Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents
Bos, Pieter H.; Rudolph, Alena; Pérez, Manuel; Fañanás-Mastral, Martín; Harutyunyan, Syuzanna R.; Feringa, Bernard
Published in: Chemical Communications

DOI: 10.1039/c2cc16855c

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date: 2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents†

Pieter H. Bos, Alena Rudolph, Manuel Pérez, Martín Fañanás-Mastral, Syuzanna R. Harutyunyan and Ben L. Feringa*

Received 4th November 2011, Accepted 8th December 2011 DOI: 10.1039/c2cc16855c

A highly efficient method is reported for the asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Using a copper/chiral phosphoramidite complex together with a Lewis acid (BF$_3$·OEt$_2$), full selectivity for the anti isomer and excellent enantioselectivities were obtained for the ring opened products.

In the past decade, a variety of methods were developed for the transition-metal catalyzed ring opening of meso heterobicyclic alkenes I using various nucleophiles.$^{1,2}$ This process is especially valuable as multiple stereocenters can be introduced simultaneously with high stereocontrol. In particular the enantioselective palladium-catalyzed ring opening using organozinc reagents, developed by Lautens et al., proceeds with high selectivity for the syn diastereomers and is a highly valuable transformation for the synthesis of multifunctional building blocks.$^{3,4}$ Previously, racemic syn products could also be accessed from organolithium reagents and organocuprates in moderate to good yields.$^{5-9}$ It is important to note that in the case of organocuprates, suprathermodynamically amounts are necessary (2.5–5 eq.). To the best of our knowledge there is only one example reported in which organolithium reagents are used for the asymmetric ring opening of oxabicyclic alkenes. The group of Lautens was able to convert an oxabicyclic compound using (–)-sparteine together with $n$-butyllithium providing the syn product with moderate enantioselectivity (51%) and yield (61%).$^7$

The use of transition-metal catalysis has allowed for the development of methods applying softer organometallic reagents. In general most asymmetric ring opening procedures with carbon nucleophiles give the syn product as a result of exo attack of the nucleophile to the oxabicyclic alkene.$^5$ Exceptions leading to high anti selectivity are reported in our copper-catalyzed ring opening reactions using organozinc reagents in combination with a Lewis acid,$^{10}$ and related methods using Grignard reagents$^{11-14}$ andtrialkylaluminium reagents.$^{14,15}$

Recently, our group developed the first copper-catalyzed asymmetric allylic alkylation protocol using organolithium reagents as nucleophiles (see Scheme 1).$^{16}$ By excluding or minimizing the amount of ethereal solvents were able to prevent the formation of highly reactive organolithium species, and by selecting dichloromethane as a solvent we were able to enhance the catalytic reaction selectively. Based on the excellent enantio- and regioselectivities obtained, we envisioned that this novel methodology could be extended towards the asymmetric ring opening of oxabicyclic alkenes. Organolithium reagents are arguably among the most widely used organometallic reagents in chemistry and are in general cheaper than their organozinc, Grignard or organoaluminium counterparts.$^{17,18}$ Methodologies in which organolithium reagents can be applied directly as the enantioselective carbon–carbon bond forming reagents are therefore highly desirable, but challenging in view of their very high reactivity.

The asymmetric ring opening of oxabicyclic alkenes with organolithium reagents can lead to four products namely the desired anti product 3aa and its syn diastereomers 4, 1-naphthol 5 as a result of acid-catalyzed ring opening/aromatization and alkyl naphthalene 6 as a result of elimination of water followed by aromatization of product 3aa or 4. In our initial experiment

![Scheme 1](image)

Scheme 1 Catalytic asymmetric allylic alkylation with organolithium reagents (for the ligand structure see Fig. 1).

Fig. 1 Ligands used for the ring opening of oxabicyclic alkenes with organolithium reagents.
the reaction had to be stopped to prevent side-reactions.22

Scheme 2  Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes using n-butyllithium.

The optimized conditions using Taniaphos L1 as a ligand for the allylic alkylation of allylic bromides were employed (Table 1, entry 1).16 Unfortunately, no ring opening of the oxabicyclic alkene occurred at −80 °C.

We anticipated that higher temperatures were needed but in order to raise the temperature the solvent had to be changed to 1,2-dichloroethane in order to prevent carbene formation.19,20 This led to 50% conversion and syn selectivity for the ring-opening reaction giving a racemic product due to the uncatalyzed reaction (Table 1, entry 2). We also switched to phosphoramidite ligands21 because they have been shown to perform very well both with organolithium reagents in the allylic alkylation16 as well as in the copper-catalyzed ring opening of oxabicyclic alkenes using organozinc reagents developed by our group.10 Increasing the temperature even further did not lead to higher conversion or selectivity (Table 1, entry 3). Switching solvents from 1,2-dichloroethane to methyl tert-butyl ether (MTBE) led to mainly syn product together with a considerable amount of side products (Table 1, entry 4). We then added a Lewis acid (BF$_3$OEt$_2$, 1.1 eq.) to activate the substrate and performed the reaction at −40 °C overnight (Table 1, entry 5). In this case full conversion was reached, but a 1 : 1 mixture of 1-naphthol 5 originating from Lewis acid-catalyzed ring opening, and n-butyll naphthalene 6, originating from addition of the butyl group followed by elimination/aromatization, was observed (Table 1, entry 6).

Upon lowering the temperature to −80 °C in dichloromethane full conversion was obtained after 2 h, after which the reaction had to be stopped to prevent side-reactions.22

Using phosphoramidite ligand (R,R,R)-L2 (Fig. 1) exclusive formation of the anti diastereomers was observed with excellent enantioselectivity (97% ee) (Table 1, entry 6). The use of other phosphoramidite ligands resulted in lower enantioselectivity compared to the values obtained with ligand (R,R,R)-L2 although excellent anti : syn ratios were achieved in all cases (Table 1, entries 7–9). The amount of organolithium reagent could be lowered to 1.1 eq. without affecting the selectivities (Table 1, entry 10). In this case the reaction mixture was stirred overnight to ensure full conversion while undesired side reactions were prevented.

After optimization of the reaction conditions the use of several organolithium reagents was examined for the ring opening of oxabicyclic alkenes 1a and 1b (Table 2). In all cases full conversion was obtained after stirring overnight using only a slight excess of organolithium reagent (1.1 eq.) and the anti product was formed exclusively (Scheme 3). The ring opening of 1b using n-butyllithium gave a slightly lower enantioselectivity than 1a (Table 2, entry 2). Both ethyllithium as well as n-hexyllithium gave excellent enantioselectivities and isolated yields (Table 2, entries 3–6). Furthermore, the use of the more bulky reagent i-butyllithium also resulted in an excellent yield and enantioselectivity of the desired product 3ad (Table 2, entries 7 and 8). The use of a trimethylsilyl-substituted organolithium reagent led to a decrease in reactivity and enantioselectivity (Table 2, entry 9).

Organolithium reagents commercially available as solutions in ethereal solvents were not effective under the optimized reaction conditions and no conversion was observed. Furthermore, substrates bearing electron donating groups were not compatible under the reaction conditions, leading to elimination of the alcohol group and aromatization of the naphthyl group. This substrate incompatibility has also been observed in the copper-catalyzed ring opening of oxabicyclic alkenes with aluminium and Grignard reagents.12,14

Table 1  Screening of ligands and conditions with n-butyllithium (Scheme 2) a

<table>
<thead>
<tr>
<th>Entry</th>
<th>L</th>
<th>BF$_3$OEt$_2$</th>
<th>T/°C</th>
<th>Solvent</th>
<th>Conversion (%)</th>
<th>ee (%)</th>
<th>Anti : syn (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>50</td>
<td>94</td>
<td>62 : 38</td>
</tr>
<tr>
<td>2</td>
<td>L2</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>50</td>
<td>94</td>
<td>62 : 38</td>
</tr>
<tr>
<td>3</td>
<td>L2</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>48</td>
<td>94</td>
<td>62 : 38</td>
</tr>
<tr>
<td>4</td>
<td>L2</td>
<td>—</td>
<td>−80</td>
<td>MTBE</td>
<td>Full</td>
<td>94</td>
<td>62 : 38</td>
</tr>
<tr>
<td>5</td>
<td>L2 Yes</td>
<td>—</td>
<td>−40</td>
<td>CH$_2$Cl$_2$</td>
<td>Full</td>
<td>78</td>
<td>62 : 38</td>
</tr>
<tr>
<td>6</td>
<td>L2 Yes</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>&gt;99 : 1</td>
<td>97</td>
<td>94 : 6</td>
</tr>
<tr>
<td>7</td>
<td>L2 Yes</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>&gt;99 : 1</td>
<td>97</td>
<td>94 : 6</td>
</tr>
<tr>
<td>8</td>
<td>L4 Yes</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>53</td>
<td>93</td>
<td>94 : 6</td>
</tr>
<tr>
<td>9</td>
<td>L5 Yes</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>&gt;99 : 1</td>
<td>97</td>
<td>94 : 6</td>
</tr>
<tr>
<td>10</td>
<td>L2 Yes</td>
<td>—</td>
<td>−80</td>
<td>CH$_2$Cl$_2$</td>
<td>Full</td>
<td>&gt;99 : 1</td>
<td>97</td>
</tr>
</tbody>
</table>

a Reagents and conditions: 1a (0.2 mmol), n-butyllithium (1.5 eq.), CuBr-Me$_2$S (5 mol%), L (6 mol%), solvent, temperature, 2 h.

Table 2  Cu-catalyzed ring opening of 1a and 1b (Scheme 3) a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Substrate RLi</th>
<th>Anti : syn</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a n-BuLi (2a)</td>
<td>&gt;99 : 1</td>
<td>84</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>1b n-BuLi (2b)</td>
<td>&gt;99 : 1</td>
<td>82</td>
<td>95</td>
</tr>
<tr>
<td>3</td>
<td>1a EtLi (2b)</td>
<td>&gt;99 : 1</td>
<td>80</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>1b EtLi (2b)</td>
<td>&gt;99 : 1</td>
<td>71</td>
<td>97</td>
</tr>
<tr>
<td>5</td>
<td>1a n-HexLi (2c)</td>
<td>&gt;99 : 1</td>
<td>81</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>1b n-HexLi (2c)</td>
<td>&gt;99 : 1</td>
<td>82</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>1a i-BuLi (2d)</td>
<td>&gt;99 : 1</td>
<td>86</td>
<td>97</td>
</tr>
<tr>
<td>8</td>
<td>1b i-BuLi (2d)</td>
<td>&gt;99 : 1</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>9</td>
<td>1a TMSC$_2$H$_2$L (2e)</td>
<td>&gt;99 : 1</td>
<td>65%</td>
<td>43</td>
</tr>
</tbody>
</table>

a Reagents and conditions: 1 (0.2 mmol), n-butyllithium (1.1 eq.), CuBr-Me$_2$S (5 mol%), L (0.6 mol%), BF$_3$OEt$_2$ (1.1 eq.), CH$_2$Cl$_2$, −80 °C, full conversion after 16 h. b Isolated yield. c Conversion ≈ 70%.

Scheme 3  Copper-catalyzed ring opening of oxabicyclic alkenes 1a and 1b with organolithium reagents.
In summary, we have developed a highly regio-, enantio- and anti-selective procedure for the catalytic asymmetric ring opening of oxabicyclic alkenes for the first time using organolithium reagents. The use of BF$_3$-OEt$_2$ proved to be necessary for the activation of the oxabicyclic alkene. Further studies are in progress towards the discovery of other catalytic applications for organolithium reagents for the practical synthesis of valuable chiral building blocks.

Financial support from The Netherlands Organization for Scientific Research (NWO-CW) is acknowledged. M.P. thanks the Xunta de Galicia for an Angeles Alvariño contract and Fondo Social Europeo.

Notes and references
22 Use of triphenylphosphine (PPh$_3$, 10 mol%) as the ligand gave the racemic products with excellent anti selectivity (anti : syn > 99 : 1).