custom-made Zenith® Fenestrated (Cook Medical). The 1-year pooled results with Zenith® Fenestrated for patient survival, reintervention-free survival, and target vessel patency are 93%, 91%, and 98%, respectively. The 1-year patient survival of 89% seems slightly lower with Fenestrated Anaconda™. Preoperative patient characteristics possibly influenced this difference, because it is not reflected by a difference in reintervention-free survival and target vessel patency (Table I).

Falkensammer et al. separated reinterventions from primary cases but did not find any obvious difference, potentially related to the small sample size of the redo cases. The other presented studies analyzed a mixed population of primary AAA repair and reinterventions after failed EVAR, leading to heterogenic groups and consequently influencing outcome, as revision cases are generally more challenging. An individual patient data analysis could tell us more about the results in primary cases.

One of the advantages of the Fenestrated Anaconda™ is the case rehearsal service offered for each fenestrated custom device request. This involved a prototype device being produced alongside an accurate 3D-printed model of the patient’s anatomy and allows for testing and evaluation of the proposed design in the specific anatomy being treated. Evaluation is performed by engineers at Vascutek and subsequently by the requesting clinician. Following the evaluation, changes can be made to the design of the device prior to final manufacturing to ensure it is optimized for use in the specific anatomy being treated. Changing the custom design has been shown to lead to good results and might prevent unexpected misalignment by design.

Although recent data show good results of the Fenestrated Anaconda™ system, the number of studies is still few and have limited follow-up compared to published data of the commercially available Zenith® Fenestrated AAA endovascular graft. Larger studies are awaited, and recently a prospective study (the Global Fenestrated Anaconda™ Clinical Study [Global FACT]) has been initiated to evaluate global, multicenter outcomes.
<table>
<thead>
<tr>
<th>1st Author, year</th>
<th>No. of patients</th>
<th>No. of fenestrations (average)</th>
<th>Technical success (%)</th>
<th>Target vessel cannulation (%)</th>
<th>Procedural time (min)</th>
<th>Contrast volume (mL)</th>
<th>Accepted procedural type Ia EL (%)</th>
<th>30-day reintervention free survival (%)</th>
<th>30-day type Ia EL (%)</th>
<th>30-day target vessel patency (%)</th>
<th>Mean follow-up time (months)</th>
<th>1-year reintervention free survival (%)</th>
<th>1-year target vessel patency (%)</th>
<th>1-year type Ia EL (%)</th>
<th>Reintervention for type Ia EL during follow-up (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bungay, 2011<sup>11</sup></td>
<td>4</td>
<td>8 (2.0)</td>
<td>100.0</td>
<td>100.0</td>
<td>261<sup>*</sup></td>
<td>179<sup>*</sup></td>
<td>0.0</td>
<td>100.0</td>
<td>75.0</td>
<td>100.0</td>
<td>0.0</td>
<td>1.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dijkstra, 2014<sup>12</sup></td>
<td>25</td>
<td>56 (2.2)</td>
<td>84.0</td>
<td>94.6</td>
<td>240<sup>†</sup></td>
<td>194<sup>†</sup></td>
<td>12.0</td>
<td>96.0</td>
<td>96</td>
<td>98.1</td>
<td>0.0</td>
<td>11.0</td>
<td>92.0<sup>‡</sup></td>
<td>96<sup>‡</sup></td>
<td>98.1<sup>‡</sup></td>
</tr>
<tr>
<td>Rolls, 2014<sup>13</sup></td>
<td>20</td>
<td>35 (1.8)</td>
<td>100.0</td>
<td>100.0</td>
<td>-</td>
<td>-</td>
<td>0.0</td>
<td>100.0</td>
<td>90.0</td>
<td>100.0</td>
<td>-</td>
<td>7.6</td>
<td>-</td>
<td>-</td>
<td>97.2<sup>‡</sup></td>
</tr>
<tr>
<td>Gallitto, 2015<sup>14</sup></td>
<td>5</td>
<td>15 (3.0)</td>
<td>80.0</td>
<td>100.0</td>
<td>404<sup>‡</sup></td>
<td>240<sup>‡</sup></td>
<td>20.0</td>
<td>100.0</td>
<td>80.0</td>
<td>100.0</td>
<td>-</td>
<td>6.0</td>
<td>80.0<sup>‡</sup></td>
<td>80.0<sup>‡</sup></td>
<td>100<sup>‡</sup></td>
</tr>
<tr>
<td>Shahverdyan, 2016<sup>15</sup></td>
<td>48</td>
<td>129 (2.7)</td>
<td>93.8</td>
<td>97.7</td>
<td>201<sup>†</sup></td>
<td>121<sup>†</sup></td>
<td>-</td>
<td>95.8</td>
<td>85.4</td>
<td>98.4</td>
<td>-</td>
<td>24.0</td>
<td>93.5<sup>‡</sup></td>
<td>-</td>
<td>98.4<sup>‡</sup></td>
</tr>
<tr>
<td>Kotelis, 2016<sup>16</sup></td>
<td>39</td>
<td>106 (2.7)</td>
<td>94.9</td>
<td>94.8</td>
<td>274<sup>†</sup></td>
<td>170<sup>†</sup></td>
<td>-</td>
<td>92.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>33.0</td>
<td>87.2</td>
<td>92.0</td>
<td>99.0</td>
</tr>
<tr>
<td>Blankenstein, 2017<sup>17</sup></td>
<td>60<sup>‡</sup></td>
<td>140 (2.3)</td>
<td>85.0</td>
<td>97.1</td>
<td>262<sup>‡</sup></td>
<td>178<sup>‡</sup></td>
<td>11.7</td>
<td>96.7</td>
<td>-</td>
<td>99.3</td>
<td>-</td>
<td>16.4</td>
<td>91.4</td>
<td>96.5</td>
<td>95.0<sup>‡</sup></td>
</tr>
<tr>
<td>Falkensammer, 2017<sup>18</sup></td>
<td>94</td>
<td>282 (3.0)</td>
<td>90.2</td>
<td>91.4</td>
<td>267<sup>‡</sup></td>
<td>291<sup>†</sup></td>
<td>-</td>
<td>94.7</td>
<td>97.9</td>
<td>100.0</td>
<td>-</td>
<td>10.0</td>
<td>88.3<sup>‡</sup></td>
<td>88.3<sup>‡</sup></td>
<td>100<sup>‡</sup></td>
</tr>
<tr>
<td>Colgan, 2017<sup>19</sup></td>
<td>101</td>
<td>255 (2.5)</td>
<td>88</td>
<td>98.8</td>
<td>-</td>
<td>-</td>
<td>9.9</td>
<td>97.0</td>
<td>95.0</td>
<td>98.4</td>
<td>1.6</td>
<td>12.0</td>
<td>91.0</td>
<td>91.0</td>
<td>97.6</td>
</tr>
<tr>
<td>Midy, 2017<sup>20</sup></td>
<td>86</td>
<td>292 (3.4)</td>
<td>86.0</td>
<td>99.3</td>
<td>238<sup>‡</sup></td>
<td>186<sup>‡</sup></td>
<td>5.8</td>
<td>93.0</td>
<td>92.7</td>
<td>99.7</td>
<td>-</td>
<td>24.0</td>
<td>88.3</td>
<td>96.3</td>
<td>97.2</td>
</tr>
<tr>
<td>Pooled results<sup>‡</sup></td>
<td>450</td>
<td>1262 (2.8)</td>
<td>89.3</td>
<td>96.7</td>
<td>252</td>
<td>269</td>
<td>8.6</td>
<td>95.3</td>
<td>93.3</td>
<td>99.3</td>
<td>1.5</td>
<td>17.3</td>
<td>88.9</td>
<td>91.4</td>
<td>97.0</td>
</tr>
</tbody>
</table>

Note: Thirty-day means within the 30-day postoperative period. Abbreviations: -, not clearly stated.
*Presented as mean.
†Presented as median.
‡At last follow-up (no available survival analysis).
§Partially including the same patients from Dijkstra et al.¹²
¶Pooled analysis excluding the paper from Dijkstra et al. Number of patients and fenestrations are presented in totals.
Conclusion

The custom-made Fenestrated Anaconda™ is applicable in the treatment of complex AAAs with good surgical outcomes, technical success, low postoperative reintervention rates, and high patient survival, reintervention-free survival, and target vessel patency rates at midterm follow-up. Longer follow-up that includes individual patient analysis should be performed to further support current results.

Figure 4. Graph showing the total number of endograft implants worldwide with a specific number of fenestrations for each year from 2012 to 2017. More implants have been performed each year up to 2016 (light blue line), and there is a trend toward more Fenestrated Anaconda™ endografts including more fenestrations.
Figure 3: Preoperative CTA image of patient with a flaredneck AAA (A). Postoperative CTA image of a patient successfully treated with the Fenestrated Anaconda™; stents can be seen for both renal arteries and the SMA (B). Three-dimensional reconstructions of the same preoperative CTA (C). Three-dimensional reconstructions of the same postoperative CTA. Note the landing zone below the CA (C).
References

