Fine Tuning of Molecular Rotor Function in Photochemical Molecular Switches

Supplementary Information

Matthijs K. J. ter Wiel and Ben L. Feringa*

Department of Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands, Tel: +31 50 363 4278, Fax + 31 50 363 4296, E-mail: b.l.feringa@rug.nl

Mixing Times

Mixing Times - t_{mix} (s) - used for the rotor cis-1 (S,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor trans-1 (S,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor cis-2 (C,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor trans-2 (C,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55°C</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mixing Times - t_{mix} (s) - used for the rotor cis-3 (O,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor trans-3 (O,S) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35ºC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45ºC</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor cis-4 (S,O) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35ºC</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor cis-5 (C,O) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>35ºC</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mixing Times - t_{mix} (s) - used for the rotor cis-6 (O,O) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>35ºC</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>45ºC</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mixing Times - t_{mix} (s) - used for the rotor trans-6 (O,O) at various temperatures

<table>
<thead>
<tr>
<th>t_{mix} (s)</th>
<th>0.05</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>25ºC</td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55ºC</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rate Constants of the Rotation

<table>
<thead>
<tr>
<th></th>
<th>cis-1 (S,S)</th>
<th>trans-1 (S,S)</th>
<th>cis-2 (C,S)</th>
<th>trans-2 (C,S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (ºC)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
</tr>
<tr>
<td>25ºC</td>
<td>4.9 ± 0.1·10$^{-2}$</td>
<td>2.0 ± 0.1·10$^{-2}$</td>
<td>4.4 ± 0.3·10$^{-2}$</td>
<td>3.0 ± 0.1·10$^{-2}$</td>
</tr>
<tr>
<td>35ºC</td>
<td>1.28 ± 0.04·10$^{-1}$</td>
<td>4.6 ± 0.1·10$^{-2}$</td>
<td>1.11 ± 0.02·10$^{-1}$</td>
<td>7.8 ± 0.2·10$^{-2}$</td>
</tr>
<tr>
<td>45ºC</td>
<td>2.93 ± 0.04·10$^{-1}$</td>
<td>1.09 ± 0.05·10$^{-1}$</td>
<td>2.63 ± 0.06·10$^{-1}$</td>
<td>1.65 ± 0.05·10$^{-1}$</td>
</tr>
<tr>
<td>55ºC</td>
<td>6.58 ± 0.08·10$^{-1}$</td>
<td>2.49 ± 0.09·10$^{-1}$</td>
<td>5.94 ± 0.07·10$^{-1}$</td>
<td>3.74 ± 0.07·10$^{-1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cis-3 (O,S)</th>
<th>trans-3 (O,S)</th>
<th>cis-4 (S,O)</th>
<th>cis-5 (C,O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (ºC)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
</tr>
<tr>
<td>25ºC</td>
<td>4.09 ± 0.06·10$^{-2}$</td>
<td>3.91 ± 0.03·10$^{-2}$</td>
<td>5.9 ± 0.1·10$^{-2}$</td>
<td>4.94 ± 0.08·10$^{-2}$</td>
</tr>
<tr>
<td>35ºC</td>
<td>1.01 ± 0.01·10$^{-1}$</td>
<td>1.00 ± 0.02·10$^{-1}$</td>
<td>1.47 ± 0.03·10$^{-1}$</td>
<td>9.9 ± 0.2·10$^{-2}$</td>
</tr>
<tr>
<td>45ºC</td>
<td>2.36 ± 0.04·10$^{-1}$</td>
<td>2.26 ± 0.04·10$^{-1}$</td>
<td>3.39 ± 0.08·10$^{-1}$</td>
<td>2.83 ± 0.02·10$^{-1}$</td>
</tr>
<tr>
<td>55ºC</td>
<td>5.20 ± 0.03·10$^{-1}$</td>
<td>5.0 ± 0.2·10$^{-1}$</td>
<td>7.75 ± 0.08·10$^{-1}$</td>
<td>6.55 ± 0.02·10$^{-1}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>cis-6 (O,O)</th>
<th>trans-6 (O,O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T (ºC)</td>
<td>k (s$^{-1}$)</td>
<td>k (s$^{-1}$)</td>
</tr>
<tr>
<td>25ºC</td>
<td>5.89 ± 0.01·10$^{-2}$</td>
<td>3.6 ± 0.1·10$^{-2}$</td>
</tr>
<tr>
<td>35ºC</td>
<td>1.49 ± 0.03·10$^{-1}$</td>
<td>9.5 ± 0.1·10$^{-2}$</td>
</tr>
<tr>
<td>45ºC</td>
<td>3.47 ± 0.05·10$^{-1}$</td>
<td>2.23 ± 0.03·10$^{-1}$</td>
</tr>
<tr>
<td>55ºC</td>
<td>7.61 ± 0.09·10$^{-1}$</td>
<td>5.0 ± 0.7·10$^{-1}$</td>
</tr>
</tbody>
</table>
Eyring Plots

Eyring plot for the \textit{cis-SS-1} rotor:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{eyring_cis}
\end{figure}

Eyring plot for the \textit{trans-SS-1} rotor:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{eyring_trans}
\end{figure}
Eyring plot for the cis-CS-2 rotor:

Eyring plot for the trans-CS-2 rotor:
\[
\ln\left(\frac{k h}{k_B T}\right) = \frac{1}{T} - k_f
\]
Eyring plot for the cis-OS-3 rotor:

Eyring plot for the trans-OS-3 rotor:
Eyring plot for the \textit{cis-SO$_4$} rotor:

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=0.5\textwidth,
 xlabel={$1 / T (K^{-1})$},
 ylabel={$\ln \left(\frac{k h}{k_B T} \right)$},
 xmin=0.0030, xmax=0.0034,
 ymin=-32.5, ymax=-29.5
]
\addplot[black, only marks] table [x index=0, y index=1] {data.txt};
\end{axis}
\end{tikzpicture}
\end{center}

Eyring plot for the \textit{cis-CO$_5$} rotor:

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 width=\textwidth,
 height=0.5\textwidth,
 xlabel={$1 / T (K^{-1})$},
 ylabel={$\ln \left(\frac{k h}{k_B T} \right)$},
 xmin=0.0030, xmax=0.0034,
 ymin=-32.5, ymax=-29.5
]
\addplot[black, only marks] table [x index=0, y index=1] {data.txt};
\end{axis}
\end{tikzpicture}
\end{center}
Eyring plot for the \textit{cis-OO-6} rotor:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{cis_eyring_plot}
\end{figure}

Eyring plot for the \textit{trans-OO-6} rotor:

\begin{figure}
\centering
\includegraphics[width=\textwidth]{trans_eyring_plot}
\end{figure}