METHANOGENIC CONVERSION OF 3-S-METHYLMERCAPTOPROPIONATE TO 3-MERCAPTOPROPIONATE

van der Maarel, Marc; Jansen, Michael; Hansen, Theo A.

Published in:
Applied Environmental Microbiology

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 12-11-2018
Methanogenic Conversion of 3-S-Methylmercaptopropionate to 3-Mercaptopyrionate

MARC J. E. C. VAN DER MAAREL, MICHAEL JANSEN, AND THEO A. HANSEN*

Department of Microbiology, University of Groningen, 9751 NN Haren, The Netherlands

Received 1 August 1994/Accepted 24 October 1994

Anaerobic metabolism of dimethylsulfoniopropionate, an osmolyte of marine algae, in anoxic intertidal sediments involves either cleavage to dimethylsulfide or demethylation to 3-S-methylmercaptopropionate (MMPA) and subsequently to 3-mercaptopyrionate. The methanogenic archaea Methanosarcina sp. strain MTP4 (DSM 6636), Methanosaeta aceticovorans DSM 2834, and Methanosarcina (Methanobultus) siccilae DSM 3028 were found to use MMPA as a growth substrate and to convert it stoichiometrically to 3-mercaptopyrionate. Approximately 0.75 mol of methane was formed per mol of MMPA degraded; methanethiol was not detected as an intermediate. Eight other methanogenic strains did not carry out this conversion. We also studied the conversion of MMPA in anoxic marine sediment slurries. Addition of MMPA (500 μM) resulted in the production of methanethiol which was subsequently converted to methane (417 μM). In the presence of the antibiotics ampicillin, vancomycin, and kanamycin (20 μg/ml each), 275 μM methane was formed from 380 μM MMPA; no methanethiol was formed during these incubations. Only methanethiol was formed from MMPA when 2-bromoethanesulfonate (25 mM) was added to a sediment suspension. These results indicate that in natural environments MMPA could be directly or indirectly a substrate for methanogenic archaea.

Dimethylsulfoniopropionate (DMSP), an osmolyte found in many marine algae and certain plants (8, 11, 24), is the major source of dimethylsulfide (DMS) in the marine environment. In the atmosphere, DMS contributes through its oxidation products methanesulfonic acid and sulfuric acid to cloud formation and acid precipitation (2). DMSP and DMS are biologically converted inoxic as well as anoxic environments (12, 13, 15, 17, 18, 27). The production of DMSP by benthic algae and the settling of dead algae cause the presence of DMSP in marine sediments. Relatively high concentrations of DMSP (from approximately 1 up to 70 to 110 μmol liter of sediment−1) have been measured in the surface sediment of a salt marsh and other types of intertidal sediments (12, 30). In estuarine carbonate sediments, DMSP is degraded by cleavage to DMS and acrylate or by a demethylation to 3-S-methylmercaptopropionate (MMPA) and subsequently to 3-mercaptopyrionate (MMPA) and subsequently to 3-mercaptopyrionate (MPA [16, 17]). MMPA is also degraded to methanethiol (MT) and presumably acrylate (17); acrylic acid and hydrogen sulfide can slowly react to form MPA in a chemical process (28). Kiene and Taylor (17) suggested that a Euabacterium limosum-like organism might be responsible for the sequential demethylation of DMSP to MPA. Thus far, no anaerobic microorganisms that are able to demethylate DMSP all the way to MPA have been isolated. Anoxic most-probable-number incubations (in the presence of 5 mM NO3−) of mud from the upper 5 mm of a cyanobacterial mat indicated the presence of considerable populations of MPA-producing microorganisms (30), but the characteristics of the organisms are unknown. Recently, it was shown that the marine sulfate-reducing bacterium Desulfobacterium strain PM4 demethylates DMSP to MMPA (29). This organism is not able to demethylate MPA to MPA. In this communication, we present data that show that some methanogenic archaeae are able to demethylate MMPA to MPA.

MATERIALS AND METHODS

Sediment sampling, preparation, and incubation. Anoxic intertidal sediment was collected from the Wadden Sea near Westernieland, The Netherlands. The sediment consisted of a black sulfide-rich layer covered by a 0- to 2-cm-thick oxic sandy layer. Sediment cores were taken with perspex cores (10-cm length, 2.5-cm diameter). After sampling, the cores were sealed with butyl rubber stoppers. The samples were transported in an N2-flushed anaerobic jar at ambient temperature, and suspensions were made in an anaerobic glove box (equipped with catalyst R0-20 from BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany) within a few hours. Fresh sediments contained 40 to 60 μM DMS measured as DMS by headspace analysis after alkalization of the sample with NaOH (final concentration, 5 M).

The sediment was suspended in degassed seawater (approximately 4 mg/ml of sediment [wet weight]). The suspension was thoroughly mixed with a blender for 1 min, and 40-ml aliquots were poured into 70-ml bottles while the sediment was kept in suspension. The bottles were sealed with a screw cap containing a butyl rubber stopper through the central hole; a Viton disc, which is impermeable to volatile sulfur compounds, was placed beneath the rubber stopper (7). The headspace was flushed with oxygen-free N2 for 2 min. If required, the inhibitor 2-bromoethanesulfonic acid (final concentration, 25 mM) or the antibiotics ampicillin, vancomycin, and kanamycin (20 μg/ml final concentration each) were added from aqueous stocks, and the suspension was incubated at 25°C overnight to remove remaining oxygen; then the incubations were started by addition of the substrate.

Microorganisms and growth conditions. An enrichment culture of MMPA-degrading microorganisms was obtained by inoculation of anoxic sediment (2.5-ml suspension) in bicarbonate-buffered (50 mM) mineral medium (9) with sulfate (20 mM), yeast extract (50 mg liter−1), and MPA (10 to 20 mM). Sulfate was omitted after several transfers into fresh medium. Incubations were done in 120-ml bottles filled with 50 ml of medium at 28°C. Methanosaeta sp. strain MTP4 (DSM 6636) was grown in 120-ml bottles filled with 50 ml of medium as described elsewhere (6) under an atmosphere of N2:CO2 (80:20) at 30°C; inoculation (5%) was from late-log-phase cultures. Strain MTP4 was isolated with MT as a substrate by Finster et al. (6) from sediment of a salt marsh near Bordeaux, France. Growth was monitored by measurement of the optical density at 430 nm. The following strains were also used: Methanosaeta aceticovorans MS (DSM 2834) precultured on methanol (10 mM); Methanosaeta mazeii C16 (DSM 3318; also known as “Methanosaeta frisea”) C16 precultured on methanol (25 mM); Methanosarcina siccilae T4/M (DSM 3028; this strain was formerly designated Methanobultus siccilae; cf. reference 20) precultured on methanol (25 mM); Methanobacterium sp. strain C8 (DSM 3821) precultured on H2-CO2 (80:20); Methanococcoides methylutens TMA-10 (DSM 2657) precultured on trimethylamine (25 mM); Methanohalo- philusohlendorfiiWeNs (DSM 4017) precultured on trimethylamine (10 mM); Methanospirillum hungateii JF1 (DSM 864) precultured on H2-CO2 (80:20) and acetate (2.5 mM); Methanosaeta barkeri Fusaro precultured on acetate (5 mM); and Methanosarcina barkeri MS precultured on methanol (10 mM). M. barkeri strains Fusaro and MS were kindly provided by J. T. Keltjens, University of
Nijmegen, The Netherlands. All of these strains were cultivated in the media as described in the Deutsche Sammlung von Mikroorganismen und Zellkulturen catalog of strains (3). Methanococcales sp. strain PM2 (culture collection of the Department of Microbiology, University of Groningen), precultured on methanol (10 mM), was cultivated in the medium of Heijthuijsen and Hansen (9). The strains were grown at 37°C except for the Methanococcales strains (30°C), Methanohalophilus zhilinaeae (45°C) and Methanobacteirum sp. strain C8 (30°C).

Analyses. Headspace analyses of methane and MT were performed by a slightly modified method of Visscher and van Gemerden (31), in which a Supelco KF instead of a Porapak column was used. The concentration of MT in the liquid phase was calculated by use of a distribution coefficient of 7.9 (13). In pure culture studies, methane was measured by gas chromatography on a Porapak Q column with thermal conductivity detection (9).

MMPA and MPA were measured after esterification of 0.5 ml of sample (after centrifugation to remove cells or sediment) with methanol in sulfuric acid (50%) by the gas chromatographic method of Laanbroek et al. (19) for analysis of lactate. Succinate was used as an internal standard. MMPA and MPA were also analyzed by a high-performance liquid chromatography (HPLC) method as described previously (29).

Chemicals. MMPA was made by alkaline hydrolysis of its methyl ester (Aldrich, Steinheim, Federal Republic of Germany) as described by Wackett et al. (32). The identity and purity of the product were checked by 1H nuclear magnetic resonance; the MMPA content was estimated by organic carbon analysis. MPA was obtained from Aldrich.

RESULTS

Enrichment culture. After inoculation of mineral medium containing MMPA (20 mM) and yeast extract (50 mg liter⁻¹) with anoxic marine sediment, MMPA was converted to methane, with MT as an intermediate. After several transfers into fresh medium, MMPA was still converted to methane; this also took place when sulfate was omitted from the medium. The enrichment culture that was obtained in this way produced 14 mmol of methane per ml of medium were formed. The conversion corresponded to the following reaction: 4MMPA + 2H₂O → 4MPA + CO₂ + 3CH₄. The identity of the organic compound formed after growth of strain MTP4 on MMPA was established to be MPA by ³H nuclear magnetic resonance and cochromatography (HPLC and gas chromatography) with authentic MPA as a reference (data not shown).

Ten other methanogenic strains were tested for the ability to grow on MMPA. Only M. acetivorans DSM 2834 (see Fig. 1B) and M. siciliae DSM 3028 (data not shown) were found to be able to grow on MMPA; the latter strain grew more slowly than strain MTP4 and M. acetivorans. M. mazei DSM 3318, Methanobacterium sp. strain C8 DSM 3821, Methanococcales methylutens DSM 2657, Methanohalophilus zhilinaeae DSM 4017, Methanospirillum hungatei DSM 864, M. barkeri Fusaro, M. barkeri MS, and Methanococcales sp. strain PM2 did not grow with MMPA as a single substrate and did not convert MMPA during growth on their regular substrate (see Materials and Methods). The MMPA-utilizing methanogenic strains were unable to convert DMSP.

FIG. 1. (A) Growth of Methanosarcina sp. strain MTP4 on MMPA (13.5 mM). (B) Growth of M. acetivorans DSM 2834 on MMPA (10 mM). Symbols: ë, optical density at 430 nm (OD 430); Ó, methane; Ù, MPA; ¥, MPA. Cultures were grown in 120-ml crimp-seal bottles with 50 ml of medium under an atmosphere of N₂-CO₂ (80:20 [vol/vol]). The methane line indicates the total amounts present in both the gas and the liquid.
Conversion of MMPA in sediment suspensions. MT was formed within 1 day after addition of MMPA (500 μM) to a sediment suspension (Fig. 2A). The maximum concentration of MT was approximately 200 μM; MT started to decrease after 2 days. No MT could be detected after 5 days. Methane formation started in the same period and reached its maximum after 5 days (417 μM). No MT was formed when 2-bromoethanesulfonic acid (25 mM) was added to the suspension.

DISCUSSION

This is the first report in which it is shown that a pure culture of a methanogenic archaeon can utilize MMPA as a substrate for growth. It adds to the limited number of compounds that are known as methanogenic substrates or electron donors for methanogenesis: H₂-CO₂, formate, CO, methanol, acetate, tri-, di-, and monomethylamine, dimethylsulfide, MT, 1-propanol, 2-propanol, ethanol, 1-butanol, 2-butanol, 1,3-butanediol, cyclopentanol, and pyruvate (1, 6, 21–23, 33). The most important methanogenic substrates usually are H₂-CO₂ and acetate, but in marine environments methylated compounds such as trimethylamine and DMS are thought to predominate (33).

Methanosarcina strain MTP4 utilizes MMPA as a typical C₁ substrate and demethylates it to MPA. *Methanosarcina* strain MTP4 was isolated from a salt marsh with MT as the enrichment substrate (6); it can also grow on DMS. DMS and MT can be formed from methoxylated aromatics (5), but in the marine environment DMS is most probably the major source of DMS. DMS is also a precursor of MMPA, as suggested by sediment slurry experiments (16, 17) and shown in pure culture studies with *Desulfobacterium* sp. strain PM4 (29). Thus, strain MTP4 originates from an environment in which both DMS and MMPA are present. Similarly, *M. acetivorans* DSM 2834 was isolated from marine sediment and is now known to metabolize both DMS (20) and MMPA (this study). *M. siciliae* DSM 3028 was shown to be closely related to *M. acetivorans* (20).

The biochemical mechanism of MMPA demethylation by methanogens is still obscure. Wackett et al. (32) showed that in crude cell extracts of H₂-CO₂-grown *Methanobacterium thermotolerans* ΔH, MMPA, which is a structural analog of methyl-S-coenzyme M, can serve as a substrate for the methyl-S-coenzyme M reductase, an enzyme involved in the last step of methanogenesis (4). It is therefore possible that strain MTP4 is able to take up MMPA and use the methyl-S-coenzyme M reductase to convert MMPA. However, of the 11 methanogenic strains tested, only *Methanosarcina* sp. strain MTP4, *M. acetivorans* DSM 2834, and *M. siciliae* DSM 3028 were able to convert MMPA. It is therefore not very likely that MMPA utilization by strain MTP4 and strain DSM 2834 is due to a general lack of specificity of the methyl-S-coenzyme M reductase. Alternatively, an MMPA-coenzyme M methyltransferase system might be used in the conversion of MMPA. Specific methyltransferases are known to be involved in the metabolism of methanol and methylamines, respectively (4).

The methanogenic conversion of MMPA to MPA has also been found to occur in slurries prepared from anoxic marine sediments, but only when antibiotics were added. Under normal conditions, MMPA was readily converted to MT and presumably acrylate. MT is further converted to methane by methanogenic archaea. These results suggest that in situ MMPA can serve as a substrate for methanogenic archaea but that the major pathway for conversion might be demethylation; it should be kept in mind, however, that at the low natural concentrations of MMPA the ratio between demethylation and demethiolation may be very different. Kiene and coworkers (14, 17) concluded that demethylation is a major transformation pathway for MMPA in intertidal sediments. They suggested that *Eubacterium limosum*-like bacteria might be responsible for the sequential demethylation of DMS. Thus far, acetogenic bacteria that can demethylate DMS have not been isolated. The combined activities of DMS-demethylating, sulfate-reducing bacteria (29) and MMPA-demethylating methanogenic archaea may also be responsible for the observed conversion of DMS to MPA.
Cleavage of DMSP results in the formation of DMS. Part of the DMS escapes to the atmosphere, where it is oxidized to sulfuric acid and methanesulfonic acid (2). These compounds may act as cloud condensation nuclei, and thus DMS may exert a negative effect on global warming. Anaerobic metabolism of DMS results in the formation of methane (6, 15), which can act as a greenhouse gas (10), although part of the DMS might be oxidized to CO$_2$ by sulfate-reducing bacteria (15). Demethylation of DMSP results in the production of a positive effector (methylene) of global warming, whereas the cleavage into DMS and acrylate leads to both a positive (methane) and a negative (DMS) effector.

ACKNOWLEDGMENTS

This study was made possible by grants from the Netherlands Ministry of Housing, Physical Planning, and the Environment (National Research Program project NOLK 026/90) and from Quest International b.v., Naarden, The Netherlands.

We thank Lubbert Dijkhuizen for stimulating discussions and Irma van der Veen for excellent technical assistance.

REFERENCES

