Limited validity of parental recall on pregnancy, birth, and early childhood at child age 10 years
Jaspers, Merlijne; de Meer, Gea; Verhulst, Frank C.; Ormel, Johan; Reijneveld, Sijmen

Published in:
Journal of Clinical Epidemiology

DOI:
10.1016/j.jclinepi.2009.05.003

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2010

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Limited validity of parental recall on pregnancy, birth, and early childhood at child age 10 years

Merlijne Jaspers¹,*, Gea de Meer¹, Frank C. Verhulst¹, Johan Ormel³, Sijmen A. Reijneveld¹

¹Department of Health Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
²Department of Child & Adolescent Psychiatry, Erasmus MC-Sophia, Erasmus University Medical Center, Rotterdam, The Netherlands
³Department of Psychiatry, University Medical Center Groningen, University of Groningen, The Netherlands

Abstract

Objective: Evidence on the validity of parental recall of early childhood behavior is lacking. Our aim was to examine the validity of parental recall at child age 10–12 years for maternal lifestyle during pregnancy, the birth characteristics, and early childhood behavior.

Study Design and Setting: The study population comprised 2,230 children and their parents. Children aged 10–12 years were recruited from elementary schools (response: 76.0%). Parents were asked to recall lifestyle during pregnancy, birth characteristics, and childhood behavior at age 4–6 years. Recalled data were compared with information registered by Preventive Child Healthcare (PCH) from birth onwards.

Results: For birth weight and gestational age, we found no systematic difference between recalled and PCH-registered data; 95% limits of agreement were ±1.2 pounds (600 g) and ±2.4 weeks, respectively. For maternal alcohol use during pregnancy and early childhood behavior problems, Cohen’s kappas were low (0.03–0.11). Compared with PCH registration, parents tended to overreport at age 10–12 years. In contrast, kappa was high for maternal smoking during pregnancy (0.77).

Conclusion: Retrospectively collected information on lifestyle during pregnancy, birth, and early childhood behavior is sometimes biased, which limits its value in estimating the contribution of early-life adversity to health in later life.

Keywords: Validity; Recall bias; Parent; Child; Early-life adversity; Mental health

1. Introduction

The period from conception until school age is considered to be extremely important for children’s socioemotional development [1–3]. It can be a “window of opportunity” [4] and a “window of vulnerability,” depending on the outcome, and it can offer great opportunities to improve further life by reducing adverse environmental factors and/or empowering positive factors.

Early-life factors that are associated with future mental and physical health of the child concern either pregnancy, birth, or early childhood [5–14]. Pregnancy factors are, for example, maternal smoking, alcohol use, drug abuse, medication, and disease during pregnancy. These have been shown to be risk factors for the development of psychopathology [5,7–9,11], growth retardation, respiratory problems, cardiovascular disease, and other health problems [6,13]. Similarly, birth factors, such as low birth weight and premature birth, can lead to a number of health problems [8,13]. Early childhood factors are, for example, toddler sleep problems [10,14], early eating problems [15,16], and preschool problems with social behavior [2], which are predictors for later mental health problems.

Ideally, the effects of early-life factors should be considered in follow-up studies in which information on these factors is collected from various sources (e.g., parents and professional assessment) in the period from conception to school age; follow-up extends to adolescent or even adult age, and attrition and loss-to-follow-up rates are low. However, most studies rely on retrospective data collection, which may introduce information bias. This may concern recall bias because of differences in validity of subject recall, marked by an over- or underreport of information. Or it may, for instance, be rumination bias, which occurs when people with a disease tend to think harder about their prior exposures than healthy people, causing them to systematically remember exposure differently [17]. This distorts the measurement of the association between exposure and disease. The magnitude and direction of this distortion are difficult to predict.

Many previous studies on early risk factors for adverse future mental health relied on retrospectively collected data.
and included a limited number of risk factors. The validity of data collected retrospectively needs to be examined before using them to estimate relationships with health or developmental outcomes. Regarding early-life factors, previous studies found good recall for maternal smoking during pregnancy [18–20], for gestational age [20–22], and for birth weight [19,20,23–26], but not for alcohol use during pregnancy [18,19]. However, most of these studies covered a limited period of time and did not consider a combination of variables. So far, no studies are available on the validity of parental recall of early childhood behavior and neither of pre- and perinatal factors.

The aim of the current study is to examine the validity and precision of recall of maternal lifestyle during pregnancy, birth characteristics, and early childhood behavior in a community-based sample. For this purpose, we compared data on prenatal and early-life characteristics collected at child age 10–12 years with data registered by Preventive Child Healthcare (PCH) from birth onwards.

2. Methods

2.1. Study population and procedure

The Tracking Adolescents’ Individual Lives Survey (TRAILS) is a prospective cohort study among Dutch 10- to 12-year-old children aiming at adolescent psychosocial development and mental health. The TRAILS target sample was recruited in 2001 from elementary schools in five municipalities in the northern part of The Netherlands [27,28]. Of all children approached for enrollment in the study (N = 3,145), 6.7% were excluded because of mental or physical incapabilities or language problems. Of the remaining 2,935 children, 76.0% (N = 2,230, mean age = 11.09, standard deviation [SD] = 0.56, 50.8% girls), both child and parent, agreed to participate. Responders and nonresponders did not differ with respect to the prevalence of teacher-rated problem behavior or regarding associations between sociodemographic variables and mental health outcomes [27]. Data collection occurred by parent-completed questionnaire and a home visit by trained interviewers. Furthermore, participants were asked for permission to retrieve the child’s file from PCH. The PCH provides health and developmental monitoring to all Dutch children from birth until age 19 years, and the participation rate is over 90% [29,30].

For the current analyses, we used data from the PCH files on maternal lifestyle during pregnancy, birth characteristics, and early childhood behavior, and data from the first wave of TRAILS when the child was 10–12 years of age. Data of TRAILS wave 1 were collected by well-trained interviewers during a home visit, including parent-completed questionnaires that comprised the child behavior checklist (CBCL) and sociodemographic variables. Because surveillance protocols differed between the three participating PCH services, numbers for included variables differ considerably.

2.2. Maternal lifestyle during pregnancy

Maternal lifestyle during pregnancy concerned smoking and alcohol use. In TRAILS, these were asked for by the following questions: “How much did the mother smoke during pregnancy?” and “How much alcohol did the mother drink during pregnancy?” The answer categories comprised five categories varying from “never” to “more than two packs of cigarettes a day” for smoking, and from “never” to “more than 20 glasses per week” for alcohol use. For the current analyses, we compared “never” with the other categories combined (i.e., “ever”) for smoking or alcohol use. In the PCH files, smoking and alcohol use were assessed as: “Did the mother smoke during pregnancy?” and “Did the mother use alcohol during pregnancy?” respectively, similarly dichotomized as ever/never.

2.3. Birth characteristics

Birth characteristics concerned gestational age and birth weight. In TRAILS, these were asked in the form of the following questions: “How much did the child weigh at birth?” and “How many weeks did the pregnancy last?” in pounds (500 g) and weeks, respectively, which present common measures of birth weight and gestational age in The Netherlands. In the PCH files, these data were registered in grams and days, respectively, as provided by the obstetrician or midwife. Aiming at a similar precision of TRAILS and PCH data, the PCH data on birth weight were converted to pounds (500 g), and those on gestational age were converted to completed weeks.

2.4. Early childhood behavior

Early childhood behavior concerned “sleeping problems,” “eating problems,” and “social behavior problems” at age four to six years. In the TRAILS data collection, parents filled out a questionnaire on the child’s behavior when it was in kindergarten (age: four to six years). Sleeping and eating problems were considered to have occurred if parents gave a confirmative answer on the following questions: “Didn’t … (name child) want to eat?”; “Did … (name child) have problems falling asleep?”; “Did … (name child) have problems sleeping through the night?” Social behavior problems were assessed by the following questions: “In comparison with other children: …” “Was your child quickly anxious?”; “Was your child shy?”; “Was your child quick tempered?” Answering categories concerned a 5-point Likert scale (from “much more” to “much less”), and problems were considered to have occurred if parents reported “more” or “much more.”

In the PCH files, “sleeping or eating problems” were assessed by the following predefined questions: “Does the child have any problems eating?” and “Does the child have any sleeping problems?” “Social behaviour problems” were measured based on the information that the PCH professional registered at the following predefined
items in the records “how is the child’s behaviour?”, “social behaviour?”, and “psychosocial functioning?” For each, the following descriptions could be used: “quick tempered,” “shy,” “anxious,” or “no problem,” the latter being compared with the other categories. A social behavior problem was considered to be present only if any of these three items was filled out affirmatively.

2.5. Child behavior checklist

Behavioral and emotional problems at age 10–12 years were assessed by the parent-completed CBCL for ages 4–18 years, an internationally validated questionnaire for child emotional and behavioral problems [31,32]. In the current study, we used the Total Problems score and two broadband scales, Externalizing and Internalizing Problems. The Total Problems score is the sum of all individual item scores (118 items). Internalizing Problems consists of the Anxious/Depressed, the Somatic Complaints, and the Withdrawn/Depressed syndrome scales. Externalizing Problems consists of the Aggressive Behaviour and Delinquent Behaviour syndrome scales. Cases were allocated to a normal range or a clinical (elevated) range, using the age- and gender-specific 90th percentiles of the Dutch normative sample for the scales concerned as cutoff [32].

2.6. Statistical analysis

Statistical analyses were performed using SPSS version 12 for Windows. For continuous variables, that is, gestational age and birth weight, the agreement of values from the two sources (PCH registration and TRAILS parental recall) was estimated using the stepwise method described by Bland and Altman [33,34]. First, we evaluated the data for systematic differences between PCH-registered and recalled values. Using a paired t-test, we tested if the mean differences between the two birth weights (PCH registered vs. TRAILS recalled) deviated from 0, to test for systematic deviation. Subsequently, the difference between PCH-registered and recalled values were plotted against their mean values to evaluate a potential relationship of deviation with mean scores. After exclusion of systematic differences, 95% limits of agreement were calculated as the mean differences ± 2 SD, which mark the precision of the association between the two measures, that is, random deviation.

Cohen’s kappa (agreement adjusted for chance agreement) values were calculated as a measure of concordance between registered (PCH) and recalled (TRAILS) dichotomous variables, that is, maternal lifestyle during pregnancy and early childhood behavior. Cohen’s kappas between 0.40 and 0.75 were considered as moderate to good agreement, and above 0.75 as excellent. If kappa was below 0.40, then we also calculated the percentage over- and underreports (where differences were assessed, using McNemar tests, where P < 0.05 was considered a significant difference).

Parental recall can be influenced by the occurrence of child behavioral and emotional problems at the moment of recall; hence, we examined the agreement between PCH registration and TRAILS parental recall for children with and without an elevated CBCL score at the moment of recall. We did this using logistic regression for the outcomes most likely to be affected by maternal lifestyle during pregnancy, birth characteristics, and early childhood behavior.

3. Results

3.1. Description of sample

Of the 2,230 TRAILS participants, 2,139 (96%) parents gave permission to retrieve the child’s file from the PCH. Out of these, 88% could be traced (N = 1,879 files, mean age = 11.06, SD = 0.54, 50.9% girls). Parent-recalled TRAILS data at age 10–12 years differed with statistical significance between children with retrieved PCH data and with nonretrieved data for two out of the nine outcomes assessed. These were parent-reported maternal alcohol use during pregnancy (19% for the retrieved vs. 15% for the others; P < 0.05), and problems with eating at child age four to six years (18% vs. 13%, respectively; P < 0.05). A considerable proportion of data missed on some variables in the retrieved PCH files, further called PCH-item nonresponse, ranging from 64.2% regarding maternal behaviors to 30.4% regarding early child behaviors (Table 1). PCH-item nonresponse rates varied in particular between the five sites of data collection, each site representing a different PCH service. Regarding maternal smoking and alcohol use, PCH-item nonresponse was 96.9% in one site compared with 38.8% for the other four sites (P < 0.001). After adjustment for site, PCH-item nonresponse for these maternal behaviors did not vary by sociodemographic factors (all P > 0.05). Regarding early childhood behaviors also, PCH-item nonresponse did not vary by any of these background characteristics.

In the retrieved PCH files, 37.3% of the mothers had a low educational level, 35.5% intermediate, and 27.1% had a high educational level. Fathers had a higher educational level on average, that is, 32.4% had low, 32.2 had intermediate, and 35.4% had high educational levels. Of all families, 21.0% (N = 454) was divorced (at child age 11 years). 8.7% of the children had no siblings, 48.9% had one, 29.5% had two, and 12.9% had three or more.

3.2. Birth characteristics

Table 2 shows the mean values for birth weight in pounds and gestational age in weeks for parent-recalled TRAILS values and PCH-registered values shortly after birth. For both outcomes, the mean values differed with statistical significance, but the actual differences were close to zero and not clinically relevant, that is, 0.05 pounds (25 g) for birth weight
and 0.08 weeks (0.6 days) for gestational age. The statistical significance is likely because of over powering of the sample size with respect to the estimation of a clinically relevant difference in birth weight and gestational age.

Plots of the differences between recalled and reported values against their mean values (Fig. 1A and B) showed no relation between the difference and mean values. The 95% limits of agreement of recalled compared with registered values were 0.0 ± 1.2 pounds (600 g) for birth weight and 0.0 ± 2.4 weeks (17 days) for gestational age, that is, ± 17.4% and ± 6.0% of the mean values for birth weight and gestational age, respectively.

3.3. Maternal lifestyle during pregnancy

Concordance between recalled (TRAILS) and PCH-registered maternal lifestyle during pregnancy was high for maternal smoking (kappa: 0.77 [95% confidence interval (CI): 0.71, 0.82]) and low for maternal alcohol use during pregnancy (kappa 0.09 [95% CI: 0.00, 0.19]) (Table 1). For smoking, rates of underreporting and overreporting were equal (4.7% and 5.6%, McNemar test: P = 0.001), whereas for maternal alcohol use during pregnancy, overreporting occurred more frequently than underreporting for most outcomes (McNemar test: P < 0.001), except for eating problems (McNemar test: P > 0.10). We repeated these analyses for severe child-behavior problems, if parents reported that their child had “much more problems compared to other children.” The proportion of overreporting reduced to 2.4%, 2.4%, and 2.8% for quick temperedness, anxiety, and shyness, respectively. However, kappa values remained low (0.02–0.11).

Parental recall may be related to child emotional or behavioral problems. Therefore, logistic regression analyses were performed on the relationship of (dis)agreement between registered and recalled information and the parent-completed CBCL. None of the associations between (dis)agreement and dichotomized CBCL scores (clinical vs. normal) was significant, neither for the CBCL Total Problems score, nor for Internalizing or Externalizing Problems (results not shown).

3.4. Early childhood behavior

Table 1 also shows concordance for eating, sleeping, and social behavior (all at child age four to six years). For all studied markers of early childhood behavior, concordance was low, kappa values ranging from 0.03 to 0.10. Overreporting occurred more frequently than underreporting for most outcomes (McNemar test: P < 0.001), except for eating problems (McNemar test: P > 0.10). We repeated these analyses for severe child-behavior problems, if parents reported that their child had “much more problems compared to other children.” The proportion of overreporting reduced to 2.4%, 2.4%, and 2.8% for quick temperedness, anxiety, and shyness, respectively. However, kappa values remained low (0.02–0.11).

Table 2

<table>
<thead>
<tr>
<th>Birth weight</th>
<th>Gestational age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registered</td>
<td>Recalled</td>
</tr>
<tr>
<td>Mean difference</td>
<td>Mean difference</td>
</tr>
<tr>
<td>(95% CI)</td>
<td>(95% CI)</td>
</tr>
<tr>
<td>Birth weight in units of 500 g (SD)</td>
<td>(N = 1,691)</td>
</tr>
<tr>
<td>Registered</td>
<td>6.8 (1.2)</td>
</tr>
<tr>
<td>Recalled</td>
<td>6.9 (1.1)</td>
</tr>
<tr>
<td>Mean difference</td>
<td>+0.05 (0.02, 0.16)</td>
</tr>
</tbody>
</table>

Abbreviation: SD, standard deviation.

a Retrieved from TRAILS data collected at child age 10–12 years.
b Retrieved from the PCH files, recorded at birth.
To our knowledge, this study is the first to examine the
validity of parental reports of a number of prenatal and
early-life factors over a 10- to 12-year period, using data
collected in a community-based setting at both time points.
Moreover, this study is the first of its kind that examines
parental recall of early child-behavior characteristics,
which is considered highly relevant for the development
of psychopathology later in life.

For birth weight and gestational age, no systematic dif-
ference was observed for recalled and PCH-registered data,
which confirms previous studies [19–26]. However, when
taking into consideration the precision of recall, the use
of recalled data adds considerable random error to all find-
ings. For birth weight, the 95% range of recalled values
deviated 17.4% from the mean value, and for gestational age,
6.0%. Methodologically, these findings also clearly show
the merits of the rigorous assessment procedure of agree-
ment as proposed by Bland and Altman [33,34].

For maternal lifestyle during pregnancy, our results are
in agreement with previous studies that also observed an
acceptable agreement for smoking and a poor one for alco-
hol use [18,19]. The recall of early child behavior was poor

---

Fig. 1. Plot of difference between recalled and registered values against the mean values. A. Birth weight (BW; N = 1,691), maximum per dot = 446 cases. B. Gestational age (GA; N = 1,696), maximum per dot = 525 cases.
as well. However, the total rate of agreement (confirmation and denial put together, Table 1) for maternal lifestyle during pregnancy and of the child at age four to six years was high. This counterintuitive finding can largely be explained by the low proportions of confirmations on both occasions (TRAILS and PCH). The kappa statistic has been shown to be sensitive to extremes in prevalence and unbalanced margin totals leading to lower kappa values [35], but this explains the low kappa value in our study to a very limited degree. The discordance for the child-behavior problems can also be caused by the fact that the PCH files did not mention the length of time these problems lasted, whereas the question at age 11 years was focused on the whole kindergarten period. Finally, child-behavior problems in this study mostly comprised internalizing behavior, that is, anxiousness, shyness, and sleep problems. Faraone et al. [36] showed that parental recall of psychopathology of their child after one year was much better for externalizing than for internalizing problems. Our findings show that this holds to an even higher degree if the period of recall is longer.

Alcohol use during pregnancy and early child behavior were reported more frequently in the TRAILS data compared with PCH-registered data. This may be because of either an overreporting at age 10–12 years or an underreporting in the PCH files. A likely source of overreporting might be child behavioral and emotional problems at 10–12 years of age. In this population, however, parental recall was unrelated to child emotional or behavioral problems. An underreporting in the PCH registration may have occurred for alcohol use during pregnancy. At the time of PCH registration in our study population, the early 1990s, there was no consensus on the effect of nonhabitual alcohol use on fetal development. However, kappa values did not change when we focused on more frequent use. In addition, parents may have underreported alcohol use because of the setting and timing of PCH registration. Details regarding lifestyle during pregnancy were asked for during the first PCH visit only, which is shortly after birth. The setting and timing may evoke emotions that lead to recall [37].

The strengths of this study are its large, community-based sample and the preventive health care setting. Moreover, we made use of data registered during routine health and developmental monitoring offered to all Dutch children, and collected and registered according to a highly standardized format. We retrieved 88% of the PCH files as expected based on the 90% participation reported from national data [30]. Hence, there is no or limited bias from parents’ report. However, information on reasons of nonretrieval was not available.

Our study has some limitations. First, though we consider the PCH data to be most valid, we cannot exclude that these are subject to some bias too. In particular, parent-reported information may have been influenced by the reporting to a PCH professional and the registration of that professional. Considering this fact, only birth weight and gestational age registered in the PCH files can be taken as true reference values. Second, the low prevalence of some behavior may have resulted in somewhat too low kappa estimates, but the impact of this is rather small. Third, some of the outcomes as studied were only registered in a part of the PCH encounters, which could have introduced bias if occurring in association with child characteristics. However, the site appeared to be the only predictor of this nonresponse and only regarding maternal behaviors. This indicates that the missingness of some items is, in particular, because of differences between services in their registration policies, as at that period, each site was served by a different PCH service. Apparently, in that period, services differed in their policies on how to spend the very limited time per encounter (approximately 10–15 minutes); in most services, the registration of past maternal behavior had a much lower priority than current child behavior. Finally, the nonresponse of 24% in the TRAILS study could have led to selection bias in our findings. However, we found no differences between responders and nonresponders in the prevalence of teacher-rated problem behavior or regarding associations of sociodemographic variables and mental health outcomes, which makes the occurrence of selection bias rather unlikely.

To summarize, we observed a poor parental recall after a 10- to 12-year period for maternal lifestyle during pregnancy, birth characteristics, and early childhood behavior, which mostly was because of overreporting at age 10–12 years. This should be taken into account when asking retrospectively about these events, either by researchers or by clinicians. We conclude that retrospectively collected information of early-life adversities is of limited value for estimating the contribution to child (public) health.

Acknowledgments

TRAILS has been financially supported by various grants from the Netherlands Organization for Scientific Research NWO (Medical Research Council program grant GB-MW 940-38-011; ZonMW Brainpower grant 100-001-004; ZonMw Risk Behavior and Dependence grants 60-60600-98-018 and 60-60600-97-118; ZonMw Culture and Health grant 261-98-710; Social Sciences Council medium-sized investment grants GB-MaGW 480-01-006 and GB-MaGW 480-07-001; Social Sciences Council project grants GB-MaGW 457-03-018, GB-MaGW 452-04-314, a GB-MaGW 452-06-004; NWO large-sized investment grant 175.010.2003.005); the Sophia Foundation for Medical Research (projects 301 and 393), the Dutch Ministry of Justice (WODC), and the participating universities.

This research is part of the Tracking Adolescents’ Individual Lives Survey (TRAILS). Participating centers of TRAILS include various departments of the University Medical Center and University of Groningen, the Erasmus University Medical Center Rotterdam, the University of
Utrecht, the Radboud Medical Center Nijmegen, and the Trimbos Institute, all in The Netherlands. The principal investigators were Prof. Dr. J. Ormel (University Medical Center Groningen) and Prof. Dr. F.C. Verhulst (Erasmus University Medical Center). We like to thank the Preventive Child Healthcare Services in Drenthe, Friesland, and Groningen for their permission to retrieve the PCH files from their archives. We are grateful to all adolescents, their parents and teachers who participated in this research, and to everyone who worked on this project and made it possible.

References