On/off photoswitching of the electropolymerizability of terthiophenes
Areephong, Jetsuda; Kudernac, Tibor; de Jong, Jaap J. D.; Carroll, Gregory T.; Pantorott, Davide; Hjelm, Johan; Browne, Wesley; Feringa, B.L.

Published in:
Journal of the American Chemical Society

DOI:
10.1021/ja803714p

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Conductive polymers are a cornerstone of the development of organic electronic devices, such as field effect transistors,1 electrochromic windows and displays,2 actuators,3 and solar cells.4 The flexibility of these synthetic polymer systems offered in terms of physical characteristics and processibility sets them apart from nonmolecular semiconducting and conducting materials.5

The functionality of both monomers and polymers can be extended by introducing responsive units that can be switched reversibly between two states using external stimuli, e.g., hv, Δ, or redox switching. For example, the introduction of a photocontrolled switching unit6 into a monomer to control its polymerizability could offer considerable opportunities in device fabrication. In this regard the dithienyl cyclopentenes pioneered by Irie and co-workers (Figure 1)13 have proven to be excellent platforms on which to build functional molecular based systems, allowing for reversible control of properties as diverse as fluorescence,8 redox chemistry,9 self-assembly,10 and molecular conductivity.11 In addition, their high fatigue resistance and thermal stability provide for robust materials with excellent photochromic properties.

Here, we report the ability to switch off and on the electropolymerizability of the monomer 1F with UV and visible light, respectively (Scheme 1). The design of the present system is based on the combination of alkene bridged terthiophene units and the well-known photoswitchable dithienylethene photochromic unit (Figure 1). The bithiophene substituted photochromic dithienylperfluorocyclopentene (1F) can be switched reversibly by UV and visible light between a colorless open state (1Fo) and a colored closed state (1Fc), respectively (Scheme 1). In the open state (1Fo) electropolymerization yields alkene bridged sexithiophene polymers through oxidative α,α-terthiophene coupling, while in the closed state (1Fc) the polymerizability is switched off (Scheme 1).

1Fo was prepared by standard methods.12,13 Cyclic voltammetry14 of 1Fo between −0.20 and 1.25 V (vs SCE, Figure 2a) results in the formation and deposition of an alkene bridged sexithiophene polymeric material manifested in a cycle dependent linear increase15,16 in the intensity of two new redox waves at 0.7 and 1.1 V (Figure S3a).13

Electrodeposition of the polymer on ITO yields an adherent yellow film with a surface roughness of ~100 nm,13 which is mechanically stable (with respect to peeling) and insoluble in CH2Cl2, CH3CN, and toluene.17 Remarkably, the formation of the polymer film proceeded smoothly at a monomer concentration >0.1 mM and was insensitive to air and trace water (i.e. anhydrous conditions and/or Lewis acids were not required).

The cyclic voltammetry of the resulting modified electrode is characteristic of the formation of a sexithiophene based polymer.18 In a monomer-free electrolyte solution (Figure 3a), a surface confined redox process is observed with an apparently quasi-reversible redox wave at ca. 0.7 V and a reversible redox wave at 1.1 V. The electropolymerized film is homogeneous with a thickness of ca. 57 nm (25 cycles, Supporting Information (SI)). FTIR spectroscopy of the monomer and the polymer film shows that the characteristic C=−F IR stretching absorptions are present in both spectra. The IR absorptions and Raman scattering of the dithienylethene unit are replaced by bands typical of the sexithiophene unit (see SI for detailed analysis).13,19

In the neutral state the polymer is yellow (λmax 427 nm) with the absorption being assigned to a π−π* transition of the hexathienyl component of the polymer.13 The coloration is easily tuned by varying the thickness of the poly-1Fo film.15 Upon oxidation at 0.9 V, the polymer film becomes blue with the intensity of the 427 nm absorption band decreasing and the appearance of a new broad absorption band in the NIR region (600−1084 nm).20 At 1.3 V a further change to a purple colored film is observed varying the thickness of the poly-1Fo.21

Scheme 1. Photochemical Switching between Polymerizable (1Fo) and Nonpolymerizable (1Fc) States

![Scheme 1](https://example.com/scheme1.png)

Figure 1. Polymerizable bis-terthiophene and photochromic dithienylethene units of 1Fo.

Received May 19, 2008; E-mail: w.r.browne@rug.nl; b.l.feringa@rug.nl
and it would be expected that oxidation of dithienylethene is observed and not electropolymerization. Hence 1Fc of a Pt electrode in 0.1 M TBAPF₆/CH₂Cl₂. The closed form 1Fc can be oxidized to 1Fc⁺ reversibly (Scheme 1), but in contrast to 1Fo, electropolymerization is not observed even at high concentrations.

Hence the cationic radical character of the terminal thiophene units does not occur in the redox polymer film. When the ring closed form (1Fc) is oxidized to the dicationic state the positive charge is centered in the dithienylethene core unit.

Figure 3. (a) Cyclic voltammetry of a poly-1Fo film electrodedeposited on a Pt microelectrode. (b) Multicycle redox switching of poly-1Fo on an ITO electrode between 0.0 and 1.2 V. 0.1 V s⁻¹ is insufficient to permit polymerization of the monomer units to the preferred site for electropolymerization can be achieved.

Figure 4. Mono- and bis-thiophene substituted dithienylethenes.

A solid film of 1Fc (on ITO glass) was irradiated with visible light through a mask to generate 1Fo locally. A potential of 1.3 V was applied to the ITO electrode, which resulted in polymer film formation only where the film was in the open state (1Fo). In conclusion, this remarkable system (1F) shows that the inherent character of a molecule (polymerizable terthiophene vs electrochromic dithienylethene) can be switched by light in a fully reversible manner. In the open state 1Fo, the terthiophene cation radical formed by oxidation reactions readily via α,α-dimerization to form perfluorocyclopentene bridged sexithiophene polymers. In the closed state (1Fc), oxidation results in the formation of a stable dication, in which the cationic radical character of the α-positions of the two terthiophene units is insufficient for α,α-coupling to proceed and hence the oxidized 1Fc⁺ does not engage in polymerization (Scheme 1). The robustness of the electropolymerization of the monomer with respect to H₂O or O₂ and the stability of the polymer itself makes this system an excellent basis to control electropolymer deposition in a broad range of applications where spatial control is required.

Acknowledgment. We thank the Ubbo Emmius (J.A.), NanoNed, and NWO-Vidi award (W.R.B.) for financial support.

Supporting Information Available: Experimental details, syntheses, electrochemical and spectroscopic data, AFM images. This material is available of charge via the Internet at http://pubs.acs.org.

References

13. (See Supporting Information for details.)
14. Oxidative electropolymerization of 1Fo proceeds by potentiostatic deposition (at 1.3 V vs SCE) also.