Asymmetric Allylic Alkylation of Acyclic Allylic Ethers with Organolithium Reagents

Perez, Manuel; Fananas-Mastral, Martin; Hornillos, Valentin; Rudolph, Alena; Bos, Pieter H.; Harutyunyan, Syuzanna R.; Feringa, Ben L.

Published in:
Chemistry : a European Journal

DOI:
10.1002/chem.201202251

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012

Asymmetric Allylic Alkylation of Acyclic Allylic Ethers with Organolithium Reagents

Manuel Pérez, Martín Fañanás-Mastral, Valentín Hornillos, Alena Rudolph, Pieter H. Bos, Syuzanna R. Harutyunyan,* and Ben L. Feringa* [a]

chem_201202251_sm_miscellaneous_information.pdf
Table of Contents

General Procedures

Preparation of allylic ethers 1b, 2b, 1d, 1e, 1g and 2d:

General procedure for the copper-catalyzed allylic alkylation of allyl ethers 1-2 with organolithium reagents.

General protocol for the hydroboration and oxidation of alkenes 3

General protocol for the reductive ozonolysis of alkenes 3

Screening results

Table S1. Screening of allylic leaving groups
Table S2. Copper and Lewis acid effect
Table S3. Ligand screening
Table S4. Copper salts screening
Table S5. Ratio Cu/Ligand
Table S6. Organolithium dilution (co-solvent) studies
Table S7. Lewis acid screening
Table S8. Addition procedure
Table S9. Number of equivalents of Lewis acid
Table S10. Addition time

Compound Characterization

Synthesis of (S)-Arundic acid 7.

NMR spectra of new compounds and intermediates in the synthesis of (S)-Arundic acid
General Procedures:

Chromatography: Merck silica gel type 9385 230-400 mesh, TLC: Merck silica gel 60, 0.25 mm. Components were visualized by UV and cerium/molybdenum or potassium permanganate staining. Progress and conversion of the reactions were determined by GC-MS (GC, HP6890: MS HP5973) with an HP1 or HP5 column (Agilent Technologies, Palo Alto, CA). Mass spectra were recorded on an AEI-MS-902 mass spectrometer (EI+) or a LTQ Orbitrap XL (ESI+). $^1$H- and $^{13}$C-NMR were recorded on a Varian AMX400 (400 and 100.59 MHz, respectively) or a Varian VXR300 (300 and 75 MHz, respectively) using CDCl$_3$ as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl$_3$: $\delta$ 7.26 for $^1$H, $\delta$ 77.0 for $^{13}$C). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Carbon assignments are based on APT $^{13}$C-NMR experiments. Optical rotations were measured on a Schmidt + Haensch polarimeter (Polartronic MH8) with a 10 cm cell ($c$ given in g/100 mL). Enantiomeric excesses were determined by HPLC analysis using a Shimadzu LC-10ADVP HPLC equipped with a Shimadzu SPD-M10AVP diode array detector or by capillary GC analysis (HP 6890, CP-Chiralsil-Dex-CB column (25 m x 0.25 mm) or ChiralDEX G-TA (30 m x 0.25 mm x 0.25 μm) using flame ionization detector.

All reactions were carried out under a nitrogen atmosphere using oven dried glassware and using standard Schlenk techniques. Dichloromethane was dried and distilled over calcium hydride; toluene, THF and n-hexane were dried and distilled over sodium. All copper-salts (CuBr•SMe$_2$, CuTC, CuI, CuCN, Cu(OTf)$_2$ and Cu(OTf)•C$_6$H$_6$) were purchased from Aldrich, and used without further purification. Allyl esters S1, S2 and ethers S3-S7, 1a, 2a, 1c, 2c, 2f and 2g were prepared following literature procedures (S1, $^1$S2, $^2$S3, $^3$S4, $^4$S5, $^5$S6, $^6$S7, $^7$1a, $^8$2a, $^9$1c, $^{10}$2c, $^{10}$2f$^{11}$ and 2g$^{12}$).

---

Organolithium reagents were purchased from Aldrich (MeLi 1.6 M in Et₂O), (n-HexLi (2.3 M in n-hexane), (PhLi 1.8 M in dibutyl ether), or from Acros (n-BuLi 1.6 M in n-hexane). (R,R)-TaniaPhos (L4) was purchased from Aldrich. Phosphoramidite ligands L1,13 (L2, L6-8),14 L315 and L516 were prepared as reported in the literature. Racemic products were synthesized by reaction of the allyl ethers 1/2 and the corresponding organolithium reagent at -78°C in CH₂Cl₂ in the presence of CuBr•SMe₂ (5.5 mol%) and a racemic mixture of L1 (11 mol%).

**Preparation of allylic ethers 1b, 2b, 1d, 1e, 1g and 2d:**

Allyl ethers 1b, 2b, 1d, 1e and 2d were synthesized from the corresponding aldehydes by a three-step procedure; involving a classic Wittig olefination/Dibal-H reduction/etherification sequence.

![Wittig olefination/Dibal-H reduction/etherification sequence](image)

The allylic ether 1g was synthesized from the corresponding allylic bromide17 by treatment with a 25 % solution of MeONa in MeOH.

---

Spectroscopic data of allyl ethers 1/2 that have not been previously reported are presented below.

\[(E)-1-(3\text{-}methoxyprop-1\text{-}enyl)naphthalene (1b): \text{ } ^1H \text{ NMR (400 MHz, CDCl}_3\text{), } \delta: 8.13 (d, J = 7.8 \text{ Hz}, 1H), 7.83 (d, J = 8.7 \text{ Hz}, 1H), 7.76 (d, J = 8.1 \text{ Hz}, 1H), 7.60 (d, J = 7.1 \text{ Hz}, 1H), 7.51 - 7.34 (m, 3H), 6.33 (t, J = 5.8 \text{ Hz}, 1H), 6.29 (t, J = 5.8 \text{ Hz}, 1H), 4.18 (d, J = 5.8 \text{ Hz}, 2H), 3.45 (s, 3H). ^13C \text{ NMR (100 MHz, CDCl}_3\text{), } \delta: 134.5, 133.6, 131.2, 129.4, 129.2, 128.5, 128.0, 126.0, 125.7, 125.6, 123.9, 123.8, 73.2, 58.0.\]

\[(E)-1-(3\text{-}(benzyloxy)prop-1\text{-}enyl)naphthalene (2b): \text{ } ^1H \text{ NMR (400 MHz, CDCl}_3\text{), } \delta: 8.24 (d, J = 7.8 \text{ Hz}, 1H), 7.96 (d, J = 7.3 \text{ Hz}, 1H), 7.89 (d, J = 8.2 \text{ Hz}, 1H), 7.73 (d, J = 7.2 \text{ Hz}, 1H), 7.68 - 7.38 (m, 8H), 6.50 (t, J = 5.9 \text{ Hz}, 1H), 6.46 (t, J = 5.9 \text{ Hz}, 1H), 4.76 (s, J = 13.6 \text{ Hz}, 2H), 4.41 (dd, J = 5.9, 1.4 \text{ Hz}, 2H). ^13C \text{ NMR (100 MHz, CDCl}_3\text{), } \delta: 138.4, 134.6, 133.7, 131.2, 129.6, 129.4, 128.6, 128.5 (2C), 128.1, 127.9 (2C), 127.8, 126.1, 125.8, 125.7, 124.0, 123.9, 72.3, 71.0.\]

\[(E)-1\text{-}methoxyhex-2\text{-}ene (1d): \text{ } ^1H \text{ NMR (400 MHz, CDCl}_3\text{), } \delta: 5.69 (dt, J = 14.4, 6.6 \text{ Hz}, 1H), 5.54 (dt, J = 14.0, 6.2 \text{ Hz}, 1H), 3.86 (d, J = 6.2 \text{ Hz}, 2H), 3.31 (s, 3H), 2.02 (q, J = 6.9 \text{ Hz}, 2H), 1.45 - 1.36 (m, 2H), 0.90 (t, J = 7.4 \text{ Hz}, 3H). ^13C \text{ NMR (100 MHz, CDCl}_3\text{), } \delta: 135.0, 125.9, 73.4, 57.5, 34.3, 22.6, 14.0.\]

\[(E)-1\text{-}methoxyundec-2\text{-}ene (1e): \text{ } ^1H \text{ NMR (400 MHz, CDCl}_3\text{), } \delta: 5.68 (dt, J = 14.1, 6.6 \text{ Hz}, 1H), 5.52 (dt, J = 15.3, 6.2 \text{ Hz}, 1H), 3.84 (d, J = 6.2 \text{ Hz}, 2H), 3.29 (s, 3H), 2.02 (q, J
= 6.9 Hz, 2H), 1.46 – 1.20 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃), δ: 134.9, 126.0, 73.3, 57.5, 32.3, 31.8, 29.4, 29.2, 29.2, 29.1, 22.6, 14.0.

**(E)-((hex-2-enyloxy)methyl)benzene (2d):** ¹H NMR (400 MHz, CDCl₃), δ: 7.58-7.27 (m, 5H), 5.83 (dt, J = 14.4, 6.0 Hz, 1H), 5.72 (dt, J = 15.4, 6.1 Hz, 1H), 4.61 (s, 2H), 4.09 (d, J = 6.0 Hz, 2H), 2.16 (dd, J = 13.7, 6.7 Hz, 2H), 1.51 – 1.42 (m, 2H), 1.04 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃), δ: 138.4, 134.5, 128.2 (2C), 127.6 (2C), 127.3, 126.3, 71.8, 70.8, 34.3, 22.1, 13.6.

**(E)-((4-methoxybut-2-enyloxy)methyl)benzene (1g):** ¹H NMR (400 MHz, CDCl₃), δ: 7.43-7.28 (m, 5H), 5.87 – 5.80 (m, 2H), 4.52 (s, 2H), 4.05 (d, J = 4.1 Hz, 2H), 3.94 (d, J = 4.0 Hz, 2H), 3.34 (s, 3H). ¹³C NMR (100 MHz, CDCl₃), δ: 135.6, 127.0, 126.7, 125.8 (2C), 125.2 (2C), 125.0, 69.8, 69.5, 67.4, 55.3.

**General procedure for the copper-catalyzed allylic alkylation of allyl ethers 1-2 with organolithium reagents.**

A Schlenk tube equipped with septum and stirring bar was charged with CuTC (0.01 mmol, 1.90 mg, 5 mol%) and the appropriate ligand (0.022 mmol, 11 mol%). Dry dichloromethane (0.5 mL) was added and the solution was stirred under nitrogen at room temperature for 15 min. In another Schlenk tube BF₃•OEt₂ (0.4 mmol, 50 µL, 2.0 eq) was added to a solution of TMSOTf (1.2 mmol, 215 µL, 6.0 eq) in dichloromethane (0.5 mL) at -80 °C, and the resulting “BF₂OTf” solution was stirred for 15 min. Then, the corresponding allyl ether 1-2 (0.2 mmol) in CH₂Cl₂ (1 mL) was added at -80 °C to the copper/ligand solution prepared earlier and subsequently a solution of “BF₂OTf” in dichloromethane (0.4 mmol, 600 µL, 2.0 eq) was added. In a separate Schlenk tube, the corresponding organolithium reagent (0.30 mmol, 1.5 eq) was diluted with hexane (combined volume of 1 mL) under nitrogen and added dropwise to the reaction mixture.

---

over 2 h using a syringe pump. The reaction was quenched with a saturated aqueous NH₄Cl solution (2 mL) and the mixture was warmed up to room temperature, diluted with dichloromethane and the layers were separated. The aqueous layer was extracted with dichloromethane (3 x 5 mL) and the combined organic layers were dried with anhydrous Na₂SO₄, filtered and the solvent was evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using different mixtures of n-pentane:Et₂O as the eluent.

**Note:** Gas chromatography analysis was carried out to determine the branched:linear (b:l) ratio on a sample obtained after aqueous extraction with dichloromethane, which has been passed through a short plug of silica gel to remove transition metal residues.

**Note 2:** In some cases it was necessary to carry out a hydroboration/oxidation or an ozonolysis/reduction protocol to determine the enantiomeric ratios of the products (vide infra).

### General protocol for the hydroboration and oxidation of alkenes 3

\[
\begin{align*}
\text{R}^1 \text{R}^2 \text{C} = \text{C} \text{R}^3 & \xrightarrow{1) \text{9-BBN} (3 \text{eq), THF, rt}} \text{R}^1 \text{R}^2 \text{C} = \text{O} \text{R}^3 \\
& \xrightarrow{2) \text{H}_2\text{O}_2 (30\% \text{ in water}, \text{NaOH})} \text{R}^1 \text{R}^2 \text{C} = \text{OH} \text{R}^3
\end{align*}
\]

To a suspension of the alkene (1 mmol) in dry THF (3 mL), 9-BBN in THF (0.5 M, 3 mmol, 3 eq) was added and the mixture was stirred at room temperature for 2 h. Then, ethanol (4.5 mL), an aqueous solution of NaOH (6.0 M, 1.2 mL) and H₂O₂ (30 % in water, 7 mL) were added at 0 °C and the reaction mixture was stirred for 1 h. The reaction was quenched with brine and the mixture extracted with ethyl acetate (3 x 10 mL). The organic layer was dried with MgSO₄, filtered and the solvent evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using different mixtures of n-pentane:Et₂O as the eluent.
General protocol for the reductive ozonolysis of alkenes 3

Ozone was bubbled for 30 min through a solution of the alkene (0.081 mmol) in a mixture of DCM (2 mL) and MeOH (2 mL) at -78 °C. After stirring for 15 min (solution stays blue) the reaction mixture was purged with nitrogen. Sodium borohydride (7.68 mg, 0.203 mmol, 2.5 eq) was added and the mixture was warmed to room temperature and stirred for 2h. The reaction was quenched by addition of a 1M aqueous HCl solution. The layers were separated and the aqueous layer was extracted with DCM twice. The combined organic layers were dried with sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using different mixtures of n-pentane:Et₂O as the eluent.
Screening results:

Table S1. Screening of allylic leaving groups.

![Image of chemical reaction]

<table>
<thead>
<tr>
<th>Entry</th>
<th>OR</th>
<th>Ligand</th>
<th>Lewis Acid</th>
<th>3a:4a</th>
<th>3a, e.r.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1, -OBz</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>-</td>
<td>-</td>
<td>50%</td>
</tr>
<tr>
<td>2</td>
<td>S2, -OAc</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>100:0</td>
<td>-</td>
<td>45%</td>
</tr>
<tr>
<td>3</td>
<td>S3, -OPh</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>S4, -OTHP</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>S5, -OMOM</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>0:100</td>
<td>-</td>
<td>40%</td>
</tr>
<tr>
<td>6</td>
<td>S6, -Oi-Pr</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>12:88</td>
<td>-</td>
<td>55%</td>
</tr>
<tr>
<td>7</td>
<td>S7, -OTBS</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>8:92</td>
<td>70:30</td>
<td>60%</td>
</tr>
<tr>
<td>8</td>
<td>1a, -OMe</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>55:45</td>
<td>84:16</td>
<td>100%</td>
</tr>
<tr>
<td>9</td>
<td>2a, -OBn</td>
<td>L1</td>
<td>BF₃OEt₂</td>
<td>37:63</td>
<td>91:9</td>
<td>100%</td>
</tr>
</tbody>
</table>

*aConditions: 0.2 mmol of allylic ether, 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH₂Cl₂, 2 h addition time, 1.5 eq of BF₃OEt₂. bRecovered the corresponding allylic alcohol. cRecovered 40% of allylic alcohol and 5% of 10a.

Table S2. Copper and Lewis acid effect

<table>
<thead>
<tr>
<th>Entry</th>
<th>CuBr'SMe₂ (Eq)</th>
<th>BF₃OEt₂</th>
<th>Ligand</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>1,5 Eq</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>3</td>
<td>0.05 Eq</td>
<td>-</td>
<td>L1</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>0.05 Eq</td>
<td>1,5 Eq</td>
<td>L1</td>
<td>100%</td>
</tr>
</tbody>
</table>

*aConditions: 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH₂Cl₂, 2 h addition time and 1.5 eq of BF₃OEt₂.
Table S3. Ligand screening.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lig./Cu</th>
<th>Cu Salt</th>
<th>Lig.</th>
<th>( \text{SN}_2^{'}:\text{SN}_2 )</th>
<th>e.r.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/1</td>
<td>CuBr SMe_2</td>
<td>L1</td>
<td>63%:37%</td>
<td>90:10</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>2/1</td>
<td>CuTC</td>
<td>L1</td>
<td>67%:33%</td>
<td>91:9</td>
<td>70%</td>
</tr>
<tr>
<td>3</td>
<td>2/1</td>
<td>CuI</td>
<td>L1</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>2/1</td>
<td>CuCN</td>
<td>L1</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>2/1</td>
<td>Cu(OTf)_2</td>
<td>L1</td>
<td>52%:48%</td>
<td>89:11</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>2/1</td>
<td>Cu(OTf)_2 C_6H_6</td>
<td>L1</td>
<td>55%:45%</td>
<td>93:7</td>
<td>100%</td>
</tr>
</tbody>
</table>

“Conditions: 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH_2Cl_2, 2 h addition time and 1.5 eq of BF_3 OEt_2”

Table S4. Copper salts screening.

Entry | Lig./Cu | Cu Salt | Lig. | \( \text{SN}_2^{'}:\text{SN}_2 \) | e.r. | Conv. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/1</td>
<td>CuBr SMe_2</td>
<td>L1</td>
<td>63%:37%</td>
<td>90:10</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>2/1</td>
<td>CuTC</td>
<td>L1</td>
<td>67%:33%</td>
<td>91:9</td>
<td>70%</td>
</tr>
<tr>
<td>3</td>
<td>2/1</td>
<td>CuI</td>
<td>L1</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>4</td>
<td>2/1</td>
<td>CuCN</td>
<td>L1</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>2/1</td>
<td>Cu(OTf)_2</td>
<td>L1</td>
<td>52%:48%</td>
<td>89:11</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>2/1</td>
<td>Cu(OTf)_2 C_6H_6</td>
<td>L1</td>
<td>55%:45%</td>
<td>93:7</td>
<td>100%</td>
</tr>
</tbody>
</table>

“Conditions: 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH_2Cl_2, 2 h addition time and 1.5 eq of BF_3 OEt_2”
Table S5. Cu/Ligand ratio.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lig/Cu</th>
<th>Cu Salt</th>
<th>Ligand</th>
<th>S$<em>{2}$:S$</em>{2}´$</th>
<th>e.r.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/1</td>
<td>CuBr.SMe$_{2}$</td>
<td>L1</td>
<td>55%:45%</td>
<td>84:16</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>2/1</td>
<td>CuBr.SMe$_{2}$</td>
<td>L1</td>
<td>63%:37%</td>
<td>90:10</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>1/1</td>
<td>CuBr.SMe$_{2}$</td>
<td>L2</td>
<td>73%:27%</td>
<td>97:3</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>2/1</td>
<td>CuBr.SMe$_{2}$</td>
<td>L2</td>
<td>80%:20%</td>
<td>97:3</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Conditions: 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH$_2$Cl$_2$, 2 h addition time and 1.5 eq of BF$_3$.OEt$_2$.

Table S6. Organolithium dilution (co-solvent) studies.

<table>
<thead>
<tr>
<th>Entry</th>
<th>RLi</th>
<th>Co-solvent</th>
<th>S$<em>{2}$:S$</em>{2}´$</th>
<th>e.r.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n-BuLi (1.6 M in Hexanes)</td>
<td>0.25 M in Hexane/Et$_2$O</td>
<td>50%:50%</td>
<td>-</td>
<td>5%</td>
</tr>
<tr>
<td>2</td>
<td>n-BuLi (1.6 M in Hexanes)</td>
<td>1.6 M in Hexane</td>
<td>33%:66%</td>
<td>78:26</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>n-BuLi (1.6 M in Hexanes)</td>
<td>0.25 M in Hexane</td>
<td>63%:37%</td>
<td>90:10</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>n-BuLi (1.6 M in Hexanes)</td>
<td>0.10 M in Hexane</td>
<td>48%:52%</td>
<td>85:15</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>MeLi (1.6 M in Et$_2$O)</td>
<td>0.25 M in Hexane/Et$_2$O</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>PhLi (1.8 M in Bu$_2$O)</td>
<td>0.25 M in Hexane/Et$_2$O</td>
<td>-:-</td>
<td>-</td>
<td>0%</td>
</tr>
</tbody>
</table>

* Conditions: 1.5 eq of RLi diluted, 0.1 M in CH$_2$Cl$_2$, 2 h addition time, 1.5 eq of BF$_3$.OEt$_2$ and L1/CuBr.SMe$_{2}$ ratio was 2/1.
Table S7. Lewis acid screening.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis acid</th>
<th>OR</th>
<th>Cu salts</th>
<th>Lig</th>
<th>3a: 4a</th>
<th>3a, e.r.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BF$_3$OE$_2$</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>63:37</td>
<td>90:10</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>BB$_3$</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>BC$_3$</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>B(OF)$_3$</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>5</td>
<td>B(Et)$_3$</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>6</td>
<td>BF$_3$ t-BuOMe</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>7</td>
<td>TMSCl</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>8</td>
<td>TMSOTf</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>-</td>
<td>-</td>
<td>0%</td>
</tr>
<tr>
<td>9</td>
<td>BF$_3$OE$_2$(2.0 eq) / TMSCl (4.0 eq)</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>50:50</td>
<td>89:11</td>
<td>90%</td>
</tr>
<tr>
<td>10</td>
<td>BF$_3$OE$_2$(1.5 eq) / TMSOTf (3.0 eq)</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L1</td>
<td>75:25</td>
<td>93:7</td>
<td>100%</td>
</tr>
<tr>
<td>11</td>
<td>BF$_3$OE$_2$(1.5 eq) / TMSOTf (3.0 eq)</td>
<td>OMe</td>
<td>CuBrSMe$_2$</td>
<td>L2</td>
<td>87:13</td>
<td>97:3</td>
<td>72%</td>
</tr>
<tr>
<td>12</td>
<td>BF$_3$OE$_2$(2.0 eq) / TMSOTf (4.0 eq)</td>
<td>OMe</td>
<td>CuTC</td>
<td>L2</td>
<td>91:9</td>
<td>98:2</td>
<td>80%</td>
</tr>
<tr>
<td>13</td>
<td>BF$_3$OE$_2$(2.0 eq) / TMSOTf (6.0 eq)</td>
<td>OMe</td>
<td>CuTC</td>
<td>L2</td>
<td>91:9</td>
<td>99:1</td>
<td>80%</td>
</tr>
<tr>
<td>14</td>
<td>BF$_3$OE$_2$(2.0 eq) / TMSOTf (6.0 eq)</td>
<td>OMe</td>
<td>CuTC</td>
<td>L2</td>
<td>95:5</td>
<td>99:1</td>
<td>86%</td>
</tr>
</tbody>
</table>

*Conditions: 0.2 mmol of allylic ether, 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH$_2$Cl$_2$, 2 h addition time.  
*1.5 eq of Lewis acid. The mixtures of Lewis acids were used in 0.5 mL of CH$_2$Cl$_2$ at -80 °C.  
*Complete conversion was obtained, but the products were the corresponding allylic bromide and chloride, respectively.  
*d100% conversion, isolated yield in parenthesis.
Table S8. Addition procedure.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>$n$-BuLi</th>
<th>Lig/Cu</th>
<th>SN2':SN2</th>
<th>e.r.</th>
<th>Addition procedure</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.25 M in Hexane/CH$_2$Cl$_2$</td>
<td>1/1</td>
<td>25%:75%</td>
<td>94:6</td>
<td>Slow addition of BF$_3$OEt$_2$ in CH$_2$Cl$_2$</td>
<td>65%</td>
</tr>
<tr>
<td>2</td>
<td>0.25 M Hexane</td>
<td>2/1</td>
<td>50%:50%</td>
<td>85:15</td>
<td>Double addition: a) BF$_3$OEt$_2$ in CH$_2$Cl$_2$ b) $n$-BuLi in hexanes (different syringes)</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Conditions: 1.5 eq of $n$-BuLi diluted, 0.1 M in CH$_2$Cl$_2$, 2 h addition time, 1.5 eq of BF$_3$OEt$_2$ and CuBrSMe$_2$.

Table S9. Number of equivalents of Lewis acid.

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Eq of BF$_3$OEt$_2$</th>
<th>Lig./Cu</th>
<th>SN2'/SN2</th>
<th>e.e.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.95</td>
<td>1/1</td>
<td>50%/50%</td>
<td>68%</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
<td>1/1</td>
<td>55%/45%</td>
<td>68%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>1/1</td>
<td>55%/45%</td>
<td>71%</td>
<td>100%</td>
</tr>
</tbody>
</table>

* Conditions: 1.5 eq of $n$-BuLi diluted in hexane, 0.1 M in CH$_2$Cl$_2$, 2 h addition time, BF$_3$OEt$_2$ and CuBrSMe$_2$. 

S13
Table S10. Addition time.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Addition time</th>
<th>Ligand</th>
<th>SN2'/SN2</th>
<th>e.e.</th>
<th>Conv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1h</td>
<td>L1</td>
<td>45%/55%</td>
<td>68%</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>2h</td>
<td>L1</td>
<td>55%/45%</td>
<td>68%</td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>5h</td>
<td>L1</td>
<td>50%/50%</td>
<td>79%</td>
<td>100%</td>
</tr>
<tr>
<td>4</td>
<td>2h</td>
<td>L2</td>
<td>73%/27%</td>
<td>94%</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>5h</td>
<td>L2</td>
<td>70%/30%</td>
<td>93%</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>1h</td>
<td>L3</td>
<td>55%/45%</td>
<td>0%</td>
<td>100%</td>
</tr>
<tr>
<td>7</td>
<td>2h</td>
<td>L3</td>
<td>50%/55%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

*Conditions: 1.5 eq of n-BuLi diluted in hexane, 0.1 M in CH₂Cl₂, 1.5 eq of Lewis acid and CuBr·SMe₂*
**Compound characterization**

(+)-(S)-**hept-1-en-3-yl**benzene (3a): Colorless oil obtained from 2a after 2 h addition of $n$-BuLi as a 95:5 mixture of 3a and 4a after column chromatography (SiO$_2$, $n$-pentane), [86% yield, 99:1 e.r.].

The physical data were identical in all respects to those previously reported.$^{19}$

$\left[\alpha\right]_D^{20} = +49.0 (c = 1.0, CHCl_3)$, [lit.$^{19}$ (97:3 e.r.): $\left[\alpha\right]_D^{20} = +47 (c = 0.5, CHCl_3)$].

Enantiomeric ratio was determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25 m x 0.25 mm), initial temp. 80°C for 80 min, then 1°C/min to 140°C (hold for 5 min), then 10°C/min to 180°C (final temp), retention times (min.): 82.6 (minor) and 83.6 (major).

(+)-(S)-**non-1-en-3-yl**benzene (3b): Colorless oil obtained from 2a as a 96:4 mixture of 3b and 4b after column chromatography (SiO$_2$, $n$-pentane), [92% yield, > 99:1 e.r.].

The physical data were identical in all respects to those previously reported.$^{19,20}$

$\left[\alpha\right]_D^{20} = +28.0 (c = 1.0, CHCl_3)$, [lit.$^{19}$ (> 99:1 e.r.): $\left[\alpha\right]_D^{20} = +29.2 (c = 1.0, CHCl_3)$].

The enantiomeric ratio was determined for the primary alcohol obtained following the hydroboration and oxidation protocol of the terminal double bond (*vide supra*).

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OJ-H column, $n$-heptane/$i$-PrOH 99:1, 40 °C, 210 nm, retention times (min.): 18.7 (major) and 21.0 (minor).

---


(-)-(S)-1-(hept-1-en-3-yl)naphthalene (3c): Colorless oil obtained from 2b after column chromatography (SiO₂, n-pentane), [84% yield, 99:1 e.r.].

The physical data were identical in all respects to those previously reported.\(^{19}\) 
\[\alpha\]\(_{D}^{20}\) = -8.0 (c = 1.0, CHCl₃), [lit.\(^{19}\) (98:2 e.r.): \[\alpha\]\(_{D}^{20}\) = -7.6 (c = 0.9, CHCl₃)].

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OD-H column, n-heptane/i-PrOH 99.75:0.25, 40 °C, 240 nm, retention times (min.): 17.2 (major) and 20.2 (minor).

\[\alpha\]\(_{D}^{20}\) = -2.0 (c = 1.0, CHCl₃).

In accordance with the results obtained in the related allylic alkylations, the absolute configuration of this compound is assumed to be (S), analogous to the related products.

(-)-1-(non-1-en-3-yl)naphthalene (3d): Colorless oil obtained from 2b as a 98:2 mixture of 3d and 4d after column chromatography (SiO₂, n-pentane), [80% yield, 98:2 e.r.].

\(^1\)H NMR (400 MHz, CDCl₃): 8.14 (d, \(J = 8.4\) Hz, 1H), 7.86 (dd, \(J = 8.6, 7.1\) Hz, 1H), 7.73 (d, \(J = 8.0\) Hz, 1H), 7.60 – 7.32 (m, 4H), 6.16 – 6.01 (m, 1H), 5.16 – 5.03 (m, 2H), 4.11 (q, \(J = 7.2\) Hz, 1H), 1.96 – 1.77 (m, 2H), 1.47 – 1.17 (m, 8H), 0.87 (t, \(J = 6.9\) Hz, 3H).

\(^{13}\)C NMR (100 MHz, CDCl₃): 142.1, 140.7, 134.0, 131.7, 128.9, 126.6, 125.7, 125.5, 125.3, 123.9, 123.4, 114.4, 44.3, 35.3, 31.8, 29.4, 27.7, 22.6, 14.1.

\[\alpha\]\(_{D}^{20}\) = -2.0 (c = 1.0, CHCl₃).

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OD-H column, n-heptane/i-PrOH 99.75:0.25, 40 °C, 240 nm, retention times (min.): 16.7 (major) and 22.7 (minor). HRMS (ESI+, \(m/z\)): calcd for C₁₉H₂₄ [M+H]\(^{+}\): 253.19508; found: 253.19712.

In accordance with the results obtained in the related allylic alkylations, the absolute configuration of this compound is assumed to be (S), analogous to the related products.
(±)-(S)-1-chloro-4-(hept-1-en-3-yl)benzene (3e): Colorless oil obtained from 2c as a 97:3 mixture of 3e and 4e after column chromatography (SiO₂, n-pentane), [81% yield, 99:1 e.r.]. The physical data were identical in all respects to those previously reported.\(^\text{19}\) \([\alpha]_D^{20} = +35.0 \) (c = 1.0, CHCl₃), [lit.\(^\text{19}\) (99:1 e.r.): \([\alpha]_D^{20} = +36.6 \) (c = 1.0, CHCl₃)].

Enantiomeric ratio was determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25 m x 0.25 mm), initial temp. 130°C for 60 min, then 10°C/min to 175°C (hold for 5 min, final temp), retention times (min.): 18.8 (minor) and 19.1 (major).

(±)-(S)-1-chloro-4-(non-1-en-3-yl)benzene (3f): Colorless oil obtained from 2c as a 90:10 mixture of 3f and 4f after column chromatography (SiO₂, n-pentane), [79% yield, >99:1 e.r.]. The physical data were identical in all respects to those previously reported.\(^\text{19,21}\) \([\alpha]_D^{20} = +22.8 \) (c = 1.0, CHCl₃), [lit.\(^\text{19}\) (> 99:1 e.r.): \([\alpha]_D^{20} = +18.0 \) (c = 1.0, CHCl₃)].

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OJ-H column, 0.5 mL/min, n-heptane/i-PrOH 100:0, 40 °C, 215 nm, retention times (min): 7.9 (major) and 9.6 (minor).

(S)-3-methylnon-1-ene (3i): Colorless solution in CH₂Cl₂ was obtained from 2f as a 97:3 mixture of 3i and 4i [conversion of 100%, 95:5 e.r.]. The high volatility of the products 3i and 4i did not allow removing all the solvents after worked up, impeding the determination of an accurate isolated yield.

Enantiomeric ratio was determined by chiral GC analysis, CP-Chiralsil-Dex-CB (25m x 0.25mm) initial temp. 55ºC for 30 min (final temp), retention times (min.): 25.3 (major) and 27.3 (minor). In accordance with the results obtained in the other allylic alkylations, the absolute configuration of this compound is assumed to be (S), analogous to the related products.

![Chemical structure](image)

(+)-(S)-((2-vinylhexyl)oxy)methyl)benzene (3j): Colorless oil obtained from 1g after column chromatography (SiO₂, n-pentane), [51% yield, conversion of 60%, 93:7 e.r.]. The physical data were identical in all respects to those previously reported.¹⁹

\[
\alpha_D^{20} = +10.0 \quad (c = 1.0, \text{CHCl}_3), \quad \text{[lit.}^{19} \text{ (97:3 e.r.): } \alpha_D^{20} = +18.5 \quad (c = 2.2, \text{CHCl}_3)]
\]

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OD-H column, 0.5 mL/min, n-heptane/i-PrOH 100:0, 40 °C, retention times (min): 11.4 (minor) and 13.0 (major).

![Chemical structure](image)

(+)-(S)-((2-vinyloctyl)oxy)methyl)benzene (3k): Colorless oil obtained from 2g after column chromatography (SiO₂, n-pentane), [45% yield, conversion of 55%, 98:2 e.r.]. The physical data were identical in all respects to those previously reported.¹⁹ᵇ

\[
\alpha_D^{20} = +12.0 \quad (c = 1.0, \text{CHCl}_3), \quad \text{[lit.}^{19b} \text{ (93:7 e.r.): } \alpha_D^{20} = +8.2 \quad (c = 1.0, \text{CHCl}_3)]
\]

Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OD-H column, 0.5 mL/min, n-heptane/i-PrOH 100:0, 40 °C, retention times (min): 11.4 (minor) and 13.1 (major).
**Synthesis of (S)-Arundic acid:**

(-)-(S)-2-propyroctanoic acid \((6)\): \(n\)-Hexyllithium was added to 2d following the general procedure for the copper-catalyzed allylic alkylation of allyl ethers (see p. S6). A 95:5 mixture of 3g and 4g \([\text{conversion of 100\%, } >99:1 \text{ e.r.}]\) was obtained. The high volatility of the products 3g and 4g did not allow to completely remove the solvents after work up, impeding the determination of an accurate isolated yield. The mixture of 3g and 4g in \(\text{CH}_2\text{Cl}_2\) (10 mL) as obtained directly from the work up of the allylic alkylation, was diluted with MeOH (5 mL) and treated by reductive ozonolysis \((\text{vide supra})\). After column chromatography (SiO\(_2\), 10\% \(\text{Et}_2\text{O}/n\)-pentane) the alcohol 6 was obtained in 72\% yield (overall yield for the two steps) and with >99:1 e.r. The physical data were identical in all respects to those previously reported.\(^{22}\) \([\alpha]_D^{20} = -3.8 \ (c = 0.75, \text{MeOH})\), Enantiomeric ratio was determined after preparation of (S)-Arundic acid 7 \((\text{vide infra})\).

\(\text{(+)-(S)-2-propyroctanoic acid (7)}\): To a solution of alcohol 6 (18 mg; 96 \(\mu\)mol) in a mixture of \(\text{CH}_3\text{CN}:\text{H}_2\text{O} \ (1:1) \ (2 \text{ mL})\), were added iodobenzene diacetate (60 mg; 192 \(\mu\)mol) and TEMPO (1.5 mg; 9.6 \(\mu\)mol). The mixture was stirred at room temperature for 10 h. Subsequently the reaction mixture was extracted with \(\text{CH}_2\text{Cl}_2\) (3 \(\times\) 10 mL) and the combined organic phases were dried over MgSO\(_4\), filtered and concentrated by rotatory

---

evaporation. The obtained residue was purified by column chromatography (SiO₂, 20% Et₂O/n-pentane), yielding the desired compound [94% yield, >99:1 e.r.]. The physical data were identical in all respects to those previously reported.²²,²³ \( [\alpha]_D^{20} = +5.1 \) (c = 1.0, EtOH), [lit.²³ (94:6 er): \( [\alpha]_D^{20} = +5.5 \) (c = 0.38, CH₂Cl₂)]. HRMS (ESI+, m/z): calcd for C₁₁H₂₅O₂ [M+H]⁺: 187.16926; found: 187.16843.

**Determination of the enantiomeric ratio of (S)-Arundic acid 7**

The enantiomeric ratio was determined by conversion of (S)-Arundic acid 7 into the corresponding phenacyl ester 8.

\[ \text{Et}_3\text{N, CH}_2\text{Cl}_2 \]

\[ \text{n-Hex} \quad \text{OH} \quad \text{Br} \quad \text{n-Hex} \quad \text{O} \]

7

8

To a solution of (S)-Arundic acid 7 (18 mg, 0.097 mmol) in CH₂Cl₂ (2 mL), Et₃N (50 µL, 0.359 mmol) and 2-bromoacetophenone (35 mg, 0.177 mmol) were added and the reaction mixture was stirred at room temperature for 5 h. Then, the solvents were removed under reduced pressure and the resulting residue was purified by column chromatography (SiO₂, 10% Et₂O/n-pentane). Enantiomeric ratio was determined by chiral HPLC analysis, Chiralcel OJ-H column, 0.5 mL/min, n-heptane/i-PrOH 99:1, 40 °C, retention times (min.): 17.7 (major) and 19.8 (minor).

HPLC traces of 8

Racemic:

Enantiopure:
NMR spectra of new compounds and intermediates in the synthesis of (S)-Arundic acid