Oxidation of alkenes with H₂O₂ by an in situ prepared Mn(II)/pyridine-2-carboxylic acid catalyst and the role of ketones in activating H₂O₂.

Jia Jia Dong, Pattama Saisaha, Tim G. Meinds, Paul L. Alsters, Edwin G. IJpeij, Ruben P. van Summeren, Bin Mao, Martín Fañanás-Mastral, Johannes W. de Boer, Ronald Hage, Ben L. Feringa and Wesley R. Browne

a Stratingh Institute for Chemistry, Faculty of Mathematics and Natural Sciences, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
b DSM Innovative Synthesis, PO Box 18, 6160 MD Geleen, The Netherlands.
c Catexel Ltd., BioPartner Center Leiden, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.

Corresponding author e-mail; w.r.browne@rug.nl

Supporting Online Information
Contents
1. Optimization of conditions for catalytic oxidation of cyclooctene, \(\alpha \)-pinene and diethyl fumarate 3
2. Main products and side products for schemes 1, 2, 5-7 and 9 ... 5
3. Solvent scope for the oxidation of cyclooctene .. 9
4. Main products and side products for \(\alpha, \beta \)-unsaturated carbonyl compounds .. 10
5. Procedures for catalytic oxidation of alkenes described in schemes 1, 2, 4-7 and 9 and characterization of products... 11
6. Procedure for catalytic oxidation of \(\alpha \)-pinene followed by in situ isomerization and product characterization .. 68
7. Procedures for the catalytic oxidation of electron deficient alkenes and product characterization ... 70
8. Identification of acetic acid formation in reaction mixture by \(^{13} \)C NMR spectroscopy 75
9. Retention of chirality in allylic alkenes. ... 77

Caution. The drying or concentration of solutions that potentially contain \(\text{H}_2\text{O}_2 \) should be avoided. Prior to drying or concentrating, the presence of \(\text{H}_2\text{O}_2 \) should be tested for using peroxide test strips followed by neutralization on solid \(\text{NaHSO}_3 \) or another suitable reducing agent. When working with \(\text{H}_2\text{O}_2 \), suitable protective safeguards should be in place at all times.

Caution. Butanedione has been linked with lung disease upon exposure to vapors. It should be handled in a properly ventilated fumehood and exposure to vapors should be avoided.

All reagents are of commercial grade and used as received unless stated otherwise. Hydrogen peroxide was used as received as a 50 wt. \% solution in water; note that the grade of \(\text{H}_2\text{O}_2 \) employed can affect the outcome of the reaction where sequestrants are present as stabilizers. \(^1\)H NMR (400.0MHz) and \(^{13}\)C NMR (100.6 MHz) spectra were recorded on a Varian Avance400. Chemical shifts\(^1\) are relative to \(^1\)H NMR CDCl\(_3\) (7.26 ppm), DMSO-d\(_6\) (2.5 ppm), CD\(_3\)CN (1.94 ppm), \(^{13}\)C NMR CDCl\(_3\) (77 ppm).
1. Optimization of conditions for catalytic oxidation of cyclooctene, \(\alpha\)-pinene and diethyl fumarate

Table S1a. Optimization of conditions for the epoxidation of cyclooctene

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mn(ClO\textsubscript{4})\textsubscript{2} \cdot 6H\textsubscript{2}O (mol %)</th>
<th>Pyridine-2-carboxylic acid (mol %)</th>
<th>Butanedione (equiv.)</th>
<th>Conversion (^\text{a}) (%)</th>
<th>Yield(^{b,\text{c}}) (isolated yield) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
<td>95</td>
<td>53</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.5</td>
<td>1.5</td>
<td>95</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.5</td>
<td>0.5</td>
<td>95</td>
<td>80 (73)</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>93</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.5</td>
<td>3.0</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.5</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0.05</td>
<td>0.5</td>
<td>--</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^{a}\) Determined by \(^1\)H NMR and Raman spectroscopy. \(^{b}\) Yields determined by \(^1\)H NMR using 1,2-dichlorobenzene as internal standard. \(^{c}\) The side products were the corresponding cis-diol and \(\alpha\)-hydroxyl ketone products and rearrangements.

Table S1b. Optimization of conditions for the epoxidation of \(\alpha\)-pinene

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mn(ClO\textsubscript{4})\textsubscript{2} \cdot 6H\textsubscript{2}O (mol %)</th>
<th>Pyridine-2-carboxylic acid (mol %)</th>
<th>Butanedione (equiv.)</th>
<th>Conversion (^\text{a}) (%)</th>
<th>Yield(^{b,\text{c}}) (isolated yield) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.5</td>
<td>0.5</td>
<td>86</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.5</td>
<td>1.5</td>
<td>85</td>
<td>45 (43)</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.5</td>
<td>0.5</td>
<td>95</td>
<td>80 (73)</td>
</tr>
<tr>
<td>4</td>
<td>0.01</td>
<td>0.1</td>
<td>0.5</td>
<td>80</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>0.01</td>
<td>0.1</td>
<td>3.0</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>0.5</td>
<td>3.0</td>
<td>28</td>
<td>12</td>
</tr>
</tbody>
</table>

\(^{a}\) Determined by \(^1\)H NMR and Raman spectroscopy. \(^{b}\) Yields determined by \(^1\)H NMR using 1,2-dichlorobenzene as internal standard. \(^{c}\) The side products were the corresponding cis-diol and \(\alpha\)-hydroxyl ketone products and rearrangements.
Table S2. Optimization of conditions for the cis-dihydroxylation of diethyl fumarate

<table>
<thead>
<tr>
<th>Entry</th>
<th>Mn(ClO_4)_2·6H_2O (mol %)</th>
<th>butanedione (equiv.)</th>
<th>Conversion(^a) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01</td>
<td>0.5</td>
<td>74</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
<td>1.0</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>1.5</td>
<td>full</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
<td>0.5</td>
<td>61</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>1.0</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>1.5</td>
<td>89</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR and Raman spectroscopy. Only the cis-diol product was formed.
2. Main products and side products for schemes 1, 2, 5-7 and 9

Table S3. Scope for epoxidation of electron rich alkenes; products and side products

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate</th>
<th>Main product</th>
<th>Conversion</th>
<th>Yield (isolated yield)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scheme 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Full</td>
<td>90% epoxide 5% cis-diol 2% α-hydroxylketone</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>95%</td>
<td>80% (73%) epoxide (single enantiomer)</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>95%</td>
<td>79% (73%) epoxide Trace of benzaldehyde</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>80%</td>
<td>75% (68%)</td>
</tr>
<tr>
<td>Scheme 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>95%</td>
<td>80% (73%) epoxide 10% cis-diol 5% α-hydroxylketone</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Full</td>
<td>72% epoxide 12% cis-diol 5% α-hydroxylketone</td>
</tr>
</tbody>
</table>
| | ![Structure 7] | ![Structure 8] | 95% | 70% epoxide
15% cis-diol
5% α-hydroxylketone |
|---|---|---|---|---|
| 8 | ![Structure 9] | ![Structure 9] | Full | 55% epoxide
7% cis-diol |
| 9 | ![Structure 9] | ![Structure 9] | Full | 68% epoxide
13% diol |
| 10 | ![Structure 11] | ![Structure 11] | Full | 83% epoxide
12% diol |
| 11 | ![Structure 11] | ![Structure 11] | Full | 78% epoxide |
| 12 | ![Structure 12] | ![Structure 12] | 60% | 44% (41%) epoxide |
| 12b | ![Structure 12b] | ![Structure 12b] | 90% | 60% epoxide
20% ketone,
10% diol
\textit{N.B. substrate concentration 0.25 M} |
| 13 | ![Structure 13] | ![Structure 13] | 95% | 80% (72%) epoxide
10% diol |
| 14 | ![Structure 14] | ![Structure 15] | 62% | 60% epoxide |
| 15 | ![Structure 15] | ![Structure 15] | Full | 72% epoxide
18% anti-diol |
| 16 | ![Structure 16] | ![Structure 16] | 50% | 46% epoxide
2% diol |
| 16b | ![Structure 16b] | ![Structure 16b] | 85% | 68% epoxide
17% α-hydroxyketone
\textit{N.B. substrate concentration 0.25 M} |
| 17 | ![Structure 17] | ![Structure 17] | 73% | 61% epoxide
10% diol |
| 18 | ![Structure 18] | ![Structure 18] | 92% | 62% epoxide |
| 19 | ![Chemical Structure](image1) ![Chemical Structure](image2) | 80% | 72% epoxide (single enantiomer) 8% diol |
| 20 | ![Chemical Structure](image3) ![Chemical Structure](image4) | 80% | 50% (45%) epoxide (single enantiomer) |

Scheme 5

| 21 | ![Chemical Structure](image5) ![Chemical Structure](image6) | 85% | 65% 5% aldehyde 15% diol |
| 22 | ![Chemical Structure](image7) ![Chemical Structure](image8) | 77% | 66% (62%) 10% isophthalaldehyde |

Scheme 6

| 23 | ![Chemical Structure](image9) ![Chemical Structure](image10) | 75 % | 71% |
| 24 | ![Chemical Structure](image11) ![Chemical Structure](image12) | Full | 92% epoxide (88% isolated yield) |

Scheme 7

| 25 | ![Chemical Structure](image13) ![Chemical Structure](image14) | 75 % | 68 % (65 % isolated yield) (only one diastereoisomer formed) |

Scheme 9

<p>| 26 | | Full | 75% (50% 2, 25% E) epoxide 17% syn-diol 8% α-hydroxylketone |</p>
<table>
<thead>
<tr>
<th></th>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Yield (%)</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>85%</td>
<td>54% (45% E, 9% Z) epoxide, 27% anti-diol, 4% α-hydroxylketone</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td>40%</td>
<td>30% epoxide (20% anti and 10% syn), 8% diol</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td>Full</td>
<td>80% epoxide (only anti), 20% diol</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td>40%</td>
<td>12% syn-epoxide, 28% anti-epoxide, 13% cis-diol</td>
</tr>
</tbody>
</table>

Other examples

<table>
<thead>
<tr>
<th></th>
<th>Structure 1</th>
<th>Structure 2</th>
<th>Yield (%)</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>80%</td>
<td>35% epoxide, Mixture of and diol</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>10%</td>
<td>6% epoxide</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

See section 5 for details. Conversion and yield were determined by Raman and ¹H NMR spectroscopy. Isolated yields are shown in parentheses for selected examples.
3. Solvent scope for the oxidation of cyclooctene

Table S4. Solvent scope for the epoxidation of cyclooctene

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>Butanediol (0.5 equiv.)</th>
<th>Conversion(^a) (%)</th>
<th>Yield(^b,c) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Acetone</td>
<td>yes</td>
<td>90</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>Butanone</td>
<td>yes</td>
<td>85</td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>tert-BuOH</td>
<td>yes</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>4</td>
<td>CH(_3)CN</td>
<td>yes</td>
<td>95</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>Methanol</td>
<td>yes</td>
<td>90</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>Ethanol</td>
<td>yes</td>
<td>70</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>Diethyl carbonate</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>THF</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>H(_2)O</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>EtOAc</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>MTBE</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>CH(_3)CN</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>DCM</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>DCE</td>
<td>yes</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Acetone</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Butanone</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>tert-BuOH</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>CH(_3)CN</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Methanol</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Ethanol</td>
<td>no</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(^a\) Determined by \(^1\)H NMR and Raman spectroscopy. \(^b\) Yields determined by \(^1\)H NMR using 1,2-dichlorobenzene as internal standard. \(^c\) the side products were the cis-diol and α-hydroxyl ketone products.
4. Main products and side products for α,β-unsaturated carbonyl compounds

Table S5. Catalytic oxidation of α,β-unsaturated carbonyl alkenes

<table>
<thead>
<tr>
<th>Mn(ClO$_4$)$_2$·6H$_2$O 0.01 mol %</th>
<th>PCA 0.5 mol %</th>
<th>H$_2$O$_2$ 1.5 equiv.</th>
<th>NaOAc 1.0 mol %</th>
<th>butanedione 0.5 equiv.</th>
<th>CH$_3$CN (0.5 M)</th>
<th>0 °C to r.t. 2 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry</td>
<td>Substrate</td>
<td>Product</td>
<td>Conversion</td>
<td>Yield (isolated yield)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>35%</td>
<td>20% 15% diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>50%</td>
<td>18%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>45%</td>
<td>8% 35% diol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>95%</td>
<td>31% 60% diol</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Procedures for catalytic oxidation of alkenes described in schemes 1, 2, 4-7 and 9 and characterization of products

General procedure: To a solution of Mn(ClO₄)₂·6H₂O (0.01 mol %, 0.0361 mg) and pyridine-2-carboxylic acid (0.5 mol %, 0.123 mg) in acetonitrile was added the alkene (1 mmol) to give a final concentration of the substrate of 0.5 M, NaOAc (aq. 0.6 M, 1 mol %, 16.7 µl) and 2,3-butanedione (0.5 equiv. 43.5 µl) to give a final volume of 2 ml. The solution was stirring in an ice/water bath before addition of H₂O₂ (50 wt. %, 1.5 equiv., 85 µl). The solution was stirred for 1 h.

After 1 h, brine (10 ml) was added and the reaction was extracted with dichloromethane. The combined organic layers were washed with brine. The product was dried over Na₂SO₄ (anhyd.), filtered, and the dichloromethane was removed in vacuo. 1,2-Dichlorobenzene was employed as internal standard for Raman and ¹H NMR spectroscopy. The products were isolated by flash column chromatography on silica gel 230-400 or neutral aluminum oxide 70-230.

Note: For some reactions CD₃CN was used as solvent with analysis after the reaction carried out by ¹H NMR spectroscopy directly.

Cyclooctene oxide Isolated by flash column chromatography on neutral aluminum oxide 70-230 (pentane/ether = 9:1, Rf = 0.6). The title compound was obtained as colorless solid (91.5 mg, 0.73 mmol, 73 %)

At 1.1 gram (10 mmol) scale, the oxidation of cyclooctene using the same procedure provided cyclooctene oxide as a colorless solid (881 mg, 7.0 mmol, 70 %)

At 5.5 gram (50 mmol) scale, the oxidation of cyclooctene using the same procedure provided full conversion with cyclooctene oxide obtained as a colorless solid (4.23 g, 33.5 mmol, 67 %). (side products: 15% diol, 7% alpha-hydroxyl ketone) ¹H NMR (400 MHz, CDCl₃) δ 2.87-2.81 (m, 2H), 2.12-2.06 (m, 2H), 1.60-1.30 (m, 8H), 1.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 55.5, 26.5, 26.3, 25.5.
1H and 13C NMR spectra in CDCl$_3$ of the product cyclooctene oxide
Scheme 1

Entry 1 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol%
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CD₃CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of 1-methyl-cyclohexene
Entry 2 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \quad 0.01 \text{ mol} \% \\
\text{PCA} \quad 0.5 \text{ mol} \% \\
\text{butanedione} \quad 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.} \\
\text{NaOAc(aq.)} \quad 1 \text{ mol} \% \\
\text{CH}_3\text{CN} \quad (0.5 \text{ M}) \\
0 \text{°C to r.t.} \quad 1 \text{ h}
\]

α-pinene oxide The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 99:1, Rf = 0.6). The title compound was obtained as colorless oil (111 mg, 0.73 mmol, 73%).

On a 680 mg (5 mmol) scale α-pinene was converted to α-pinene oxide to yield a colorless oil (540 mg, 3.55 mmol, 71%).

\(^1\text{H} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 3.04 \text{ (dd, } J=4.1, 1.1, 1\text{H}), 2.02-1.86 \text{ (m, } 4\text{H}), 1.73-1.68 \text{ (m, } 1\text{H}), 1.60 \text{ (d, } J=9.4, 1\text{H}), 1.33 \text{ (s, } 3\text{H}), 1.28 \text{ (s, } 3\text{H}), 0.93 \text{ (s, } 3\text{H)}; \ ^{13}\text{C NMR} (101 \text{ MHz, CDCl}_3) \delta 60.3, 56.8, 45.0, 40.5, 39.7, 27.6, 26.6, 25.8, 22.3, 20.1; \text{ HRMS (ESI+) calc. for } \text{C}_{10}\text{H}_{17}\text{O (M+H)}^+ \text{ 153.1265, found 153.1274;}

1H and 13C NMR spectra in CDCl$_3$ of the isolated product α-pinene oxide
Entry 3 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O 0.01 mol \%}
\]
\[
\text{PCA 0.5 mol \%}
\]
\[
\text{butanedione 0.5 equiv.}
\]
\[
\text{H}_2\text{O}_2 1.5 \text{equiv.}
\]
\[
\text{NaOAc(aq.) 1 mol \%}
\]
\[
\text{CH}_3\text{CN (0.5 M)}
\]
\[
0 \degree\text{C to r.t. 1 h}
\]

Styrene oxide. The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 85:15, Rf = 0.5). The title compound was obtained as colorless oil (87.5mg, 0.73mmol, 73%).

\(^1\text{H NMR (400 MHz, CDCl}_3\) \(\delta 7.41-7.28 \text{ (m, 5H), 3.87 (t, } J = 2.7, 1\text{H), 3.15 (dd, } J = 5.5, 4.1, 1\text{H), 2.81 (dd, } J = 5.5, 2.5, 1\text{H); } \text{13C NMR (101 MHz, CDCl}_3\) \(\delta 137.61, 128.99, 128.50, 127.97, 125.49, 52.35, 51.1.}

![NMR spectrum](image-url)
1H and 13C NMR spectra in CDCl$_3$ of the isolated product styrene oxide
Entry 4 from Table S3

\[
\begin{align*}
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} & \text{ 0.01 mol %} \\
\text{PCA} & \text{ 0.5 mol %} \\
\text{butanedione} & \text{ 0.5 equiv.} \\
\text{H}_2\text{O}_2 & \text{ 1.5 equiv.} \\
\text{NaOAc(aq.)} & \text{ 1 mol %} \\
\text{CH}_3\text{CN} & \text{ (0.5 M)} \\
0 \degree\text{C to r.t.} & \text{ 1 h}
\end{align*}
\]

Citronellol epoxide The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 30:70, Rf = 0.5). The title compound was obtained as colorless oil (117 mg, 0.68 mmol, 68%).

\(^1\text{H}\) NMR (400 MHz, CDCl\textsubscript{3}) \(\delta\) 3.65 (m, 2H), 2.68 (t, \(J=6.3\), 3H), 1.74-1.36 (m, 7H), 1.28 (s, 3H), 1.24 (s, 3H), 0.89 (d, \(J=6.5\), 3H), \(^{13}\text{C}\) NMR (101 MHz, CDCl\textsubscript{3}) \(\delta\) 64.6, 64.6, 60.8, 58.4, 58.3, 39.7, 39.5, 33.7, 33.6, 29.3, 29.1, 26.4, 26.1, 24.8, 19.6, 19.4, 18.6, 18.6; HRMS (ESI+) calc. for C\textsubscript{10}H\textsubscript{21}O\textsubscript{2} (M+H+)+ 173.1536, found 173.1527.
1H and 13C NMR spectra in CDCl$_3$ of the isolated product citronellol epoxide
Scheme 2

Entry 6 from Table S3

\[
\begin{align*}
\text{Mn(ClO}_2\text{)}_2 \cdot \text{H}_2\text{O} & \text{ 0.01 mol %} \\
\text{PCA} & \text{ 0.5 mol %} \\
\text{butanedione} & \text{ 0.5 equiv.} \\
\text{H}_2\text{O}_2 & \text{ 1.5 equiv.} \\
\text{NaOAc(aq.)} & \text{ 1 mol %} \\
\text{CH}_3\text{CN (0.5 M)} & \\
0 \degree\text{C to r.t. 1 h}
\end{align*}
\]

\[\text{1H NMR spectrum in CDCl}_3 \text{ of the crude product obtained by oxidation of cycloheptene}\]
Entry 7 from Table S3

Mn(ClO$_4$)$_2$·6H$_2$O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H$_2$O$_2$ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CD$_3$CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of cyclohexene
Entry 8 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CD₃CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of cyclopentene
Entry 9 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} 0.01 \text{ mol}\% \\
\text{PCA} 0.5 \text{ mol}\% \\
\text{butanedione} 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 1.5 \text{ equiv.} \\
\text{NaOAc(aq.)} 1 \text{ mol}\% \\
\text{CH}_3\text{CN} (0.5 \text{ M}) \\
0^\circ\text{C to r.t. 1 h}
\]

\[\begin{align*}
\text{O} \\
&\xrightarrow{\text{Butanedione}} \\
&\xrightarrow{\text{H}_2\text{O}_2} \\
&\xrightarrow{\text{NaOAc(aq.)}} \\
&\xrightarrow{\text{CH}_3\text{CN}} \\
&\xrightarrow{0^\circ\text{C to r.t. 1 h}}
\end{align*}\]

\[\text{H}_2\text{O} 2.15 \text{ equiv.}\]

\[\text{NaOAc} (\text{aq.}) 1 \text{ mol}\%\]

\[\text{CH}_3\text{CN} (0.5 \text{ M})\]

\[\text{0}^\circ\text{C to r.t. 1 h}\]

\[\text{H}^1 \text{NMR spectrum in CD}_3\text{CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of 1-methyl cyclopentene}\]
Entry 10 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \quad 0.01 \text{ mol } \%
\]
\[
\text{PCA} \quad 0.5 \text{ mol } \%
\]
\[
\text{butanedione} \quad 0.5 \text{ equiv.}
\]
\[
\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.}
\]
\[
\text{NaOAc}(\text{aq.}) \quad 1 \text{ mol } \%
\]
\[
\text{CH}_3\text{CN} \quad (0.5 \text{ M})
\]
\[
0 \degree \text{C} \text{ to r.t.} \quad 1 \text{ h}
\]

\(^1\text{H NMR spectrum in CD}_3\text{CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of 2-methyl 2-pentene}\)
Entry 11 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc (aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CD₃CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of 2,3-dimethyl-2-butene
Entry 12 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc (aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

1,2-Epoxyoctane The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 98:2, Rf = 0.5). The title compound was obtained as colorless oil (52.5mg, 0.41 mmol, 41%).

¹H NMR (400 MHz, CDCl₃) δ 2.89 (m, 1H), 2.74 (q, 1H), 2.45 (q, 1H), 1.53-1.27 (m, 10H), 0.88(t, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 52.3, 47.1, 32.4, 31.7, 29.0, 25.9, 22.5, 14.
1H and 13C NMR spectra in CDCl$_3$ of the isolated product 1,2-epoxyoctane
Entry 13 from Table S3

\[\text{Mn(ClO}_4\text{)}_2\cdot 6\text{H}_2\text{O} \quad \text{0.01 mol %} \]

\[\text{PCA 0.5 mol %} \]

\[\text{butanedione 0.5 equiv.} \]

\[\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.} \]

\[\text{NaOAc(aq.) 1 mol %} \]

\[\text{CH}_3\text{CN (0.5 M)} \]

\[\text{0 °C to r.t. 1 h} \]

2-Methyl-2-(2-methylpentyl)oxirane The procedure used was the same as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over silica gel (pentane/ether = 97:3, Rf = 0.5). The title compound was obtained as a colorless oil (102 mg, 0.72 mmol, 72%).

\[^1\text{H NMR (400 MHz, CDCl}_3\text{) δ 2.52-2.45 (m, 2H), 1.73-1.40 (m, 2H), 1.26-1.18 (m, 7H), 1.09-0.97 (m, 1H), 0.88-0.79 (m, 6H);} ^{13}\text{C NMR (101 MHz, CDCl}_3\text{) δ 56.0, 55.9, 54.3, 53.7, 44.2, 44.1, 39.7, 39.1, 30.0, 29.8, 20.7, 20.6, 20.0, 19.8, 19.5, 14.1; HRMS (ESI+) calc. for C}_9\text{H}_{19}\text{O (M+H)}^+ \quad 143.14285, \quad \text{found} \quad 143.14304; \]
1H and 13C NMR spectra in CDCl$_3$ of the isolated product 2-methyl-2-(2-methylpentyl)oxirane
Entry 14 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.

NaOAc(aq.) 1 mol %
CH₃CN (0.5 M)
0°C to r.t. 1 h

¹H NMR spectrum in CDCl₃ of the crude product obtained upon oxidation of 1-phenyl cyclohexene
Entry 15 from Table S3

Mn(ClO4)2·6H2O 0.01 mol %
PCA 0.5 mol %
2, 3-butanedione 0.5 equiv.
H2O2 1.5 equiv.
NaOAc(aq.) 1 mol %
CH3CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CDCl3 of the crude product obtained upon oxidation of trans-stilbene
At 9 gram (50 mmol) scale, the oxidation of cyclooctene using the same procedure provided 85% conversion with stilbene oxide obtained as a colorless solid (6.24 g, 31 mmol, 63.5 %). (side products: 15% diol, 3% alpha-hydroxyl ketone).
1H NMR spectrum in CDCl$_3$ of the purified product obtained by multi-gram oxidation of trans-stilbene
13C NMR spectrum in CDCl$_3$ of the purified product obtained by multi-gram oxidation of trans-stilbene

1H NMR (400 MHz, CDCl$_3$) δ 7.49, 7.49, 7.49, 7.47, 7.47, 7.46, 7.45, 7.45, 7.44, 7.44, 7.43, 7.43, 7.42, 7.42, 7.41, 7.40, 7.40, 7.26, 3.96.

13C NMR (101 MHz, CDCl$_3$) δ 137.25, 128.66, 128.41, 125.63, 77.52, 77.20, 76.88, 62.91.
Entry 16 from Table S3

Mn(ClO$_4$)$_2$·6H$_2$O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H$_2$O$_2$ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CDCl$_3$ of the crude product obtained by oxidation of phenanthrene
Entry 17 from Table S3

Mn(ClO$_4$)$_2$·6H$_2$O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H$_2$O$_2$ 1.5 equiv.

NaOAc(aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CD$_3$CN of the crude product obtained upon oxidation of 4-vinylanisole
Entry 18 from Table S3

\[
\text{Mn(ClO}_3\text{)}_2 \cdot \text{H}_2\text{O }0.01 \text{ mol}\% \\
\text{PCA }0.5 \text{ mol}\% \\
\text{butanedione }0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 \text{ 1.5 equiv.} \\
\text{NaOAc (aq.) }1 \text{ mol}\% \\
\text{CH}_3\text{CN }0.5 \text{ M} \\
0 \text{ }^\circ\text{C} \text{ to r.t. } 1 \text{ h}
\]

\[\text{F}_3\text{C} \quad \text{O} \quad \text{F}_3\text{C}\]

\[^1\text{H NMR spectrum in CDCl}_3 \text{ of the crude product obtained upon oxidation of 4-}(\text{trifluoromethyl})\text{ styrene}\]
Entry 19 from Table S3

\[
\begin{align*}
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} & \quad 0.01 \text{ mol %} \\
\text{PCA} & \quad 0.5 \text{ mol %} \\
\text{butanedione} & \quad 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 & \quad 1.5 \text{ equiv.} \\
\text{NaOAc(aq.)} & \quad 1 \text{ mol %} \\
\text{CH}_3\text{CN} (0.5 \text{ M}) & \\
0 \text{ °C to r.t.} & \quad 1 \text{ h}
\end{align*}
\]

\[\text{1H NMR spectrum in CD}_3\text{CN with 1,2-dcb internal standard of the reaction mixture obtained by oxidation of 2-carene}\]
Entry 20 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot \text{H}_2\text{O} 0.01 \text{ mol \%} \\
\text{PCA 0.5 mol \%} \\
\text{butanedione 0.5 equiv.} \\
\text{H}_2\text{O}_2 1.5 \text{ equiv.} \\
\text{NaOAc(aq.) 1 mol \%} \\
\text{CH}_3\text{CN (0.5 M)} \\
0 ^\circ\text{C to r.t. 1 h}
\]

3-carene oxide The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 96:4, Rf = 0.5). The title compound was obtained as colorless oil (68 mg, 0.45 mmol, 45%).

\[^1\text{H NMR (400 MHz, CDCl}_3\text{)} \delta 2.82 (s, 1H), 2.30 (m, 1H), 2.13 (dd, J=9.0, 7.2), 1.55 (m, 2H), 1.24 (s, 3H), 0.99 (s, 3H), 0.71 (s, 3H), 0.50 (m, 1H). \] \[^{13}\text{C NMR (101 MHz, CDCl}_3\text{)} \delta 58.1, 55.8, 27.7, 23.3, 23.0, 19.1, 15.9, 14.5, 13.8.\]
\(^1\)H NMR and \(^{13}\)C NMR spectra in CDCl\(_3\) of the isolated product 3-carene oxide
Scheme 5

Entry 21 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \quad 0.01 \text{ mol %}
\]

PCA 0.5 mol %

butanedione 0.5 equiv.

\[
\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.}
\]

NaOAc(aq.) 1 mol %

\[
\text{CH}_3\text{CN} \quad (0.5 \text{ M})
\]

0 °C to r.t. 1 h

\[\text{HO} \quad \text{H} \quad \text{O} \quad \text{n-hept} \rightarrow \quad \text{HO} \quad \text{O} \quad \text{n-hept}\]

\(^1\text{H NMR spectrum in CDCl}_3\) with 1,2-DCB internal standard of the crude product obtained upon oxidation of dec-2-en-1-ol
3-(Oxiran-2-yl)benzaldehyde The procedure used was as for the catalyzed oxidation of cyclooctene. The product was isolated by flash column chromatography over neutral aluminum oxide (pentane/ether = 81:19, Rf = 0.6). The title compound was obtained as colorless oil (90 mg, 0.61 mmol, 61%).

1H NMR (400 MHz, CDCl$_3$) δ 10.02 (s, 1H), 7.83 (m, 2H), 7.54 (m, 2H), 3.95 (t, $J = 2.6$, 1H), 3.20 (dd, $J = 5.3$, 4.1, 1H), 2.82 (dd, $J = 5.4$, 2.5, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 191.9, 139.0, 131.3, 129.5, 129.2, 126.6, 51.7, 51.2; HRMS (ESI+) calc. for C$_{9}$H$_{9}$O$_{2}$ (M+H)$^{+}$ 149.05971, found 149.05980.

![NMR Spectra](image-url)
1H and 13C NMR spectrum in CDCl$_3$ of product 3-(oxiran-2-yl)benzaldehyde
Scheme 6

Entry 23 from Table S3

\[
\text{Ma(ClO}_4\text{)}_2 \cdot \text{H}_2\text{O} \text{ 0.01 mol}\%} \\
\text{PCA 0.5 mol}\%} \\
\text{butanedione 0.5 equiv.} \\
\text{H}_2\text{O}_2 \text{ 1.5 equiv.} \\
\text{NaOAc (aq.) 1 mol}\%} \\
\text{CH}_3\text{CN (0.5 M)} \\
0\ \text{°C to r.t. 1 h}
\]

\[\text{H NMR spectrum in CDCl}_3 \text{ with 1,2-DCB internal standard of the reaction mixture obtained upon oxidation of tert-butyl (4-phenylbut-3-en-2-yl) carbonate.}\]
Scheme 7

For Entry 24 from Table S3 see section 9 below

Entry 25 from Table S3

(1aS*,2S*,7bR*)-3-Benzoyl-1a,2,3,7b-tetrahydroxireno[2,3-c]quinoline-2-carbonitrile. The reactions procedure was the same as for the oxidation of cyclooctene. The product was isolated by flash column chromatography over silica gel (Dichloromethane, Rf = 0.5). The title compound was obtained as white solid (180 mg, 0.65 mmol, 65%).

1H NMR (400 MHz, CDCl$_3$) δ 7.53-7.51 (dd, J=7.5, 1.1, 1H), 7.4-7.34 (m, 3H), 7.27-7.23 (m, 2H), 7.19-7.16 (t, J=7.5, 1H), 7.08-7.03 (t, J=7.6, 1H), 6.54-6.52 (d, J=8.0, 1H), 6.27 (d, J=2.4, 1H), 4.29-4.27 (dd, J=3.8, 2.6, 1H), 4.15 (d, J=4.0, 1H); 13C NMR (101 MHz, CDCl$_3$) δ 170.12, 135.23, 133.68, 131.38, 130.16, 129.12, 128.32, 126.80, 126.47, 124.00, 114.83, 59.43, 51.09, 41.59; HRMS (ESI+) calc. for C$_{17}$H$_{12}$N$_2$O$_2$ (M+Na)$^+$ 299.07910, found 299.07887; The stereochemistry of 1-Benzoyl-1,2-dihydro-2-quinolinecarbonitrile oxide was determined by 1H-NMR spectroscopic analysis. The coupling constants2 of protons H$_a$, H$_b$ and H$_c$ (see Scheme) indicate that the CN group is trans to the epoxide moiety.
1H and 13C NMR spectra in CDCl$_3$ of the isolated product from the oxidation of 1-Benzoyl-1,2-dihydro-2-quinolinecarbonitrile. Only one diastereoisomer pair formed.
Entry 26 from Table S3

Mn(ClO$_4$)$_2$·6H$_2$O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H$_2$O$_2$ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CDCl$_3$ with 1,2-DCB internal standard of the crude product obtained upon oxidation of cis-heptene
Entry 27 from Table S3

Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CDCl₃ with 1,2-DCB internal standard of the crude product obtained upon oxidation of trans-heptene
Entry 28 from Table S3

Mn(ClO₄)₂ · H₂O 0.01 mol%
PCA 0.5 mol%
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc (aq.) 1 mol%
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CDCl₃ of the reaction mixture obtained upon oxidation of cis-1-methylstyrene
Entry 29 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2\cdot\text{H}_2\text{O} \ 0.01 \text{ mol}\% \\
\text{PCA} 0.5 \text{ mol}\% \\
\text{butanedione} 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 1.5 \text{ equiv.} \\
\text{NaOAc (aq.)} 1 \text{ mol}\% \\
\text{CH}_3\text{CN (0.5 M)} \\
0 {\degree}\text{C to r.t. 1 h}
\]

\[\begin{align*}
\text{H NMR spectrum in CDCl}_3 \text{ of the reaction mixture obtained upon oxidation of trans-1-methylstyrene}
\end{align*}\]
Scheme 9

Entry 30 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} 0.01 \text{ mol %} \\
P\text{CA 0.5 mol %} \\
2, 3-\text{butanedione 0.5 equiv.} \\
\text{H}_2\text{O}_2 1.5 \text{ equiv.} \\
\text{NaOAc(aq.) 1 mol %} \\
\text{CH}_3\text{CN (0.5 M)} \\
0 \text{ °C to r.t. 1 h}
\]

\[\text{cis-stilbene} \rightarrow \text{Product}\]

\[\text{H NMR spectrum in CDCl}_3 \text{ of the crude product obtained by oxidation of cis-stilbene}\]
Other examples

Entry 31 from Table S3

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \ 0.01 \text{ mol \%}
\]
\[
\text{PCA} \ 0.5 \text{ mol\%}
\]
\[
\text{butanedione} \ 0.5 \text{ equiv.}
\]
\[
\text{H}_2\text{O}_2 \ 1.5 \text{ equiv.}
\]
\[
\text{NaOAc(aq.)} \ 1 \text{ mol \%}
\]
\[
\text{CH}_3\text{CN (0.5 M)}
\]
\[
0 \ ^\circ\text{C to r.t.} \ 1 \text{ h}
\]

\[
\begin{aligned}
\text{OH} & \quad \text{OH} \\
\text{CH}_3 & \quad \text{CH}_3 \\
\text{OMe} & \quad \text{OMe}
\end{aligned}
\]

\[^1\text{H NMR spectrum in CDCl}_3 \text{ of the crude product obtained upon oxidation of 1(4-methoxyphenyl)but-3-en-1-ol}\]
Oxidation of conjugated and non-conjugated dienes – Scheme 4

\[
\text{Mn(ClO}_4\text{)}_2\cdot 6\text{H}_2\text{O} \ 0.01 \text{ mol \%} \\
\text{PCA} \ 0.5 \text{ mol \%} \\
\text{butanedione} \ 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 \ 1.5 \text{ equiv.} \\
\text{NaOAc (aq.)} \ 1 \text{ mol \%} \\
\text{CH}_3\text{CN} \ (0.5 \text{ M}) \\
0 \, ^\circ\text{C} \text{ to r.t.} \ 1 \text{ h}
\]

\[\begin{align*}
&\text{Ox} \quad \rightarrow \quad \text{O} \\
&\text{Ox} + \text{butanedione} \rightarrow \\
&\text{Ox} \quad \rightarrow \quad \text{O}
\end{align*}\]

\(^1\text{H NMR spectrum in CD}_3\text{CN of the reaction mixture obtained after oxidation of isoprene}\]
Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc(aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CDCl₃ with 1,2-DCB internal standard of the crude product obtained upon oxidation of limonene
Mn(ClO4)2·6H2O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H2O2 1.5 equiv.
NaOAc (aq.) 1 mol %
CH3CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CD3CN with 1,2-DCB internal standard of the reaction mixture obtained upon oxidation of citral
Entry 1 from Table S5

\[\text{Mn(ClO}_4\text{)}^2 \cdot 6\text{H}_2\text{O} \quad 0.01 \text{ mol \%} \]
\[\text{PCA} \quad 0.5 \text{ mol \%} \]
\[\text{butanedione} \quad 0.5 \text{ equiv.} \]
\[\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.} \]
\[\text{NaOAc(aq.)} \quad 1 \text{ mol \%} \]
\[\text{CH}_3\text{CN} \quad (0.5 \text{ M}) \]
\[0^\circ \text{C to r.t.} \quad 1 \text{ h} \]

\[\text{1}^\text{H NMR spectrum in CD}_3\text{CN with 1,2-DCB internal standard of the reaction mixture obtained upon oxidation of 3-methyl 2-cyclohexene-1-one} \]
Entry 2 from Table S5

Mn(ClO$_4$)$_2$•6H$_2$O 0.01 mol %
PCA 0.5 mol %
butanedione 0.5 equiv.
H$_2$O$_2$ 1.5 equiv.

NaOAc (aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in CDCl$_3$ with 1,2-DCB internal standard of the crude product obtained upon oxidation of 5-methyl-2-one-3-hexene
Entry 3 from Table S5

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} 0.01 \text{ mol %} \\
\text{PCA} 0.5 \text{ mol %} \\
\text{butanedione} 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 1.5 \text{ equiv.} \\
\text{NaOAc (aq.)} 1 \text{ mol %} \\
\text{CH}_3\text{CN (0.5 M)} \\
0 \text{ °C to r.t. 1 h}
\]

\[\text{HNMR spectrum in CDCl}_3 \text{ with 1,2-DCB internal standard of the crude product obtained upon oxidation of trans-3-nonen-2-one}\]
Entry 4 from Table S5

\[
\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \quad 0.01 \text{ mol}\% \\
\text{PCA} \quad 0.5 \text{ mol}\% \\
\text{butanedione} \quad 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.} \\
\text{NaOAc (aq.)} \quad 1 \text{ mol}\% \\
\text{CH}_3\text{CN (0.5 M)} \\
\text{0 °C to r.t. 1 h}
\]

\[
\begin{array}{c}
\text{1H NMR spectrum in CD}_3\text{CN with 1,2-DCB internal standard of the reaction mixture obtained upon oxidation of 1-acetyl-pentene}
\end{array}
\]

S67
6. Procedure for catalytic oxidation of α-pinene followed by in situ isomerization and product characterization

Procedure: After epoxidation of α-pinene (1 mmol, 158µl) by the procedure described for cyclooctene, silica gel 230-400 (150g) was added to the reaction mixture, which was then stirred at 40°C for 1 h. The silica gel was removed by filtration and the solvent was removed in vacuo. Campholenic aldehyde was obtained (30 mg, 0.2 mmol, 20%)
1H and 13C NMR in spectrum in CDCl$_3$ of the product campholenic aldehyde obtained from α-pinene
7. Procedures for the catalytic oxidation of electron deficient alkenes and product characterization

Oxidation of electron deficient alkenes to their cis-diol products. In all cases only a single product was formed.

The alkene (1 mmol, final conc. 0.5 M), aqueous NaOAc (0.6 M, 16.7 µl, final conc. 5 mM) and 2,3-butanedione (130.5 µl, final conc. 0.75 M) were added to a solution of Mn(ClO₄)₂ (final conc. 0.05 mM) and pyridine-2-carboxylic acid (2.5 mM) in CH₃CN to give a final volume of 2 ml. The solution was stirred in an ice water bath and H₂O₂ (50 wt. %, 1.5 equiv. 85 µl) was added as a single portion and the solution stirred for 1 h. After 1 h, brine (10 ml) was added and the reaction was extracted with dichloromethane. The combined organic layers were washed with brine. The product was dried over Na₂SO₄ (anhyd.), filtered, and the dichloromethane was removed in vacuo.
$\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O} \ 0.01 \text{ mol }%$

PCA 0.5 mol %

butanedione 1.5 equiv.

H$_2$O$_2$ 1.5 equiv.

NaOAc (aq.) 1 mol %

CH$_3$CN (0.5 M)

0 °C to r.t. 1 h

$^1\text{H NMR spectrum in CDCl}_3$ of the crude product obtained by the oxidation of diethyl fumarate
Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 1.5 equiv.
H₂O₂ 1.5 equiv.
NaOAc (aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in CDCl₃ of the crude product obtained by the oxidation of diethyl maleate
$\text{Mn(ClO}_4\text{)}_2 \cdot 6\text{H}_2\text{O}$ 0.01 mol %
PCA 0.5 mol %
butanedione 1.5 equiv.
H_2O_2 1.5 equiv.

NaOAc (aq.) 1 mol %
CH$_3$CN (0.5 M)
0 °C to r.t. 1 h

1H NMR spectrum in DMSO-$_d_6$ of the crude product obtained by the oxidation of maleimide with 1,2-dichlorobenzene internal standard.
Mn(ClO₄)₂·6H₂O 0.01 mol %
PCA 0.5 mol %
butanedione 1.5 equiv.
H₂O₂ 1.5 equiv.

NaOAc (aq.) 1 mol %
CH₃CN (0.5 M)
0 °C to r.t. 1 h

¹H NMR spectrum in DMSO-d₆ of the crude product obtained by the oxidation of 1-benzyl-1H-pyrrole-2,5-dione
8. Identification of acetic acid formation in reaction mixture by 13C NMR spectroscopy

The 13C NMR spectrum of the reaction mixture allowed for the identification of acetic acid formation during the reaction. The reaction mixture excluding the alkene was stirred for 40 min. The 13C NMR spectrum showed the appearance of acetic acid, which was confirmed by spiking with additional acetic acid.

13C NMR spectrum of the reaction mixture after 40 min showing the presence of acetic acid and butanedione (in CD$_3$CN).
13C NMR spectrum of the reaction mixture after 40 min showing the presence of acetic acid and butanedione (in CD$_3$CN) spiked with additional acetic acid.

\[
\text{Mn(ClO}_4\text{)}_2\cdot \text{H}_2\text{O} \quad 0.01 \text{ mol}\% \\
\text{PCA} \quad 0.5 \text{ mol}\% \\
\text{butanedione} \quad 0.5 \text{ equiv.} \\
\text{H}_2\text{O}_2 \quad 1.5 \text{ equiv.} \\
\text{NaOAc (aq.)} \quad 1 \text{ mol}\% \\
\text{CH}_3\text{CN (0.5 M)} \\
0 \, ^\circ\text{C to r.t.} \quad 1 \, \text{h}
\]

\[\text{OAc}\]

\[\text{OAc}\]

\[\text{H NMR spectrum in CDCl}_3\] of the crude product obtained by the oxidation of (S)-4-phenylbut-3-en-2-yl acetate
HPLC chromatogram of the product obtained by the oxidation of racemic 4-phenylbut-3-en-2-yl acetate (together with 4-phenylbut-3-en-2-yl acetate) also showing all four stereoisomers

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak @ 12,684 Minutes</td>
<td>12,684</td>
<td>1189740</td>
<td>23,410</td>
</tr>
<tr>
<td>2</td>
<td>Peak @ 17,712 Minutes</td>
<td>17,712</td>
<td>1182634</td>
<td>23,270</td>
</tr>
<tr>
<td>3</td>
<td>Peak @ 18,620 Minutes</td>
<td>18,620</td>
<td>1328635</td>
<td>26,143</td>
</tr>
<tr>
<td>4</td>
<td>Peak @ 21,284 Minutes</td>
<td>21,284</td>
<td>1381153</td>
<td>27,176</td>
</tr>
</tbody>
</table>

Totals

HPLC chromatogram of the product obtained by the oxidation of (S)-4-phenylbut-3-en-2-yl acetate showing only two of the four potential stereoisomers

<table>
<thead>
<tr>
<th>Pk #</th>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>Area Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>17,420</td>
<td>651041</td>
<td>55,016</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>18,388</td>
<td>532321</td>
<td>44,984</td>
</tr>
</tbody>
</table>

Totals

1183362 100,000

(2) For proton couplings in cyclohexane, see: Garbisch Jr., E. W.; Griffith, M. G. *J. Am. Chem. Soc.* **1968**, *90*, 6543