Staphylococcus aureus spa type t437: identification of the most dominant community-associated clone from Asia across Europe

C. Glasner1, G. Pluister2, H. Westh3,4, J. P. Arends1, J. Empel5, E. Giles6, F. Laurent7, F. Layer8, L. Marstein9, A. Matussek10, A. Mellmann11, M. Pérez-Vásquez12, E. Ungvári13, X. Yan14,15, H. Zemlicková16, H. Grundmann1 and J. M. van Dijl*

1) Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands, 2) Bacterial Surveillance and Response, Center for Infectious Disease Control, National Institute of Public Health and the Environment, Bilthoven, The Netherlands, 3) Department of Clinical Microbiology, Hvidovre Hospital, Hvidovre, Denmark, 4) Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark, 5) Department of Molecular Microbiology National Medicines Institute, Warsaw, Poland, 6) Department of Microbiology, Scottish MRSA Reference Laboratory, Glasgow, United Kingdom, 7) Centre National de Référence des Staphylocoques, Université de Lyon, INSERM U851, Lyon, France, 8) National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode, Germany, 9) Department of Medical Microbiology, MRSA Reference Laboratory, St. Olav’s Hospital, Trondheim University Hospital, Norway, 10) Department of Laboratory Services, County Hospital Ryhov, Jönköping, Sweden, 11) Institute for Hygiene University Hospital Munster, Munster, Germany, 12) Servicio de Bacteriología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain, 13) Department of Phage Typing and Molecular Epidemiology, National Center for Epidemiology, Budapest, Hungary, 14) State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 15) Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China and 16) National Institute of Public Health, Prague, Czech Republic

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) belonging to the multilocus sequence type clonal complex 59 (MLST CC59) is the predominant community-associated MRSA clone in Asia. This clone, which is primarily linked with the spa type t437, has so far only been reported in low numbers among large epidemiological studies in Europe. Nevertheless, the overall numbers identified in some Northern European reference laboratories have increased during the past decade. To determine whether the S. aureus t437 clone is present in other European countries, and to assess its genetic diversity across Europe, we analysed 147 S. aureus t437 isolates from 11 European countries collected over a period of 11 years using multiple locus variable number tandem repeat fingerprinting/analysis (MLVF/MLVA) and MLST. Additionally 16 S. aureus t437 isolates from healthy carriers and patients from China were included. Most isolates were shown to be monophyletic with 98% of the isolates belonging to the single MLVA complex 621, to which nearly all included isolates from China also belonged. More importantly, all MLST-typed isolates belonged to CC59. Our study implies that the European S. aureus t437 population represents a genetically tight cluster, irrespective of the year, country and site of isolation. This underpins the view that S. aureus CC59 has been introduced into several European countries, not being restricted to particular geographical regions or specific host environments. The European S. aureus t437 isolates thus bear the general hallmarks of a high-risk clone.

Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

Keywords: Asia, CC59, community-associated, Europe, identification, MRSA, spa type t437, Staphylococcus aureus

Original Submission: 25 June 2014; Revised Submission: 12 August 2014; Accepted: 11 September 2014

Editor: G. Lina

Article published online: 29 October 2014
Introduction

The emergence and spread of human pathogens, such as Staphylococcus aureus, among hospital patients as well as in the community are threatening public health worldwide. The capability to acquire antibiotic resistance and a plethora of virulence factors make S. aureus formidable apt to cause disease in these different settings. This is underscored by the large number of different S. aureus types encountered in many hosts and environments [1–6].

Epidemiological and, more recently, molecular studies have shown that certain clones of S. aureus attain a geo-spatial predominance [1–6]. Importantly, various community-associated meticillin-resistant S. aureus (CA-MRSA) clones have evolved independently on different continents. Multilocus sequence type (MLST/ST) 80 is the predominant CA-MRSA clone in Europe, ST93 in Australia, ST30 in Oceania, and ST59 in Asia. Nevertheless, the exchange of clones between countries and continents has been observed [3,4,7,8,9], as can be expected from the current reach, volume and speed of travel [10].

The ST59 clone, which is the founder of the MLST clonal complex 59 (CC59), is one of the most frequent multidrug resistant CA-MRSA clones in Asia [8]. In 2007, Tristan and colleagues reported for the first time Asian S. aureus ST59 isolates in association with the spa type t437 [11]. Subsequently, a large community and hospital study across Asia described the CC59 as the most prevalent CC, including ST59 and its variants ST1241 and ST338; moreover, ST59-MRSA-t437 was identified as the most prevalent clone between 2004 and 2006 [8]. In the study by Song et al., the collected CA- and hospital-associated MRSA CC59 isolates from Asia showed rapid spread between hospitals and the community in a bi-directional manner, and also across borders [8]. A similar picture emerged from other studies in Asia and Western Australia where ST59-MRSA-t437 was identified as a major clone [12–16]. In contrast, S. aureus CC59 isolates were incidentally reported in the USA [17] and in Europe [18–22].

Recently, a study from Belgium identified four (1%) ST338-t437 CA-MRSA isolates amongst 410 MRSA isolates collected between 2005 and 2009 [23]. Furthermore, a multicentre study performed in the 16 most populous European countries identified a total number of 22 (6%) S. aureus CC59 isolates with the spa type t437 of which one (4.5%) was meticillin-sensitive S. aureus (MSSA) [24]. Intriguingly, Rolo and co-workers reported an increased frequency of the ST59 clone since 2007, and they concluded that this clone was most prevalent in Northern Europe (Finland, Sweden and Poland) [24]. This is in line with our own observations that the numbers of S. aureus t437 isolates in Norway, Denmark and Poland are increasing. Specifically, in Norway S. aureus t437 is among the most commonly identified MRSA clones corresponding to ~2.5% of all MRSA isolates every year since 2008 (L. Marstein, personal communication). In Denmark, the numbers of S. aureus t437 isolates have gone up from zero before 2006, through 1–3 cases per year between 2006 and 2008, to 7–14 cases per year since 2007 (H. Westh, personal communication). Lastly, the ST338-t437 PVL-positive clone seems currently to be the most prevalent CA-MRSA clone in Poland (J. Empel, personal communication).

Altogether, the combined literature data for Asia and Europe, and the apparently increasing numbers of S. aureus t437 isolates in Northern Europe formed the incentive to assess the presence of S. aureus t437 in other European countries and, more importantly, to determine their genetic relatedness. Clearly, the perceived risk for dissemination and establishment of a new community-associated S. aureus clone with a multidrug resistant phenotype in Europe would justify appropriate preventive infection control measures.

Materials and methods

Bacterial isolates

A total of 163 S. aureus isolates (147 from Europe and 16 from China) with the spa type t437, collected between 2002 and 2012 from patients and healthy carriers in 11 different European countries and four different geographical locations in China (i.e. Hangzhou, Zhejiang Province; Hefei, Anhui Province; Harbin, Heilongjiang Province; and Beijing), were analysed in the present study. The epidemiological and molecular characteristics of the isolates, including origin, year of isolation, antibiotic phenotype and information on the patients are presented in Appendix Table A1 in the supporting information. One isolate from the Czech Republic with an unrelated spa type t442 was also included in the present study.

Antibiotic susceptibility and presence of mecA and the PVL locus

Antibiotic susceptibility for benzylpenicillin, chloramphenicol, ciprofloxacin, clindamycin (constitutive), erythromycin, fosfomycin, fusidic acid, gentamicin, kanamycin, linezolid, mupirocin, oxacillin, rifampicin, teicoplanin, tetracycline, tobramycin, trimethoprim/sulfamethoxazole and vancomycin was determined with the VITEK 2 system (AST P633 card, bioMérieux, Etoil, France). The VITEK 2 minimum inhibitory concentration results were interpreted using the Advanced Expert System following EUCAST guidelines (www.eucast.org). The presence of the mecA and PVL-encoding genes (lukF-PV and lukS-PV) was determined by PCR [25].
Extraction of total DNA for typing
Total DNA for the multiple-locus variable number tandem repeat fingerprinting (MLVF) typing was prepared as previously described [2]. The preparation of lysates for multiple locus variable number tandem repeat analysis (MLVA) and spa typing was performed as described by Schouls et al. [25].

spa typing
The spa typing was performed according to the protocol previously described [26]. The spa types were assigned through the use of Ridom StaphType software version 2.2.1 (Ridom GmbH, Münster, Germany) and the SpaServer (http://www.spaserver.ridom.de).

Multiple-locus variable number tandem repeat fingerprinting
MLVF was performed as described by Glasner et al. and Sabat et al. using the Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA, USA) to separate PCR fragments [2, 27]. For the analysis of electropherograms with Gel Compar II (Applied Maths, Kortrijk, Belgium), the position tolerance and optimization were set to 0.5% and 0.5%, respectively, and the dice formula was used to calculate the pairwise similarity coefficient. With the selected position tolerance, all Bioanalyzer runs for the control isolate M2 (clustering together at the bottom part of the MLVF dendrogram) were identical [27]. A dendrogram was created with the unweighted pair-group method using geometric averages (UPGMA).

Multiple-locus variable number tandem repeat analysis
MLVA was performed according to Schouls et al. [25]. Isolates that differed by one or more alleles were considered distinct types. Minimum spanning tree analysis of MLVA was performed using BioNumerics software (Applied Maths, Kortrijk, Belgium) to group related MLVA types (MTs) into MLVA complexes (MCs). Such MCs encompass single locus variants as described by Schouls et al. [25]. A singleton was defined as an MT that was not grouped into an MC.

Multilocus sequence typing
MLST was performed on representative S. aureus t437 isolates of each MT as described by Enright et al. [28]. In brief, the allelic profiles of each selected isolate were obtained by sequencing internal fragments of seven housekeeping genes (arcC, aroE, glpF, gmK, pta, tpi, ygiL) and entering them on the MLST homepage (http://saureus.mlst.net), where seven numbers depicting the allelic profile were assigned that defined a ST [28]. The allelic profiles of the S. aureus t437 isolates were compared by using the based upon related sequence types (BURST) program [4].

Results
Collection of S. aureus t437 isolates from Europe and China
To explore the presence and genetic relatedness of S. aureus t437 across Europe, a convenience sample of 147 isolates with the spa type t437 was established at the Medical Microbiology Department at the University Medical Center Groningen (UMCG, The Netherlands). This was achieved through the identification of S. aureus spa type t437 isolates by inspection of the RIDOM spa server database (www.spaserver.ridom.de). In addition, representatives from all staphylococcal expert and reference laboratories were approached and asked for S. aureus spa type t437 isolates. All S. aureus isolates were then sent to the UMCG, stored and subsequently propagated for subsequent molecular analyses. The spa type t437 is currently ranked 24th on the RIDOM spa server with a frequency of 0.63% and a total number of 1878 isolates (June 2014). The collected S. aureus t437 isolates were from 11 European countries, namely the Netherlands (n = 64), Scotland (n = 27), Norway (n = 20), Germany (n = 13), Denmark (n = 10), Spain (n = 3), Poland (n = 3), France (n = 3), Sweden (n = 2), Czech Republic (n = 1) and Hungary (n = 1). Sixteen S. aureus isolates with the spa type t437 from patients and healthy carriers from China that were available during the time of investigation at our institute were added to the collection. One isolate from the Czech Republic was originally submitted as S. aureus spa type t437 but, during the course of investigation, it was determined to have the unrelated spa type t442. Seventy-eight (47.9%) S. aureus t437 isolates were sampled from abscesses and skin infections, and 56 (34.3%) were isolated from blood or the nose, ear or throat (supporting information Appendix Table A1). The source of isolation is unknown for the remaining 29 (17.8%) S. aureus t437 isolates.

Antibiotic resistance and proportion of pvl and mecA
Antibiotic susceptibility testing showed that the antibiotic profiles of the 143 (87.7%) MRSA t437 isolates were very similar to those of the 20 (12.3%) MSSA t437 isolates (Table 1). Consistent distinctions in the resistance of the investigated MRSA t437 and MSSA t437 isolates were only observed for oxacillin and chloramphenicol. The increased chloramphenicol resistance of the collected MRSA t437 isolates is in accordance with results from Asian CA-MRSA studies [7, 15]. The majority of the investigated t437 isolates were resistant to clindamycin (constitutive), erythromycin, kanamycin and penicillin, and all t437 isolates were susceptible to fosfomycin, fusidic acid, linezolid, mupirocin, rifampicin, teicoplanin and vancomycin (Table 1). No clear association between countries of origin or
TABLE 1. Antibiotic resistance profiles of the 143 MRSA t437 and 20 MSSA t437 isolates*

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MRSA</th>
<th>MSSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (% rate)</td>
<td>n (% rate)</td>
</tr>
<tr>
<td>Caprofloxacin</td>
<td>2 (1.4)</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>93 (65)</td>
<td>3 (15)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>118 (82.5)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>121 (84.6)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fucidic acid</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3 (2.1)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>120 (83.9)</td>
<td>16 (80)</td>
</tr>
<tr>
<td>Linezolid</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Moxalactam</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>143 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>143 (100)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>102 (71.3)</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>3 (2.1)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>1 (0.7)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

MRSA, methicillin-resistant Staphylococcus aureus; MSSA, methicillin-sensitive S. aureus.
*For details on the antibiotic resistances of the study isolates, see please supporting information Appendix Table A1.

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>MRSA</th>
<th>MSSA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n (% rate)</td>
<td>n (% rate)</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>118 (82.5)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>121 (84.6)</td>
<td>17 (85)</td>
</tr>
<tr>
<td>Fosfomycin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Fucidic acid</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>3 (2.1)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>120 (83.9)</td>
<td>16 (80)</td>
</tr>
<tr>
<td>Linezolid</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Moxalactam</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>143 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>143 (100)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Teicoplanin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>102 (71.3)</td>
<td>11 (55)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>3 (2.1)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>1 (0.7)</td>
<td>5 (25)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>0 (0)</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

sample source and a certain antibiotic resistance profile could be detected. In accordance with the observed oxacillin resistance profiles, 88% of the isolates tested positive for mecA (143 isolates). Furthermore, 82% (134 isolates) tested positive for the Panton-Valentine leukocidin (PVL) locus [3]. The majority of S. aureus t437 isolates were thus both mecA- and pvl-positive (127 isolates, 78%), as previously reported for Asian CC59 isolates [12,15]. Fifteen isolates were mecA-positive and pvl-negative, while 21 isolates were mecA-negative of which 8 were pvl-positive and 13 pvl-negative.

MLVF
MLVF analysis identified 37 different banding patterns among the 163 S. aureus t437 isolates as shown in Fig. 1. Sixteen patterns were represented by two or more isolates (142 isolates in total). The remaining 21 patterns each consisted of a single isolate. Application of previously published cut-off values of 64%, 67% or 75% led to 2, 2 and 9 clusters, respectively [2,27]. The two lower cut-off values joined 161 and 154 isolates into one major cluster respectively, indicating a high genomic relatedness of these isolates. Even without the application of a cut-off value resulting in MLVF clusters, the relatedness of all S. aureus t437 isolates can be inferred by inspection from the highly similar MLVF banding patterns (see also [2,27]). Slight differences in the band sizes indicate loss or gain of repeats in the respective variable number of tandem repeats (VNTRs). As expected, the isolate with the unrelated spa type t442 displayed a different MLVF pattern with only 34% similarity to the closest related isolate in the MLVF dendrogram (Fig. 1). The MLVF patterns did not unveil any epidemiological signal, such as the country of origin, year of isolation or source. Thus isolates from different countries, even from China, appeared randomly distributed over the MLVF dendrogram. Notably, MLVF is a highly discriminatory but non-portable PCR-based DNA fingerprinting method that utilizes size differences in five coding regions (spa, sspA, sdrCDE, clfA and clfB) containing VNTRs. In contrast, the subsequently implemented MLVA method for DNA typing is suitable for inter-laboratory comparisons and allows the determination of clonal relationships between isolates. To this end, MLVA targets ten non-coding loci, which are sequenced and for which the exact numbers of repeat units are measured. This approach is therefore more precise than the visualization of MLVF results on agarose gels or microfluidic chips.

MLVA
The 163 S. aureus t437 isolates produced 13 different MTs, namely MT621, MT1035, MT1297, MT1831, MT1870, MT1875, MT2075, MT2322, MT3560, MT4124, MT4125, MT4126 and MT4183 (Fig. 2A and supporting information Appendix Table A1). The MT621 was clearly the most predominant type in the present collection comprising 133 (82%) isolates and, more importantly, 159 (98%) S. aureus isolates belonged to the same MC0621, comprising 9 different MTs (Fig. 2A). The remaining four isolates were MLVA singletons (MCnone). Generally, six MTs were shared by 2 or more isolates (156 isolates in total), whereas 7 MTs were represented by single isolates. The included t422 isolate from the Czech Republic belonged to the unrelated MT165 and MC5.

MLST
A total of 46 representative S. aureus t437 isolates comprising one MT each were selected for MLST analysis (Fig. 2B). This showed that 39 (85%) of these isolates belonged to the CC59. ST59 was the predominant ST with 26 (57%) isolates, and the two single-locus variants ST87 and ST338 were identified 4 (%) and 11 (24%) times, respectively. The remaining 7 isolates, which were all from China, belonged to ST2147 differing from ST59 by three alleles. The included isolate with the spa type t422 belonged to the unrelated ST5. The relationship between the MLST and MLVA data is depicted in Fig. 2B. The MLST minimum spanning tree shows that ST59, the founder of CC59, is composed of 10 different MTs.

Discussion
The present study underpins the view that the S. aureus ST59 clone and other STs of CC59 with the spa type t437 which are commonly encountered in Asia, are present in several European countries. More importantly, by implementing three different
FIG. 1. MLVF dendrogram of the 163 investigated S. aureus t437 isolates generated by the UPGMA algorithm. In addition to the study isolates, one isolate with a different spa type (t442), MLVA type and MLST type, and 16 controls (designated M2) were included in the analysis. Details on the different isolates from top to bottom are provided in the same order in Appendix Table A1 in the supporting information. MVLA, multiple-locus variable number tandem repeat analysis; MLST, multilocus sequence typing; MLVF, multiple locus variable number tandem repeat fingerprinting; UPGMA, unweighted pair-group method using geometric averages. *Lanes corresponding to Chinese t437 isolates.
highly discriminatory molecular typing tools, namely MLVF, MLVA and MLST, we demonstrate a high degree of molecular similarity in the studied S. aureus t437 isolates that were collected over a period of 10 years from 11 different European countries. This shows that this specific S. aureus clone is not restricted to particular geographical regions or specific host environments, and that S. aureus t437 in Europe belongs to a very tight molecular cluster of S. aureus isolates. The European S. aureus t437 isolates thus bear the general hallmarks of a high-risk clone.

At least 35 (21.5%) of the patients from whom the currently investigated European S. aureus t437 isolates had been collected were immigrants or adopted children, or had travelled to countries outside Europe, Asia in particular (supporting information Appendix Table A1; note that for 104 isolates no such information could be retrieved). Such patients may have introduced the CC59 clone in Europe and subsequently transmitted it to other European citizens, including their family members, as can be inferred from the analysis of the isolates from the Netherlands and Denmark (supporting information Appendix Table A1). This view is also supported by the high genetic relatedness of the European isolates with the 16 Chinese S. aureus t437 isolates included in our study as shown by MLVF and MLVA. Although seven Chinese isolates belonged to ST2147 (a triple-locus variant of ST59) and only one isolate belonged ST59, the Chinese isolates clustered among all other S. aureus t437 isolates in the MLVF dendrogram (Fig. 1 and supporting diagram A)
information Appendix Table A1), and 15 of these isolates belonged to the McO621 which includes 98% of the 163 investigated S. aureus t437 isolates. Notably, in most Asian studies only MRSA isolates were collected and typed. It is therefore conceivable that MSSA with the spa-type t437 belonging to CC59 has thus far been overlooked in Asia. In contrast, the present European S. aureus t437 isolates also include MSSA isolates. This observation is in line with the findings reported by Rolo et al. [24]. Otherwise, the antibiotic resistance profiles of the presently investigated European S. aureus t437 isolates were very similar to those described for Asian CC59 isolates, but not to those of other CA S. aureus clones from Europe [3,8,14,29,30]. Lastly, the frequency of the PVL-encoding genes (82%) in the present S. aureus t437 sample is in accordance with the reported numbers in the Asian studies [12,15,31].

In conclusion, we have combined MLVF, MLVA and MLST to obtain a high-resolution snapshot of the S. aureus t437 population in Europe based on retrospectively collected isolates that had already been spa typed. Since spa typing or any of the three other molecular typing methods implemented in the present study are not yet performed on a daily routine basis in most local laboratories and hospitals, we consider it likely that the CC59 clone has so far remained under-detected in Europe. This is a cause for concern in view of the predominance of S. aureus CC59 in Asia and its clinical repercussions, in particular multi-drug resistant soft tissue and skin infections, even though the prevalence of CC59 in Europe is probably still relatively low. Where possible, the further dissemination of this potentially high-risk clone should therefore be prevented, for example through active screening of patients with staphylococcal infections who have a history of travel in Asia.

Transparency declaration

Funding: C.G. was supported by a fellowship from the Graduate School for Medical Sciences of the University of Groningen. J.E. was partly supported by the Ministry of Health within the framework of the Module I of the National Programme of Antibiotic Protection and by the Ministry of Science and Higher Education (Mikrobank 2 Programme, and a grant no 1216/7. PR UE/2009/7).

Conflict of interest: The authors declare no conflicts of interest.

Author contributions

C. Glasner, H. Grundmann and J. M. van Dijl: designed the study and wrote the manuscript. C. Glasner and G. Pluister: performed laboratory investigations. G. Pluister, H. T. Westh, J. P. Arends, J. Empel, E. Giles, F. Laurent, F.layer, L. Marstein, A. Matussek, A. Mellmann, M. Perez-Vasquez, E. Ungvári, X. Yan and H. Zemlickova: performed epidemiological investigations, provided the study isolates, provided feedback, contributed with comments and reviewed the manuscript.

Acknowledgements

The authors thank the staff of the Bacteriology Laboratory at the UMCG for their support in determining the antibiotic resistance profiles. We would also like to thank Dr. Kit Boye, Bonnie Cosgrove, Aleksandra Kozirińska, Helene Meugnier, Dr. Akós Tóth, Dr. Ana Vindel and Professor Dr Jianzhong Zhang for the provision of clinical isolates.

Appendix A. Supplementary data

Supplementary data related to this article can be found online at http://dx.doi.org/10.1016/j.cmi.2014.09.010.

References


