Improved Thermostability of Bacillus circulans Cyclodextrin Glycosyltransferase by the Introduction of a Salt Bridge

Hans Leemhuis,1 Henriëtte J. Rozeboom,2 Bauke W. Dijkstra,2 and Lubbert Dijkhuizen1*
1Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
2BIOSON Research Institute and Laboratory of Biophysical Chemistry, GBB, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

ABSTRACT Cyclodextrin glycosyltransferase (CGTase) catalyzes the formation of cyclodextrins from starch. Among the CGTases with known three-dimensional structure, Thermoanaerobacterium thermosulfurigenes CGTase has the highest thermostability. By replacing amino acid residues in the B-domain of Bacillus circulans CGTase with those from T. thermosulfurigenes CGTase, we identified a B. circulans CGTase mutant (with N188D and K192R mutations), with a strongly increased activity half-life at 60°C. Asp188 and Arg192 form a salt bridge in T. thermosulfurigenes CGTase. Structural analysis of the B. circulans CGTase mutant revealed that this salt bridge is also formed in the mutant. Thus, the activity half-life of this enzyme can be enhanced by rational protein engineering. Proteins 2004;54:128–134. © 2003 Wiley-Liss, Inc.

Key words: alpha-amylase family; CGTase; mutagenesis; starch; structure

INTRODUCTION

CGTase is a member of glycoside hydrolase family 13,1 the α-amylase family.2,3 All members of this family use an α-retaining mechanism4,5 to catalyze a variety of reactions, including hydrolysis and transglycosylation of α-(1,4)- and α-(1,6)-glycosidic bonds.6,7 CGTase produces cyclodextrins from starch, which are circular molecules composed of 6, 7, or 8 glucose residues linked via α-(1,4)-glycosidic bonds (α-, β- and γ-cyclodextrin, respectively). The reaction proceeds via a covalent glycosyl–enzyme intermediate.5,8 In the cyclization reaction, the nonreducing end of this intermediate moves into acceptor subsite +1, which is followed by intramolecular bond formation. CGTase may also transfer the covalently bound intermediate to water (hydrolysis reaction), or to the nonreducing activity of a second sugar, to yield a linear product (disproportionation reaction). Interestingly, the hydrolytic activity of CGTase is much lower than its transglycosylation activities, making the enzyme an efficient transferase.9 Three-dimensional (3D) structures of 5 CGTases are known from Bacillus circulans strains 8,10 and 251 (BC251),11 Thermoanaerobacterium thermosulfurigenes strain EM1 (Tabium),12 Bacillus steaothermophilus,13 and alkalophilic Bacillus sp. 1011.14 The structures are organized in 5 domains (A–E). The N-terminal part consists of a catalytic (β/α)8-barrel fold (domain A), with a loop of approximately 60 residues protruding at the third β-strand (domain B). Domains A and B together form the substrate binding cleft.15 Domain E is a starch-binding domain,16,17 whereas the functions of domains C and D are not known.

Despite this detailed structural knowledge, the structural basis for thermostability of CGTases is far from being understood.18 Among the CGTases with known 3D structures, T. thermosulfurigenes CGTase has the highest thermostability,12,19–21 (with an activity half-life of 15 min at 90°C19). Other CGTases with known 3D structures have activity half-lives of 10 min at 60°C (BC251 CGTase) and 10 min at 75°C (B. steaothermophilus CGTase).20 Yet other CGTases exist with even higher activity half-lives, such as the Thermococcus kodakaraensis KOD122 and Thermococcus strain B100123,24 CGTases, with half-lives of 20 min at 100°C and 40 min at 110°C, respectively. Note that these half-lives have not been determined under identical conditions (e.g., different buffers and Ca2+ concentrations).

To study the thermostability of CGTases, the available CGTase structures were compared, and selected differences were introduced into BC251 CGTase via site-directed mutagenesis. This yielded a mutant CGTase with a strongly increased activity half-life.

MATERIALS AND METHODS

Structure Determination

Crystals of mutant 9 (T185S, T186Y, N188D, and K192R) were grown from 60% (v/v) 2-methy1-2,4-pentanediol, 100 mM N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES) pH 7.5, and 5% (w/v) maltose.11 Data were collected at 100 K on an in-house MARCCD system

Abbreviations: BC251, Bacillus circulans strain 251; CGTase, cyclodextrin glycosyltransferase; DSC, differential scanning calorimetry; PCR, polymerase chain reaction; Tabium, Thermococcus thermosulfurigenes strain EM1.

Grant sponsor: Danisco (H.L.).
*Correspondence to: E-mail: L.Dijkhuizen@biol.rug.nl

Received 17 February 2003; Accepted 09 May 2003
TABLE I. Data Collection Statistics and Quality of the B. circulans CGTase Mutant 9

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Space group</th>
<th>P2,2,2</th>
<th>Cell axes a, b, c (Å)</th>
<th>117.2, 109.6, 65.7</th>
<th>Resolution range (Å)</th>
<th>32.0 – 2.0</th>
<th>Total no. of observations</th>
<th>363,420</th>
<th>No. of unique reflections</th>
<th>57,077</th>
<th>Completeness (%)</th>
<th>98.6 (96.3)</th>
<th>(I/σI)</th>
<th>34.7 (8.9)</th>
<th>Rmerge(%)</th>
<th>3.2 (11.5)</th>
</tr>
</thead>
</table>

Refinement statistics

Average B-factor | 18.3
Final R-factor (%) | 15.2 (18.6)
Final free R-factor (%) | 17.6 (22.4)
RMSD from ideal geometry
Bond lengths (Å) | 0.005
Angles (°) | 1.2
Dihedrals (°) | 24.4
Improper dihedrals (°) | 0.69

*Highest resolution shell in parentheses.

(MarUSA, Inc., Evanston, IL), with a diameter of 165 mm, with the use of CuKα radiation from a Bruker-Nomius FR591 rotating-anode generator equipped with Osmic mirrors. Processing of the diffraction data was performed with DENZO and SCALEPACK.25 We used the structure of BC251 CGTase with bound maltotetraose [Protein Data Bank (PDB) code: 1CXF], with all water and sugar molecules removed, as starting model for the refinement (Crystallography & NMR System (CNS)).26 Ligands were placed in sigmaA-weighted 2Fo-Fc and Fo-Fe electron density maps with the program O.27 Data and refinement statistics are given in Table I. The atomic coordinates and structure factors of mutant 9 have been deposited in the PDB (code 1PYg.pdb; www.rcsb.org).

DNA Manipulations

Mutant CGTases were constructed with PCR, as described.9 The PCR products were cut with PvuII/SalI or SalI/HindIII and exchanged for the corresponding fragment of pDP66k-. The following oligonucleotides were used: 5’-TACAGCATCCTCGATGACCCCTCGTACCGGGATCCACCGTACCGCCTCAAACTGATTGCGG-3′ (mutant 1); 5’-GAGCTTTCCACACCCCGGATCCACCGGAAAGCTGGAGA-3′ (mutant 2); 5’-TGGCATGATCGTCAGTCGAACTCGCAGGACCATC-3′ (mutant 3); 5’-TACTTTGGTACGACG-3′ (mutant 4); 5’-TGCGGAAACAACTCGGAGTTCAGCGCAG-3′ (mutant 5); 5’-TATCCGTAGCCTCCCGACGGATCGTCACCCCTCGTACCGCTC-3′ (mutant 6); 5’-GGAACGTGAGCAGCGAAGCAATCGG-3′ (mutant 7); 5’-TGACGGAACCTCAACTGATTGCGG-3′ (mutant 8); 5’-GACTTTTCTCGTAGAAGACAGCGGATCTACCGCAACCTGAGCA-3′ (mutant 9); 5’-AGCAGTTTAGGATTCCATCAACAACCTGAC-3′ (mutant 10); 5’-TCCCGGACGTCAAGCCGGAAATACACATTCA-3′ (mutant 11); 5’-ACGCGACTTTTCTCGACGCAAACCGG-3′ (T185D); 5’-GACCTTTCCACGTAGAAAGACGGCATCTACCGCAGGAAACACCGG-3′ (T186Y); 5’-TCCACGACGCCAGAGGCGCATCTACCGCAGGAAACACCGG-3′ (T188D); 5’-AACCAGCTCTACCGCAACCTGTACGAGCA-3′ (K192R); 5’-TCCACGACGCCAGAGGCGCATCTACCGCAGGAAACACCGG-3′ (K193D). We constructed mutant 12 using plasmid DNA of mutant 1 as PCR template and the oligonucleotide of mutant 8. All mutations were confirmed by DNA sequencing of the PvuII/SalI or SalI/HindIII fragment obtained with PCR.

Enzyme Assays and Enzyme Purification

CGTase proteins were produced and purified as described.9 The Tabium CGTase we used had been purified previously.32 All enzyme assays were performed in 10 mM sodium citrate buffer (pH 6.0) at 50 and 60°C for BC251 and Tabium CGTase, respectively. We determined the cyclization activity by incubating 0.2–0.5 mg enzyme/mL with 2.5% (w/v) partially hydrolyzed potato starch (Passei SA2; AVEBE, Foxhol, The Netherlands). The amount of β-cyclodextrin formed was quantified with phenolphthalein.33 One unit of activity is defined as 1 µmol of β-cyclodextrin formed per min. The disproportionation activity was determined as described,34,35 with 0.1–0.5 µg/mL enzyme, 4-nitrophenyl-β-D-maltoheptaoside-4-6-O-ethylidene (Megazyme, County Wicklow, Ireland) as donor substrate, and maltose as acceptor substrate. One unit of activity is defined as 1 µmol of donor substrate cleaved per min. The hydrolyzing activity was determined as described,9 with 5 µg enzyme/mL and 1% (w/v) soluble starch (Lamers & Pleuger, Wijnegen, Belgium). One unit of activity is defined as 1 µmol of reducing ends formed per min.

CGTase Stability

Resistance to thermal inactivation was determined by incubating 20 µg/mL CGTase in 10 mM sodium citrate buffer, pH 6.0, supplemented with 1 mM CaCl2 at 60°C. Samples were taken at several time intervals and the residual activity was determined with the disproportionation assay. The activity half-life (t1/2) is defined as the time at which half of the initial activity is retained.

Differential Scanning Calorimetry (DSC)

Thermal unfolding was measured using the MicroCal VP-DSC microcalorimeter (MicroCal, Inc., Northampton, MA). The cell volume was 0.5 mL, and the experiments were performed with a scan rate of 1°C/min at a constant pressure of 2.75 bar. Samples were degassed...
prior to the scan. The enzyme concentration we used was 400 µg/mL in 50 mM sodium acetate buffer, pH 5.5. The CaCl₂ concentration was 10 mM.

Structure Comparison

We displayed and compared 3D structures using the Swiss-Pdb Viewer version 3.7 (b2). Superposition of Cα backbone atoms was performed with the standard superposition tools of the program. The following structures were used: Tabium CGTase (PDB code: 1CU132), B. circulans strain 8 (1CGT10) and strain 251 CGTase (1CDG11), B. steaothermophilus CGTase (1CYG13) and Bacillus sp. 1011 CGTase (1PAM14). Figures were made with the Swiss-PdbViewer, version 3.7b2, and Pov-Ray for Windows, version 3.1 g.

RESULTS AND DISCUSSION

Structural Comparison of CGTases

The overall folds of the 5 CGTases with known 3D structure are very similar, with root-mean-square deviations (RMSDs) below 1 Å. Among these CGTases, Tabium CGTase has the highest resistance to thermal inactivation. To study whether any structural differences might cause the difference in thermostability, we compared the structures. Significant differences between BC251 and Tabium CGTase (which have 68% amino acid sequence identity and show an overall RMSD of 0.8 Å in their Ca positions) were identified in the loop regions 88 – 94, 334 – 339, 494 – 498, 536 – 542, and 658 – 660 (BC251 CGTase numbering). Additional differences between Tabium and B. circulans strain 8 CGTase were found in loops 472 – 479 and 618 – 619. To investigate the contributions of these loop regions to the thermostability, the Tabium loops were introduced into BC251 CGTase (mutants 1 to 7). All these loops are located at the surface of the enzyme. However, their importance is not known for either enzymatic activity or thermostability.

Furthermore, surface salt bridges typical for Tabium CGTase may also contribute to the relatively high thermostability of this enzyme. Tabium CGTase has four salt bridges without counterparts in BC251, Bacillus sp. 1011, or B. circulans strain 8 CGTase, whereas three of these interactions are found in B. steaothermophilus CGTase. The residues forming these salt bridges in Tabium CGTase and the corresponding BC251 and B. steaothermophilus CGTase residues, are summarized in Table II. The residues forming the salt bridges in Tabium CGTase were also introduced into BC251 CGTase (mutants 9 – 12) to study the contributions of these interactions on the activity half-lives. Mutant 12 is the combination of mutants 1 and 8.

Enzymatic Properties of Mutant CGTases

All CGTase mutants were successfully constructed, produced, and purified. Only mutant 10 had strongly decreased enzyme activities (Table III). The cause for this is unclear, because the mutations are far from the active-site cleft. The nearly unchanged hydrolytic activities of the mutants (Table III) were somewhat unexpected, because Tabium CGTase has a much higher hydrolytic activity than BC251 CGTase (Table III), and the mutations increased the similarity to Tabium CGTase (the amino acid sequence identity increased by 1 – 9 residues in the different mutants). The mutations are, however, remote from acceptor subsites +1 and +2, which is the location where mutations have been shown to have the largest effect on the hydrolytic activity of CGTase. The relatively small effects on the cyclization and disproportionation activities were, on the other hand, expected, because the mutations we introduced were far from the substrate-binding subsites, except the mutations in the residues Arg47 and Tyr89 at subsite –3. The reason for this is not known. None of the loop differences increased enzyme activities (Table III). The cause for this is unclear, because the mutations are far from the active-site cleft. The nearly unchanged hydrolytic activities of the mutants (Table III) were somewhat unexpected, because Tabium CGTase has a much higher hydrolytic activity than BC251 CGTase (Table III), and the mutations increased the similarity to Tabium CGTase (the amino acid sequence identity increased by 1 – 9 residues in the different mutants). The mutations are, however, remote from acceptor subsites +1 and +2, which is the location where mutations have been shown to have the largest effect on the hydrolytic activity of CGTase.

Activity Half-Lives of (Mutant) CGTases

The activity half-lives of the (mutant) CGTases were determined by incubating the enzymes at 60°C in sodium citrate buffer, pH 6.0, supplemented with 1 mM CaCl₂. Subsequently, the residual activity was measured as a function of the incubation time. Under these conditions, BC251 CGTase had an activity half-life (t½) of 9.7 min, whereas Tabium CGTase retained full activity after 24 h of incubation (Table III). Most mutations had no large effect on the half-lives, although 3 mutants (1, 10, and 11) had clearly reduced half-lives (Table III). The reason for this is not known. None of the loop differences increased the activity half-life of BC251 CGTase (mutants 1 – 7). Likewise, of the 4 salt-bridge mutants (mutants 9 – 12), 3 did not improve the activity half-life of the enzyme. Only mutant 9, designed to provide an extra salt bridge on the surface of the enzyme, showed a significantly increased half-life (7.5-fold; Table III). Thus, most of the loop changes do not (directly) increase the activity half-life of BC251 CGTase. An explanation maybe that some of the mutations have increased the stability of the enzyme locally, but if this part of the enzyme was not limiting the activity half-life of BC251 CGTase, this will not be observed when measuring activity half-lives. In this case, these mutations may contribute to the activity half-life of BC251 CGTase after other stabilizing mutations have been introduced elsewhere in the enzyme (e.g., mutation 9). A second explanation is that some of the differences simply are not responsible for the different activity half-lives of BC251 and Tabium CGTase.

TABLE II. Residues Forming Surface Salt Bridges Typical for Tabium CGTase and the Corresponding Residues in BC251 and B. steaothermophilus CGTase

<table>
<thead>
<tr>
<th>Tabium</th>
<th>BC251</th>
<th>B. steaothermophilus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys 47/Asp89</td>
<td>Arg47/Asp89</td>
<td>Arg44/Asp85</td>
</tr>
<tr>
<td>Asp189/Arg193</td>
<td>Asp189/Arg193</td>
<td>Arg47/Asp89</td>
</tr>
<tr>
<td>Asp245/Lys510</td>
<td>Ala244/Lys510</td>
<td>Asp245/Lys510</td>
</tr>
<tr>
<td>Glu276/Lys557</td>
<td>Glu275/Asn560</td>
<td>Glu276/Lys557</td>
</tr>
</tbody>
</table>

The presence of an interaction between the residues is indicated by bold-italic letters.
To determine whether the enhanced activity half-life at 60°C of mutant 9 was indeed caused by the N188D and K192R mutations, all 4 amino acid differences in mutant 9 (T185S, T186Y, N188D, and K192R) were constructed as single mutants. The double mutant N188D/K192R was made as well. These 5 mutants had similar catalytic activities as wild-type CGTase (Table III). Except for the single N188D mutant and the double N188D/K192R mutant, all had activity half-lives similar to that of wild-type CGTase (Table III). Thus, residues 185 and 186 do not significantly contribute to the activity half-life of CGTase. In contrast, the strongly increased half-lives of the single N188D mutant and the double N188D/K192R mutant suggest that Asp188 can form a stabilizing interaction with either Lys192 or Arg192. The double N188D/K192R mutant showed a half-life increased to 56 min at 60°C, which is slightly shorter than that of mutant 9 (73 min; Table III). Thus, the resistance to thermal inactivation of BC251 CGTase is strongly enhanced by an N188D mutation in the B-domain of the enzyme. Yet the activity half-life of the BC251 CGTase mutants is still far off from the Tabium CGTase half-life, indicating that the introduced salt bridge is only one of the stabilizing amino acid substitutions between the two enzymes. Among the other amino acid differences there must be factors that also contribute to the enzyme’s activity half-life.

X-Ray Structure of Mutant 9

Mutant 9 was designed to introduce a salt-bridge interaction between Asp188 and Arg192, equivalent to the situation in Tabium CGTase (Fig. 1). To ascertain whether this salt bridge had formed, we determined the 3D structure of this mutant. Compared to wild-type CGTase, the protein backbone conformation was not affected by the mutations. The salt bridge between Asp188 and Arg192 is indeed present (Fig. 1), although the Asp188 sidechain interacts with the Nε atom of the arginine sidechain, and not with one of the Nη atoms, as observed in Tabium CGTase. The interaction with the Nε atom is identical to the arrangement seen in B. stearothermophilus CGTase (Fig. 1).13 The B-factors of Asp188 (13–17) and Arg192 (13–15) are somewhat below average (18), indicating that these residues are well defined. Besides the Asp188/Arg192 salt bridge, the Arg192 sidechain (Nη/H9251 atom) also forms an interaction with Asn178 (O atom), that is not present in wild-type BC251 CGTase, but is found in Tabium and B. stearothermophilus CGTase. The Asn178/Arg192 interaction may also contribute to the activity half-life of the N188D/K192R mutants. Thus, the activity half-life at 60°C of BC251 CGTase is strongly increased by the N188D/K192R mutations, which introduce an extra salt-bridge interaction at the surface of the enzyme.

The enhanced activity half-life at 60°C of mutant 9 reveals that mutations in the B-domain can increase the activity half-life of BC251 CGTase. A strong effect of mutations in the B-domain on activity half-lives has been shown before for other α-amylase family enzymes. In Pyrococcus furiosus α-amylase, a Zn2+–binding Cys, located in the B-domain, is essential for the high activity half-life,42 whereas the activity half-lives of Bacillus KSM-137843 and Bacillus licheniformis44,45 α-amylase were significantly increased by mutations in their B-domains. Thus, CGTase mutations in the B-domain can also modulate the activity half-life of the enzyme. An explanation for the identification of mutations in the B-domain might be

TABLE III. Enzyme Activities and Activity Half-Lives (t1/2) of the (Mutant) CGTases at 60°C

<table>
<thead>
<tr>
<th>(Mutant) CGTases</th>
<th>BC251</th>
<th>Tabium</th>
<th>BC251</th>
<th>Tabium</th>
<th>BC251</th>
<th>Tabium</th>
<th>BC251</th>
<th>Tabium</th>
<th>BC251</th>
<th>Tabium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycl. (U/mg)</td>
<td></td>
<td></td>
<td>269</td>
<td>240</td>
<td></td>
<td></td>
<td>240</td>
<td>240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydr. (U/mg)</td>
<td>3.2</td>
<td>54</td>
<td>3.2</td>
<td>54</td>
<td>3.2</td>
<td>54</td>
<td>3.2</td>
<td>54</td>
<td>3.2</td>
<td>54</td>
</tr>
<tr>
<td>Disp. (U/mg)</td>
<td>970</td>
<td>548</td>
<td>733</td>
<td>548</td>
<td>733</td>
<td>548</td>
<td>733</td>
<td>548</td>
<td>733</td>
<td>548</td>
</tr>
<tr>
<td>t1/2 (min)</td>
<td>9.7</td>
<td>9.7</td>
<td>4.8</td>
<td>4.8</td>
<td>8.9</td>
<td>8.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Cycl., cyclization; Hydr., hydrolysis; Disp., disproportionation.

*No measurable loss of activity after 1 day of incubation.

In mutants 1–12, the indicated sequence of BC251 CGTase was replaced by sequence shown for Tabium CGTase.
that activity half-lives deal with the active-site environment, and the B-domain is part of this active site.

Differential Scanning Calorimetry

To test whether the increased activity half-life of mutant 9 is accompanied by an enhanced denaturation temperature, we carried out DSC measurements on mutant 9 and wild-type CGTase. Although the unfolding of the CGTases was scan-rate dependent and irreversible (data not shown), this experiment revealed that mutant 9 denatured at a significantly higher temperature than wild-type BC251 CGTase, but still at a much lower temperature than *Tabium* CGTase (Fig. 2). This indicates that the introduced salt bridge is only one of the stabilizing amino acid differences between the two CGTase enzymes. Other mutations are likely to increase the enzyme's denaturation temperature further. However, more investigations are needed to corroborate this. The DSC experiments also showed that Ca$^{2+}$ ions increased the denaturation temperatures (Fig. 2). This was as expected from previous work, which showed that the addition of Ca$^{2+}$ ions retarded the thermal inactivation of *Tabium* CGTase. Thus, the DSC experiments demonstrate that mutant 9 has a significantly higher denaturation temperature than wild-type

![Fig. 1. Close-up views of the loop region 185–192 in CGTase. For clarity, only the backbone and the sidechains of residues 188 and 192 are shown (Asn/Lys in BC251 CGTase; Asp/Arg in *Tabium*, *B. stearothermophilus*, and mutant 9 CGTases). (A) BC251 and *Tabium* CGTase, (B) BC251 and mutant 9 CGTase, (C) *Tabium* and mutant 9 CGTase, and (D) mutant 9 and *B. stearothermophilus* CGTase. Salt bridges are indicated by dashed lines. The CGTases are shown in black (BC251 and *B. stearothermophilus*), gray (*Tabium*), and light gray (mutant 9).]
BC251 CGTase, although it is still much lower than that of \textit{Tabium} CGTase.

CONCLUSIONS

Based on a comparison of the 3D structures of CGTases, we were able to increase significantly the activity half-life of BC251 CGTase via rational mutagenesis. The structure of the mutant with the largest increase in activity half-life (with N188D and K192R mutations in the B-domain) showed the presence of a salt-bridge interaction between Asp188 and Arg192, as expected from the situation in \textit{Tabium} CGTase.

ACKNOWLEDGMENTS

Our thanks to Gea Schuurman-Wolters for assistance with the DSC measurements.

REFERENCES

![Fig. 2. DSC curves for the thermal denaturation of wild-type BC251 CGTase (1), BC251 CGTase mutant 9 (2), and \textit{Tabium} CGTase (3), in the absence (A) and presence (B) of 10 mM added Ca$^{2+}$ ions.](image-url)

31. van der Veen BA, Uitdehaag JCM, Dijkstra BW, Dijkhuizen L. Hydrophobic amino acid residues in the acceptor binding site are main determinants for reaction mechanism and specificity of cyclodextrin glycosyltransferase. J Biol Chem 2001;276:44557–44562.

