A Disjoint Set Algorithm for the Watershed Transform
Meijster, Arnold; Roerdink, J.B.T.M.

Published in:
Proc. IX European Signal Processing Conference (EUSIPCO ’98), Rhodos, Greece

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
A DISJOINT SET ALGORITHM FOR THE WATERSHED TRANSFORM

Arnold Meijster, Jos B.T.M. Roerdink
University of Groningen
Institute for Mathematics and Computing Science
P.O. Box 800, 9700 AV Groningen, The Netherlands
Tel. +31-50-3633931, Fax. +31-50-3633800
e-mail: arnold@cs.rug.nl, roe@cs.rug.nl

Abstract

In this paper the implementation of a watershed transform based on Tar-
jan’s Union-Find algorithm is described. The algorithm computes the water-
shed as defined by Meyer in [4]. The algorithm consists of two stages. In the
first stage the image to be segmented is transformed into a lower complete
image, using a FIFO-queue algorithm. In the second stage, the watershed
of the lower complete image is computed. In this stage no FIFO-queues are
used. This feature makes parallel implementation of the watershed transform
much easier.

1 INTRODUCTION

A commonly used algorithm for digital image segmentation in the field of math-
ematical morphology is the watershed transformation (see [4]). The basic idea is
to look upon a digital gray scale image as a landscape. The gray level of a pixel
is regarded as the altitude of that pixel. A drop of water on the surface of this
landscape will flow down along a path of steepest descent until it reaches a (re-
gional) minimum. The set of all pixels for which a drop of water will end in the
same minimum is called a catchment basin. For some pixels it cannot be decided
to which catchment basin they belong. These pixels form the boundaries between
the catchment basins. These boundaries are called watershed lines.

*To appear in: Proc. EUSIPCO’98, IX European Signal Processing Conference, September 8 -
Several mathematical definitions of this informal concept exist (see [3, 4, 6]). None of these definitions is mathematically equivalent to one of the others, but in most practical cases the differences are negligible. In this paper we adopt the definition given by Meyer in [4] based on shortest paths. We start with a short summary of this definition.

A digital gray scale image is a function \(f : D \rightarrow \mathbb{N} \), where \(D \subseteq \mathbb{Z}^2 \) is the domain of the image and \(f(p) \) denotes the gray value of a pixel \(p \in D \). Let \(E \) denote the underlying grid, i.e. \(E \) is a subset of \(\mathbb{Z}^2 \). A path \(P \) of length \(l \) between two pixels \(p \) and \(q \) is an \((l + 1)\)-tuple \((p_0, p_1, \ldots, p_l, p_{l+1}) \) such that \(p_0 = p, p_l = q \) and \(\forall i \in [0, l] : (p_i, p_{i+1}) \in E \). The length of a path \(P \) is denoted by \(l(P) \). We denote the set of all paths from \(p \) to \(q \) by \(p; q \). A descending path is a path along which the altitude does not increase. By \(\Pi_f^1(p) \) we denote the set of all descending paths starting in a pixel \(p \) and ending in some pixel \(q \) with \(f(q) < f(p) \). For a pixel \(p \in D \) the set of neighboring pixels of \(p \) is defined as \(N_E(p) = \{ q \in D | (p, q) \in E \} \).

For pixels in the interior of a plateau, i.e. a region of constant altitude, it is not clear in which direction a drop of water would flow. Several solutions for this problem have been proposed. First, let us assume that the function \(f \) is lower complete. A gray scale image \(f : D \rightarrow \mathbb{N} \) is called lower-complete if and only if

\[
(\forall p \in D : (\exists q \in N_E(p) : f(q) < f(p)) \lor \Pi_f^1(p) = \emptyset)
\]

The interpretation of this formula is that each pixel has at least one neighbor which has a smaller gray-value, or the pixel is located inside a regional minimum.

We also assume that for every pixel \(p \) which is inside a regional minimum, we have \(f(p) = 0 \). The lower slope, which is the maximal slope linking a pixel \(p \) to any of its neighbors of lower altitude, is defined as

\[
LS_f(p) = \max_{q \in [p] \cup N_E(p)} (f(p) - f(q))
\]

The cost for walking from one pixel \(p \) to a neighboring pixel \(q \) is defined as

\[
\text{cost}_f(p, q) = \begin{cases}
LS_f(p) & \text{if } f(p) > f(q) \\
LS_f(q) & \text{if } f(p) < f(q) \\
\frac{LS_f(p) + LS_f(q)}{2} & \text{if } f(p) = f(q)
\end{cases}
\]

The topographical distance between two pixels \(p \) and \(q \) along a path \(P = (p = p_0, \ldots, p_{l(P)} = q) \) is defined as

\[
T_f^P(p, q) = \sum_{i=0}^{l(P)-1} \text{cost}_f(p_i, p_{i+1})
\]
The topographical distance between points \(p \) and \(q \) is defined as the minimum of the topographical distances along all paths between \(p \) and \(q \):

\[
T_f(p, q) = \min_{P \in \mathcal{P}^{pq}} T_f^P(p, q)
\]

The topographical distance between a point \(p \) and a set \(A \subseteq D \) is defined as \(T_f(p, A) = \min_{a \in A} T_f(p, a) \). Note that the topographical distance is not a real distance, since the topographical distance between two different pixels \(p \) and \(q \) in the same regional minimum is 0. This poses no problems for the implementation, however.

Let \((m_i)_{i \in I} \) be the minima of the function \(f \). The catchment basin of a minimum \(m_i \), denoted \(CB_f(m_i) \), is defined as the set of points \(p \in D \) that are topographically closer to \(m_i \) than to any other minimum \(m_j \):

\[
CB_f(m_i) = \{ p \in D \mid \forall j \in I \setminus \{i\} : T_f(p, m_i) < T_f(p, m_j) \}
\]

The watershed of a function \(f \) is the set of points of its domain which do not belong to any catchment basin:

\[
Wsh(f) = D \cap (\bigcup_{i \in I} CB_f(m_i))^c
\]

In practice, of course, images are not always lower complete, and the altitude of the regional minima need not be zero. The following construction can be used to transform an image \(f \) such that it satisfies these requirements. We compute a function \(f^* \) in which for every regional minimum (which could be a plateau) we set the altitude to 0, and for all the other pixels \(p \) in the image we set the altitude to the length of the shortest path in \(\Pi_f(p) \):

\[
f^*(p) = \begin{cases}
0 & \text{if } \Pi_f(p) = \emptyset \\
\min_{P \in \Pi_f(p)} l(P) & \text{otherwise}
\end{cases}
\]

Let \(L_c = \max_{p \in D} f^*(p) \). We construct the function \(f_{LC} \) as follows:

\[
f_{LC}(p) = \begin{cases}
0 & \text{if } f^*(p) = 0 \\
L_c \cdot f(p) + f^*(p) - 1 & \text{otherwise}
\end{cases}
\]

The function \(f_{LC} \) is lower complete, while for a pixel \(p \) in a regional minimum we have \(f_{LC}(p) = 0 \). A linear time algorithm, given in Fig. 2, using a FIFO-queue breadth-first algorithm to propagate distances computes the function \(f_{LC} \).
2 TARJAN’S UNION-FIND ALGORITHM

In [5] Tarjan presents an algorithm for maintaining disjoint sets under the set-union operation. Since catchment basins are disjoint sets by definition this algorithm seems applicable. However, some modifications are necessary. In this section we present Tarjan’s algorithm for disjoint sets, and in the next section we will show how to modify this algorithm such that it can be used for the computation of watersheds.

Tarjan stores sets in trees. Each node in the tree points to its parent. The root of a tree points to itself. Two objects \(x \) and \(y \) are members of the same set if and only if \(x \) and \(y \) have the same canonical element. The canonical element of \(x \) is the root of the tree in which \(x \) is stored. There are three important operations.

- \(\text{MakeSet}(x) \): Create a new singleton set \(\{x\} \). This operation assumes that \(x \) is not already member of any set.
- \(\text{FindRoot}(x) \): Return the canonical element (the root of the tree) of the set containing \(x \).
- \(\text{Union}(x,y) \): Form a new set that is the union of the two sets whose canonical elements are \(x \) and \(y \). This operation assumes \(x \neq y \).

The trees are implemented in a linear array, named \(\text{parent} \), of which the indices are of the same type as the type of the objects stored in it (usually integers). The value \(\text{parent}[x] \) gives the parent of \(x \) in the tree \(x \) is contained in. When \(x \) is a canonical element, we have \(\text{parent}[x] = x \).

Obviously, the operations \(\text{MakeSet}(x) \) and \(\text{Union}(x,y) \) can be performed in constant time, but the operation \(\text{FindRoot}(x) \) requires a search for the canonical element of \(x \). This operation takes time linear in the length of the path from \(x \) to its canonical element. Tarjan uses two important techniques to keep these paths reasonably short.

The first technique is called path compression. Every time the operation \(\text{FindRoot}(x) \) is applied, the parent pointer of the nodes on the find-path (the path from \(x \)
procedure Lower (im[1:HEIGHT, 1:WIDTH] : int)
 returns lc[1:HEIGHT, 1:WIDTH] : int
Init queue with pixels that have a lower neighbor
queue := EmptyQueue;
forall (i, j) ∈ D do
 lc[i, j] := 0;
 if (∃(ii, jj) ∈ NE(i, j) : im[ii, jj] < im[i, j]) then
 FifoAdd((i, j), queue); lc[i, j] := −1
 endif
endforall

dist := 1; FifoAdd((-1, -1), queue);
while queue ≠ EmptyQueue do
 (i, j) := FifoRemove(queue);
 if (i, j) = (-1, -1) then
 dist := dist + 1;
 FifoAdd((-1, -1), queue)
 endif
 else
 lc[i, j] := dist;
 forall (ii, jj) ∈ NE(i, j) such that
 im[ii, jj] = im[i, j] ∧ lc[ii, jj] = 0 do
 FifoAdd((ii, jj), queue);
 endforall
 lc[ii, jj] := −1 # To prevent from queueing twice
 endif
endwhile
forall (i, j) ∈ D such that lc[i, j] ≠ 0 do
 lc[i, j] := dist * im[i, j] + lc[i, j] − 1
endforall
end

Fig. 2: Transformation into a lower complete image.

to the root of the tree) is changed to point directly to the root of the tree. Thus, after
the operation FindRoot(x), a second operation FindRoot(y), with y on the find-path
of x, takes constant time.

The second technique, union by rank, is used in the operation Union(x, y). The
idea is to make the root of the tree with fewer nodes point to the root of the tree
with more nodes. However, this technique is not used in this paper.

Tarjan [5] shows that for an intermixed sequence of \(m \) operations the time
complexity of this algorithm is for all practical purposes linear in \(m \).
procedure MakeSet (x : int)
 parent[x] := x; rank[x] := 0
end;

procedure Link (x, y : int)
 parent[x] := y
end;

procedure FindRoot (x : int) returns root : int
 if x ≠ parent[x] then parent[x] := FindRoot(x) endif
 root := parent[x]
end;

procedure Union (x, y : int)
 var px, py : int
 px := FindRoot(x); py := FindRoot(y)
 if rank[px] > rank[py] then Link(py, px)
 elsif rank[px] < rank[py] then Link(px, py)
 else Link(px, py);
 rank[py] := rank[py] + 1
 endif
def
end;

Fig. 3: Tarjan’s algorithm for disjoint sets.

Fig. 4: (a) MakeSet(0); . . . ; MakeSet(5) (b) Union(0,1); Union(1,2); Union(3,4) (c) Union(1,3) (d) Union(2,5).

3 A MODIFICATION OF TARJAN’S ALGORITHM FOR COMPUTING WATERSHEDS

In this section we will show how Tarjan’s algorithm can be used to compute the watershed of a lower complete image \(f \), of which the regional minima are uniquely labeled. The label assigned to a minimum is the canonical element for that minimum.
procedure Resolve \((p : \text{pixel})\) returns \(ce : \text{pixel}\)

Returns canonical element of pixel \(p\), or
WSHED=(-1,-1) in case \(p\) lies on a watershed

\(i := 1; ce := (0,0); \) # some value such that \(ce \neq \text{WSHED}\)

while \((i \leq 4) \land (ce \neq \text{WSHED})\) do

if \((\text{sl}[p][i] \neq p) \land (\text{sl}[p][i] \neq \text{WSHED})\) then

\(\text{sl}[p][i] := \text{Resolve}(\text{sl}[p][i])\)

endif

if \(i = 1\) then \(ce := \text{sl}[p][1]\)
elseif \(\text{sl}[p][i] \neq ce\) then

\(ce := \text{WSHED};\)

for \(i := 1\) to \(4\) do \(\text{sl}[p][i] := \text{WSHED}\) endfor
endif

\(i := i + 1\)

endwhile

end;

procedure Basins()

forall \((i, j) \in D\) do Resolve \(((i, j))\) endforall

end;

Fig. 5: Resolving the downstream paths of the DAG.

Fig. 6: Left: image and its corresponding DAG; right: DAG after resolving (watershed-pixels are surrounded by a box).

In the remainder of this paper we use 4-connectivity (although the algorithms can also be applied in the case of 8-connectivity).

The algorithm proposed is based on the following theorem (see [4]). Let \(m \subseteq D\) be a regional minimum, and \(q \in m\). If a pixel \(p \in D\) belongs to the catchment basin of \(m\), then the difference in altitude of \(p\) and \(q\) equals the topographical distance between \(p\) and \(q\), i.e.

\[
(\forall p \in D : p \in CB(m) \Rightarrow T_f(p, q) = f(p) - f(q)),
\]
and the path realizing the distance $T_f(p, q)$ is a path of steepest descent, i.e., each step along the path is to a neighbor $p' \in N_E(p)$ with the lowest altitude. In some cases there will be several such neighbors. In these cases there is no preference for any of the neighbors, and all paths via these neighbors are followed. In the case that at least two of these paths end in different regional minima, say m_0 and m_1, we have $T_f(p, m_0) = T_f(p, m_1)$, and hence p belongs to the set of watershed pixels.

The disjoint set forest used by Tarjan is replaced by a directed graph, whose only cycles are self-loops. With some abuse of terminology we refer to this as a directed acyclic graph (DAG). This is similar to the arrowing method of [1, 4]. Let $G_{CB} = (D, E)$ be this DAG. For a pixel $p \in D$ which is not in a regional minimum, and for each of its lowest neighbors $q \in N_E(p)$, we have $(p, q) \in E$. For a regional minimum m a single pixel $r \in m$ is chosen as the canonical element of this minimum, and we have $\forall(p \in m : (p, r) \in E)$ (since $(r, r) \in E$ there are self-loops). The reason we use a DAG instead of a disjoint set forest, is the fact that a pixel can have more than one steepest lower neighbor, and the fact that we cannot determine on the fly whether a pixel belongs to a catchment basin or it belongs to the set of watershed pixels, and thus it is simply added to the DAG. The algorithm is given in Fig. 5. The DAG is stored in an array sln, where $sln[p, i]$ is a pointer to the ith steepest lower neighbor of pixel p. The DAG G_{CB} can be constructed in a single pass scan-line algorithm, in which for each pixel only its neighbors are referenced, which results in optimal use of the cache memory of the processor. After the DAG is constructed, all the directed paths in the DAG can be resolved by following the outgoing pointers of each node until a canonical element is reached. In the case that two or more different canonical elements can be reached from a node v in the DAG, the node v is a watershed node. The resolving algorithm closely resembles Tarjan’s $FindRoot$ operation. For reasons of elegance, the algorithm is presented as a recursive algorithm, however, in practice the recursion should be eliminated to reach optimal performance.

4 RESULTS AND CONCLUSIONS

We applied the algorithm (both stages) to a number of test images. The results shown in the table below are for hundred runs, and are performed on square images of sizes 256×256, 512×512, and 1024×1024 respectively. The computer used is a 300MHz Pentium PC, with 64 Mb RAM memory, and 512 Kb cache memory.
The image ‘blobs’ is a binary image with very large minima plateaus (more than half of the pixels are in a minimum), resulting in short root-paths in the DAG. This explains the significant shorter running time for this image compared to the other ones. By doubling the image dimensions, the number of pixels increases by a factor of 4. Since all phases of the algorithm are performed in (nearly) linear time with respect to the image size, we expect to find this reflected in the timings. On average we find that the running time increases by a factor of 4.2, which is quite close to linear behavior. The images ‘blobs’, ‘chess’, and ‘waves’ are artificially generated images, with relatively few minima, while the other images are camera-made, containing a lot of noise and minima. We see that the number of minima has little effect on the total running time. The timings we find are comparative with the ones found in the literature for other algorithms ([2, 6]). The main interest of our algorithm is the second stage, since it can be parallelized on shared memory computers with very little synchronization overhead, while most other algorithms are difficult to parallelize as a result of global dependencies. Another approach to

<table>
<thead>
<tr>
<th>image</th>
<th>minima</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>blobs</td>
<td>4</td>
<td>17.2</td>
<td>74.8</td>
<td>313</td>
</tr>
<tr>
<td>chess</td>
<td>67</td>
<td>43.2</td>
<td>178</td>
<td>716</td>
</tr>
<tr>
<td>waves</td>
<td>20</td>
<td>36.3</td>
<td>165</td>
<td>720</td>
</tr>
<tr>
<td>peppers</td>
<td>44426</td>
<td>37.0</td>
<td>170</td>
<td>712</td>
</tr>
<tr>
<td>particles</td>
<td>359</td>
<td>41.6</td>
<td>182</td>
<td>756</td>
</tr>
<tr>
<td>aircraft</td>
<td>19053</td>
<td>38.7</td>
<td>174</td>
<td>724</td>
</tr>
</tbody>
</table>

Fig. 7: Test images (from top left to bottom right): (a) blobs (b) chess (c) waves (d) peppers (e) particles (f) aircraft.
deal with these global dependencies is by modifying the definition of the watershed through a locality assumption, as is done in [2].

References

