Advances in methods to support store location and design decisions
Hunneman, Auke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Appendix: Model Specification and Estimation

A.1. The Spatial Error Random Effects Hierarchical Model

Assume that observations are sorted by store and, for each store, by time and then by zip code. Let Y_i (which can be $\ln(NV_i)$ or $\ln(EXP_i)$), X_i, and Z_i denote the observations, and let ϵ_i indicate the disturbance terms that are stacked for a particular store. The length of these vectors or matrices is store specific, because the number of zip codes within each store’s trade area differs, and that number might change over time. Consequently, each vector or matrix consists of $T_i \times J_i$ observations. The full model can be written as:

$$
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_i \\
\vdots \\
Y_{T_i}
\end{bmatrix} =
\begin{bmatrix}
t_1 \\
\vdots \\
t_i
\end{bmatrix}
\gamma^{NV} +
\begin{bmatrix}
X_1 \\
X_2 \\
\vdots \\
X_i
\end{bmatrix}
\alpha +
\begin{bmatrix}
Z_1 \\
Z_2 \\
\vdots \\
Z_i
\end{bmatrix}
\beta +
\begin{bmatrix}
\epsilon_{11} \\
\epsilon_{21} \\
\vdots \\
\epsilon_{i1} \\
\vdots \\
\epsilon_{T_i1}
\end{bmatrix},
$$

(A.1)

Because $Var(\gamma_i^{NV}) = \phi^{2}_{NV}$ and the covariance matrix Φ of the composite disturbance term $diag(t_1, \ldots, t_i) \times \gamma_i^{NV} + \epsilon$ is block diagonal, the i^{th} block diagonal is given by:
where $\Omega_{J_{i}}$ is the $(J_i \times J_i)$ covariance matrix for each cross-section of zip codes that belong to the trade area of store i at time t. This matrix takes the form

$$
\Omega_{J_{i}} = \left(I_{J_{i}} - \lambda^{NV} W_{i} \right) \left(I_{J_{i}} - \lambda^{NV} W_{i} \right)^{\top}.
$$

The inverse of Φ_i is $\Phi_i^{-1} = \frac{\Delta_{i}^{-1}}{\sigma_{NV}^{2}} - \frac{\Delta_{i}^{-1} \Delta_{i}^{-1}}{\sigma_{NV}^{2}} \frac{1}{\phi_{NV}^{2}} \phi_{NV}^{2} \phi_{NV}^{-1} \Delta_{i}^{-1} \phi_{NV}^{2} \phi_{NV}^{-1}$ (Frees 2004).

If the total number of observations is denoted $nobs = \sum_{i=1}^{T} \sum_{t=1}^{T_{i}} J_{i}$, and $\phi^{2} = \left(\phi_{NV}^{2} \right)$, the log-likelihood function can be written as:

$$
LogL = -\frac{nobs}{2} \log \left(2\pi \sigma_{NV}^{2} \right) - \frac{1}{2} \sum_{i=1}^{T} \log \left| \phi^{2} I_{i} + \Delta_{i} \right|
- \frac{1}{2 \sigma_{NV}^{2}} \sum_{i=1}^{T} \sum_{t=1}^{T_{i}} \tilde{e}_{i} \left(\phi^{2} I_{i} + \Delta_{i} \right)^{-1} \tilde{e}_{i},
$$

where $\tilde{e}_{i} = Y_{i} - \left[I_{i} X_{i} Z_{i} \right] \left[\gamma_{NV} \alpha_{h} \beta \right]$, γ_{NV} is a scalar, α_{h} is a $(K \times 1)$ vector of α_{h}^{NV} s, and β is a $(N \times 1)$ vector of β_{n}^{NV} s.

According to Elhorst and Zeilstra (2007), the maximum likelihood estimators of the response parameters γ, α, and β (provided that X and Z do not include a lagged dependent or any endogenous explanatory variables) are equal to the generalized least squares (GLS) estimator:
\[
\begin{bmatrix}
\gamma \\
\alpha \\
\beta_{GLS}
\end{bmatrix} = \left[\sum_{i=1}^{I} \begin{bmatrix} t_i & X_i & Z_i \end{bmatrix} \Phi_i^{-1} \begin{bmatrix} t_i & X_i & Z_i \end{bmatrix} \right]^{-1} \\
\times \left[\sum_{i=1}^{I} \begin{bmatrix} t_i & X_i & Z_i \end{bmatrix} \Phi_i^{-1} Y_i \right]
\]

\[
= \left[\sum_{t=1}^{T} \sum_{i=1}^{I} S_{it}^* S_{it}^* - \sum_{t=1}^{T} \sum_{i=1}^{I} S_{it}^* t_{it}^* \left[\frac{1}{\phi^2} + \sum_{i=1}^{I} \sum_{t=1}^{T} t_{it}^* t_{it}^* \right]^{-1} t_{it}^* S_{it}^* \right]^{-1} \\
\times \left[\sum_{t=1}^{T} \sum_{i=1}^{I} S_{it}^* Y_{it}^* - \sum_{t=1}^{T} \sum_{i=1}^{I} S_{it}^* t_{it}^* \left[\frac{1}{\phi^2} + \sum_{i=1}^{I} \sum_{t=1}^{T} t_{it}^* t_{it}^* \right]^{-1} t_{it}^* Y_{it}^* \right],
\]

(A.4)

where \(S_{it}^* = \begin{bmatrix} t_{it}^* & X_{it}^* & Z_{it}^* \end{bmatrix} \), and the superscript * denotes the transformation \(S_{it}^* = \begin{bmatrix} t_{it}^* & X_{it}^* & Z_{it}^* \end{bmatrix} \), applied to the variables \(t_{it}, X_{it}, \) and \(Z_{it} \). In addition,

\[
\sigma_{NV}^2 = \gamma_{nobs} \sum_{i=1}^{I} \sum_{t=1}^{T} \left(\phi^2 t_{it}^* + \Delta_i \right)^{-1} \tilde{e}_{it}.
\]

In contrast, there is no closed-form solution for \(\lambda_{NV} \) and \(\phi^2 \). Therefore, we develop an iterative, two-step estimation procedure, in which the two sets of parameters are estimated alternately until convergence; \(\gamma_{NV}, \alpha, \beta, \) and \(\sigma_{NV}^2 \), given \(\lambda_{NV} \) and \(\phi^2 \), can be estimated using the GLS estimator in Equation A.4, whereas \(\lambda_{NV} \) and \(\phi^2 \), given \(\gamma_{NV}, \alpha, \beta, \) and \(\sigma_{NV}^2 \), can be estimated by maximizing the log-likelihood in Equation A.3. A Matlab routine of this estimation procedure can be downloaded from the Web site http://www.regroningen.nl/elhorst/.

A.2. The Spatial Error Random Effects Model

Assume that the observations are sorted by time and then, for each time period, by zip code. Let \(Y_t \) \((= \logit(\text{PR}_t)) \) and \(U_t = \begin{bmatrix} t_t & X_t & Z_t \end{bmatrix} \) denote observations stacked
within a particular time period (Y_t and U_t consist of J observations). Further assume that $\theta = \begin{bmatrix} \gamma^{PR} & \alpha' & \beta' \end{bmatrix}$, where α is a $(K \times 1)$ vector of α_k^{PR}'s, and β is a $(N \times 1)$ vector of β_n^{PR}'s. The model then can be written as:

$$
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_T
\end{bmatrix} =
\begin{bmatrix}
U_1 \\
U_2 \\
\vdots \\
U_T
\end{bmatrix} + \theta + \delta, \quad \delta = (t_T \otimes I_J)\nu + (I_T \otimes B^{-1})\epsilon,
$$

(A.5)

where t_T is a $(T \times 1)$ vector of unit elements, $\nu = (v_1^{PR}, \ldots, v_J^{PR})$, ϵ is a $(TJ \times 1)$ vector of disturbance terms ϵ_j^{PR}, and $B = (I_J - \lambda^{PR} W)$.

Anselin (1988) and Baltagi (2005) show that the log-likelihood function of this model is:

$$
\text{LogL} = -\frac{JT}{2} \log \left(2\pi \sigma_{PR}^2 \right) - \frac{1}{2} \log \left| T \kappa^2 I_J + (B' B)^{-1} \right| \\
+ (T - 1) \log |B| - \frac{1}{2 \kappa^2} e' \left(\frac{1}{T} t_T' t_T \otimes \left(T \kappa^2 I_J + (B' B)^{-1} \right) \right)^{-1} e \\
- \frac{1}{2 \sigma_{PR}^2} e' \left(I_T - \frac{1}{T} t_T' t_T \right) \otimes (B' B) e,
$$

(A.6)

where $e = (e_1, \ldots, e_T)'$, $e_t = Y_t - U_t \theta$, and $\kappa^2 = (\sigma_v^2 / \sigma_{PR}^2)$.

Elhorst (2003) also shows that if the determinants of the matrices $T \kappa^2 I_J + (B' B)^{-1}$ and B are expressed as a function of the characteristic roots of W, denoted by ω_j ($j = 1, \ldots, J$), the log-likelihood function can be rewritten as:

$$
\text{LogL} = -\frac{JT}{2} \log \left(2\pi \sigma_{PR}^2 \right) - \frac{1}{2} \sum_{j=1}^{J} \log \left(1 + T \kappa^2 \left(1 - \lambda^{PR} \omega_j \right)^2 \right) \\
+ T \sum_{j=1}^{J} \log \left(1 - \lambda^{PR} \omega_j \right) - \frac{1}{2 \sigma_{PR}^2} \sum_{t=1}^{T} \tilde{e}_t' \tilde{e}_t,
$$

(A.7)
where \(\tilde{e}_i = Y_i^* - U_i^* \theta, \)

\[
Y_i^* = P \bar{Y} + B \left(Y_i - \bar{Y} \right) = BY_i + (P - B) \bar{Y} = \left(I_J - \lambda^{PR} W \right) Y_i \\
+ \left(P - \left(I_J - \lambda^{PR} W \right) \right) \bar{Y}, \\
U_i^* = \left(I_J - \lambda^{PR} W \right) U_i + \left(P - \left(I_J - \lambda^{PR} W \right) \right) \bar{U}, \text{ and}
\]

\(P \) is such that \(P'P = \left(T \kappa^2 I_J + (B' B)^{-1} \right)^{-1}. \)

Consequently, the GLS estimator of the response parameters \(\theta \) and \(\sigma_{PR}^2 \) can be computed as:

\[
\theta = \left(u^* u^* \right)^{-1} \left(u^* y^* \right) \quad \text{and} \quad \sigma_{PR}^2 = \frac{\sum_{i=1}^{T} e_i^* \tilde{e}_i}{JT}, \tag{A.8}
\]

where \(u^* = \begin{bmatrix} U_1^* \\ \vdots \\ U_T^* \end{bmatrix} \), and \(y^* = \begin{bmatrix} Y_1^* \\ \vdots \\ Y_T^* \end{bmatrix} \).

Just as in the previous case, there is no closed-form solution for \(\lambda^{PR} \) and \(\kappa^2 \), so we need an iterative two-step estimation procedure in which the two sets of parameters get estimated alternately until convergence occurs. A Matlab routine of this estimation procedure can be downloaded from the Web site http://www.regroningen.nl/elhorst/.