APPENDICES

Summary
Nederlandse samenvatting
Acknowledgements
List of publications
Curriculum vitae
Summary

The endosomal network plays a major role in the intracellular transport of integral membrane proteins and their associated proteins and lipids (together termed cargos). This network dictates the destiny of cargos, which are either transported to the lysosome for proteolysis or recycled to the plasma membrane or trans-Golgi network. By coordination of these crucial decisions, the endosomal network has an essential function in regulating various biological processes, including nutrient transport, cell signaling and cell migration. It is therefore not surprising that anomalies in this network are associated with numerous disorders, including various neurodegenerative diseases.

For decades, the endosomal network has been studied in great detail, thus providing relevant fundamental insights into the molecular regulation of this complex system. However, these studies have been performed mainly in cells (in vitro systems) and rarely in animal models or human clinical samples, hampering the translation of basic knowledge of the endocytic system into physiological and clinical relevance. We made this transition in this thesis by using classical and state-of-the-art gene editing technologies to study in mice the physiological role of different protein complexes of the endosomal network. We focused specifically on the contribution of the endosomal network to cholesterol metabolism and atherosclerosis by studying the molecular regulation of the endosomal transport of lipoprotein receptors, including low-density lipoprotein receptor (LDLR), LDLR-related protein 1 (LRP1) and scavenger receptor class B, type I (SR-BI).

The first part of this thesis consists of two literature reviews, describing the current fundamental knowledge of the molecular regulation of endosomal trafficking of LDLR and LRP1. LDLR is the main receptor facilitating the hepatic uptake of LDL cholesterol (LDL-C), whereas hepatic LRP-1 likely plays a subordinate role in LDL-C uptake, and its contribution to cholesterol homeostasis is ambiguous. Deleterious mutations in the LDLR gene are the most common cause of familial hypercholesterolemia and increase the risk of premature coronary heart disease. In chapter 2 we review the known determinants of the LDLR life cycle. We provide a mechanistic overview of the LDLR trafficking pathway (i.e. endocytosis, recycling and degradation) and conclude that increasing our fundamental knowledge of the molecular regulation of intracellular LDLR trafficking will lead to the identification of novel players in cholesterol metabolism, thereby helping to explain unresolved cases of hypercholesterolemia. Chapter 3 provides an overview of the current insights into the endosomal trafficking pathway of LDLR and LRP1, at molecular, cellular and organismal
levels. We describe the distinct mechanisms of LDLR endocytosis and provide an overview of the recently identified proteins involved in the hepatic uptake of plasma cholesterol by coordinating the endosomal trafficking of LDLR. Finally, we discuss the pleiotropic role of LRP1 in cholesterol and glucose metabolism. Overall, this literature study implies that improving the function of the endocytic recycling machinery may provide novel therapeutic opportunities to treat cardiovascular diseases as well as diabetes.

In chapters 4, 5 and 6 of this thesis we describe our investigation of the molecular interactions between the protein complexes involved in endosomal trafficking of lipoprotein receptors and, subsequently, their contribution to cholesterol metabolism and atherosclerosis in mice. A crucial component of the endosomal LDLR trafficking machinery is the COMMD/CCDC22/CCDC93 (CCC) complex. In chapter 4 we provide novel insights into the involvement of the hepatic CCC complex in the maintenance of cholesterol homeostasis. We show that the CCC complex facilitates the recycling of LDLR and LRP1. Additionally, we demonstrate that hepatic ablation of the CCC complex in mice with a human-like lipoprotein profile accelerates atherosclerosis. Understanding of the interrelation of the components of the CCC complex has been increased by our findings that loss of any of the CCC subunits results in destabilization of the whole CCC complex, and that hepatic depletion of any of the CCC components results in a comparable increase in plasma cholesterol levels. Overall, this chapter shows that all CCC components are required to maintain normal plasma cholesterol levels and, ultimately, to attenuate atherosclerosis by facilitating the transport of LDLR and LRP1 from the endosome back to the plasma membrane.

In chapter 5 we study the contribution of multiple components of the endosomal sorting machinery to the recycling of lipoprotein receptors. We provide in vivo support that the hepatic WASH complex, which governs the fate of multiple cargos, orchestrates endosomal recycling of both LDL (LDLR and LRP1) and HDL (SR-BI) receptors. In addition, we provide genetic evidence that endosomal trafficking of these lipoprotein receptors relies on an interaction between the CCC and WASH complexes. Furthermore, we study whether recycling of lipoprotein receptors is also governed by the multiprotein complexes retromer and retriever. Retromer is a cargo-selective protein complex, which is essential for retrieval and recycling of cargo from the early endosomes. Retriever is a recently established protein complex in cargo recycling, which exhibits remarkable similarity to retromer. Recent studies have shown that retromer and retriever act in distinct routes of the endosomal sorting pathway. Our in vivo data partially confirm these studies by showing that CCC:WASH-mediated SR-BI trafficking is retromer and retriever independent, whereas
LDLR/LRP1 recycling might rely on both retromer and retriever. Interestingly, hepatic retromer regulates plasma triglyceride (TG) levels in a manner that is likely WASH and CCC-independent. Together these data suggest that the protein complexes of the endosomal sorting machineries act in various compositions, allowing them to fine-tune endosomal cargo sorting and tightly regulate various biological processes, including lipid metabolism.

Next to its role in endosomal cargo sorting, the WASH complex is essential for the maintenance of endo-lysosomal architecture (chapter 5). As intracellular cholesterol transport is highly dependent on the endo-lysosomal network, we hypothesized that perturbed endo-lysosomal architecture and localization upon hepatic WASH depletion would adversely affect intracellular cholesterol transport and, subsequently, intracellular cholesterol sensing. Accordingly, these defects would result in compromised cholesterol and bile acid metabolism. In chapter 6 we first determined the activity of LXR and SREBP, two main transcription factors known to regulate the expression of genes involved in lipid and bile acid metabolism, and which are regulated by changes in intracellular cholesterol content. Although the expression of LXR and SREBP target genes were decreased upon hepatic WASH depletion, no effects were seen on whole body cholesterol synthesis, cholesterol excretion, or bile acid metabolism. Overall this study suggests that the altered endo-lysosomal architecture in hepatic WASH deficient mice impairs neither hepatic cholesterol homeostasis nor bile acid metabolism under the studied conditions.

In conclusion, this thesis highlights a crucial role for the CCC and WASH complexes in hepatic cholesterol uptake by orchestrating the endosomal recycling of LDLR, LRP1 and SR-BI. We provided novel insights into how the different CCC components interrelate to maintain the integrity of the CCC complex. We introduced somatic CRISPR/Cas9 gene editing technology, a sophisticated methodology to study the interplay between different endosomal sorting complexes in vivo. Using this technology, we found that both retriever and retromer likely participate in the CCC-WASH axis to facilitate endosomal recycling of LDLR, but not SR-BI. Moreover, we showed that hepatic retromer controls plasma TG levels independently of the CCC-WASH pathway. Overall, this thesis provides novel insights into the intricate interplay between the different protein complexes of endosomal sorting machineries in the regulation of lipid metabolism.
Nederlandse samenvatting

Het endosomale netwerk speelt een belangrijke rol bij het intracellulaire transport van integrale membraaneiwitten en hun bijbehorende eiwitten en lipiden (tezamen ook wel cargo’s genoemd). Het endosomale netwerk bepaalt de bestemming van cargo’s, die of worden getransporteerd naar het lysosoom voor proteolyse, of worden gerecycled naar het plasmamembraan of trans-Golgi-netwerk. Door de coördinatie van deze cruciale beslissingen heeft het endosomale netwerk een essentiële rol bij de regulatie van verschillende biologische processen, waaronder intercellulaire communicatie, celmigratie en het transport van voedingsstoffen. Het is daarom niet verrassend dat afwijkingen in dit netwerk geassocieerd zijn met talrijke aandoeningen, waaronder verschillende neurodegeneratieve ziekten.

Decennia lang is het endosomale netwerk tot in detail bestudeerd, wat relevante fundamentele inzichten heeft opgeleverd in de moleculaire regulatie van dit complexe systeem. Deze studies zijn echter voornamelijk uitgevoerd in cellen (in vitro-systemen) en nauwelijks in diermodellen of in humane klinische monsters, wat de vertaling van fundamentele kennis van het endosomale systeem naar fysiologische en klinische relevantie belemmert. Om hier verandering in te brengen hebben we in dit proefschrift gebruik gemaakt van klassieke en geavanceerde gen-editingtechnologieën om de fysiologische rol van verschillende complexen van het endosomale netwerk te bestuderen in muizen. We hebben ons specifiek gericht op de bijdrage van het endosomale netwerk aan cholesterolmetabolisme en atherosclerose door de moleculaire regulatie van het endosomale transport van lipoproteïne-receptoren, waaronder de lage-dichtheidslipoproteïne receptor (LDLR), LDLR-gerelateerd eiwit 1 (LRP1) en de scavenger-receptor klasse B, type I (SR-BI) te onderzoeken.

Het eerste deel van dit proefschrift bestaat uit twee literatuuroverzichten, die ons huidige begrip beschrijven van de moleculaire regulatie van het endosomale transport van LDLR en LRP1. LDLR is de belangrijkste receptor voor de opname van LDL-cholesterol (LDL-C) door levercellen. De rol van LRP-1 is waarschijnlijk ondergeschikt aan LDLR in LDL-C opname, en de bijdrage van LRP-1 aan cholesterol homeostase is tot op heden onduidelijk. Mutaties in het LDLR-gen zijn de meest voorkomende genetische defecten die familiare hypercholesterolemië veroorzaken, een aandoening die op zeer jonge leeftijd tot een hartinfarct kan leiden. In hoofdstuk 2 bespreken we bekende factoren die de levenscyclus van LDLR reguleren. We geven een mechanismistisch overzicht van de LDLR-transportroute (d.w.z. endocytose, recycling en degradatie) en concluderen dat het vergroten van onze
fundamentele kennis van de moleculaire regulatie van intracellulair LDLR-transport kan leiden tot de identificatie van nieuwe spelers in het cholesterolmetabolisme. Deze kennis zou vervolgens kunnen bijdragen aan het verklaren van onopgeloste gevallen van patiënten met hypercholesterolemie. **Hoofdstuk 3** geeft een overzicht van onze huidige kennis betreffende het endosomaal transport van LDLR en LRP1, op moleculair, cellulair en organisch niveau. We beschrijven de verschillende mechanismen van LDLR-endocytose en bieden een overzicht van de recent geïdentificeerde eiwitten die betrokken zijn bij de coördinatie van het endosomaal transport van LDLR. Ten slotte bespreken we de pleiotrope rol van LRP1 in het cholesterol- en glucosemetabolisme. Samenvattend impliceert deze literatuurstudie dat het verbeteren van het recyclen van LDLR en LRP1 nieuwe therapeutische mogelijkheden biedt om hart- en vaatziekten en diabetes te behandelen.

Hoofdstuk 4, 5 en 6 van dit proefschrift beschrijven onze studies naar de moleculaire interacties tussen de eiwitcomplexen die betrokken zijn bij het endosomaal transport van lipoproteïne-receptoren. Vervolgens leveren deze studies een beter inzicht in de rol van deze eiwitcomplexen in de cholesterolhuishouding en atherosclerose. Een cruciaal onderdeel van endosomaal LDLR-transport is het COMMD/CCDC22/CCDC93 (CCC) complex. In **hoofdstuk 4** bestuderen we de bijdrage van het CCC-complex in levercellen aan de handhaving van cholesterolhomeostase. We laten zien dat het CCC-complex niet alleen de recycling van LDLR, maar ook van LRP1 faciliteert. Verder tonen we aan dat inactivatie van het CCC-complex in levercellen atherosclerose in muizen met een humaan lipoproteïneprofiel versnelt. We vergroten ons begrip van de onderlinge relatie van de componenten van het CCC-complex door aan te tonen dat verlies van individuele CCC-subeenheden resulteert in destabilisatie van het gehele CCC-complex en dat depletie van iedere CCC-component in levercellen resulteert in een vergelijkbare verhoging van plasmacholesterolwaarden. In conclusie laat dit hoofdstuk zien dat alle CCC-componenten vereist zijn om het transport van LDLR en LRP1 van endosomen terug naar het plasmamembraan te faciliteren om vervolgens normale plasmacholesterolwaarden te handhaven, en uiteindelijk de kans op hart en vaatziekte te verlagen.

In **hoofdstuk 5** ontrafelen we de bijdrage van meerdere componenten van de endosomale sorteringsmachinerie aan de recycling van lipoproteïne-receptoren. Ons *in vivo* werk laat zien dat het WASH-complex, een complex dat het lot van meerdere cargo’s bepaalt, de endosomale recycling van zowel LDL (LDLR en LRP1) als HDL (SR-BI) receptoren faciliteert. Daarnaast leveren we genetisch bewijs dat endosomaal transport van deze lipoproteïne-receptoren afhankelijk is van de interactie tussen het CCC- en WASH-complex. Verder
bestuderen we of recycling van lipoproteïne-receptoren wordt gereguleerd door retromeer, een cargo-selectief eiwitcomplex dat essentieel is voor het recyclen van cargo’s vanuit de vroege endosomen, of retriever, een recentelijk ontdekt eiwitcomplex in cargo-recycling dat grote gelijkenis toont met retromeer. Onze in vivo studies ondersteunen deels de eerdere studies die hebben aangetoond dat retromeer en retriever in afzonderlijke takken van de endosomale sorteer-route actief zijn. We laten zien dat CCC:WASH-gemedieerde SR-BI-transport retriever en retromeer onafhankelijk is, terwijl onze data suggereert dat het CCC:WASH-gemedieerde LDLR/LRP1-recycling afhankelijk is van zowel retromeer als retriever. Omgekeerd is plasmatriglyceriden (TG) regulatie door retromeer waarschijnlijk WASH- en CCC-onafhankelijk. Onze resultaten suggereren dat de eiwitcomplexen betrokken bij endosomaal transport verschillende samenstellingen aangaan, waardoor ze endosomale cargo-sortering nauwkeurig kunnen controleren, om vervolgens verschillende biologische processen accuraat te reguleren.

Naast zijn rol in endosomale cargo-sortering is het WASH-complex essentieel voor het behoud van de endo-lysosomale structuur (hoofdstuk 5). Intracellulair cholesteroltransport en cholesterol detectie is in hoge mate afhankelijk van een goed functionerend endo-lysosomaal netwerk. Op basis van deze informatie stelden we de hypothese dat intracellulair cholesteroltransport en -detectie nadelig beïnvloed zouden zijn door de verstoring van de endo-lysosomale structuur en -lokalisatie in levercellen met een defect in het WASH-complex, met als gevolg dat het cholesterol- en galzoutmetabolisme aangetast zouden zijn. In hoofdstuk 6 tonen we aan dat de activiteit van LXR en SREBP verlaagd zijn nadat we het WASH-complex in levercellen hebben geïnactiveerd. LXR en SREBP zijn transcriptiefactoren die de expressie van genen reguleren die betrokken bij lipid- en galzoutmetabolisme. Zowel de activiteit van LXR als die van SREBP is afhankelijk van intracellulaire cholesterol content. Ondanks de verlaagde expressie van verschillende LXR en SREBP-target genen konden we geen duidelijke veranderingen in cholesterolsynthese, cholesteroluitscheiding of galzoutmetabolisme aantonen in lever specifieke WASH knock-out muizen. Samenvattend suggereert deze studie dat de veranderde endo-lysosomale architectuur in WASH-deficiënte levercellen noch het levercholesterolhomeostase, noch het galzoutmetabolisme in muizen beïnvloedt onder de bestudeerde omstandigheden.

De studies in dit proefschrift benadrukken de cruciale rol van het CCC- en WASH-complex in de opname van plasmacholesterol door levercellen, door het endosomaal transport van LDLR, LRP1 en SR-BI te faciliteren. We hebben nieuwe inzichten verkregen in de onderlinge relaties tussen de verschillende CCC-componenten om de integriteit van het CCC-complex te
behouden. Daarnaast hebben we met het gebruik van somatische CRISPR/Cas9-technologie een verfijnde methodologie geïntroduceerd om het samenspel tussen verschillende endosomale sorteringscomplexen \textit{in vivo} te bestuderen. Met het gebruik van deze methodologie laten we zien dat zowel retriever als retromeer deelneemt aan de CCC:WASH-afhankelijke route om de endosomale recycling van LDLR, maar niet SR-BI, te faciliteren. Ten slotte wijzen onze data erop dat het retromeer complex plasma-TG-spiegels reguleert, een proces dat onafhankelijk is van de CCC:WASH-route. Alles tezamen biedt dit proefschrift nieuwe inzichten in het complexe samenspel van de verschillende eiwitcomplexen van de endosomale sorteringsmachinerie in de regulatie van lipidenmetabolisme.
Acknowledgements

By writing these acknowledgements, I’m looking back on the approximately 5 years it took to perform the research to write this thesis. It was an amazing time, during which I learned a lot (and which was definitely not only restricted to doing research). During my PhD I got to know a lot of inspiring people, who directly or indirectly contributed to this thesis, and whom I all would like to thank!

Ten eerste mijn promotor prof. dr. Bart van de Sluis. Beste Bart, je was altijd beschikbaar voor vragen en (het liefst mooie) resultaten. Je hebt me altijd gestimuleerd me te ontwikkelen, en daarbij verder te kijken dan alleen de duur van mijn promotietraject. Ik heb heel veel geleerd van jouw manier van onderzoek doen; je kijkt altijd minstens drie stappen vooruit, en gaat doelgericht te werk. Bedankt dat ik bij jou mijn PhD heb kunnen doen! Ook wil ik graag mijn promotor Prof. dr. Jan Albert Kuivenhoven bedanken. Beste Kuif, je houdt ervan om na te denken en te discussiëren over de brede impact van allerlei wetenschappelijke vraagstukken. Jouw uiteenzettingen (onder andere tijdens de lunch) hebben me vaak tot nieuwe inzichten gebracht. Mijn dank gaat verder uit naar prof. dr. Marten Hofker. Beste Marten, bedankt voor de mogelijkheid om mijn promotietraject bij Bart en jou te starten binnen de groep Moleculaire Genetica, onze samenwerking heeft helaas veel te kort geduurd.

Het grootste deel van mijn onderzoek heb ik uitgevoerd binnen de groep Kindergeneeskunde. Binnen deze groep heerste een constructieve sfeer; iedereen was bereid elkaar te helpen, en om bij te springen in experimenten waar extra handen voor nodig waren. Naast wetenschap was er ook plaats voor borrels, schaatsen, heel-MolGen-bakt, Sinterklaas, volleybal en een hele hoop gezelligheid. Deze fijne omgeving is een ontzettend belangrijke motivatie voor mij geweest. Iedereen van de groep bedankt voor jullie hulp en support!

Beste dr. Debby Koonen, dr. Marit Westerterp, dr. Janine Kruit, prof. dr. Barbara Bakker,

Beste Marieke, Daphne, Nicolette, Niels, Mirjam en Eline, jullie zijn een enorme steun voor de PhD-studenten. Niet alleen door jullie hulp bij de experimenten, maar zeker ook door het neerzetten van de ontzettend positieve en gezellige sfeer. Marieke, we hebben samen vele experimenten gedaan, honderden cellijnen overgezet en talloze dagen in het CDP doorgebracht. Ik vond het altijd fijn met je samen te werken door je rustige, gestructureerde aanpak, en door onze gezellige gesprekken. We waren goede verjaardagstaart-buddies, en ik hoop dat we samen nog veel wanden zullen beklimmen! Nicolette, mijn eerste halfjaar heb ik voornamelijk besteed aan klonen. Daarbij heb ik ontzettend veel van jou geleerd, waaronder ook dat je met klonen soms gewoon geduld moet hebben... Ik heb diep respect voor jouw doorzettingsvermogen, en dan voornamelijk hoe jij na alle borrels en feestjes weer vroeg in de ochtend klaar staat om te sporten. Niels, op het CDP heb je me vaak geholpen, met name bij de meer ingewikkelde procedures. Het ‘gewone werk’ heb je me snel zelf geleerd toen je realiseerde hoeveel muizen eraan zouden komen. De samenwerking liep als een geoliede machine, en was daarnaast altijd gezellig! Daphne, je hebt me met vele Western blots geholpen, voor jou was niets onblotbaar. Je bent ontzettend attent en creatief, en jouw assertiviteit bij het organiseren van allerlei evenementen hielp een gezellige sfeer in de groep neer te zetten. Eline, je was altijd bereid te helpen, zelfs als dat betekende dat er honderden klonen overgezet moesten worden voor het maken van een nieuwe cellijn. Mirjam, bedankt voor je hulp bij het snijden en kleuren van mijn coupes, door het 24/7 durende ‘foute uur’ was het altijd gezellig op het histo-lab.

Next I want to thank the MolGen PhDs, who created such a supportive environment during day-to-day labwork. You were a great group to work with! Alina, when I started my PhD, I was really glad to work together with you. You introduced me to the topic as well as to the practical lab work, which helped me a lot to find my way. Next to that, I enjoyed our time as conference roommates, where we spent our free time binging zombie series. Dyonne, bedankt voor je hulp met het afronden en overnemen van de experimenten, jammer dat we maar zo kort tegelijkertijd gewerkt hebben. Veel succes voor de toekomst, ik ben benieuwd naar de mooie resultaten waarvan ik zeker weet dat ze zullen volgen! Bibi and Natalia, it was amazing to work at the same office block with you. Bibi, you were always so kind! I enjoyed spending time together as conference roommates, and admired your bravery.
when facing your fear of heights for a nice group picture at Neuschwanstein. Natalia, you are such a cheerful person, I always loved our late-afternoon chats. Your guacamole recipe is unbeatable! Eelke, bedankt voor je scherpe vragen en discussies tijdens (en na) de meetings. Het was altijd gezellig met jou op het lab te werken, vooral na het weekend was dit altijd een mooi moment om onze volleybalwedstrijden te analyseren. Tobias, Johanna, Federico, Aline, Liesbeth, Willem, Venetia, Anouk and Andries, thanks for your support and cooperation, it was always a pleasure working with you. Cristy, Lars, Martijn and Willemien, ik wens jullie veel succes voor de toekomst, en hoop dat jullie een mooie tijd zullen hebben bij de kindergeneeskunde.

Marleen, bedankt dat je mijn paranimf wil zijn! Doordat we beiden via onze eigen weg bij het Kindergeneeskunde lab terecht zijn gekomen, kon ik altijd met mijn werkerelateerde verhalen bij jou terecht. En hoewel jouw verhuizing naar Kopenhagen een goed excuus was om je daar te komen bezoeken, ben ik blij dat je nu (voor zolang het duurt) weer in Groningen bent!

Dear Paolo, during your time in Groningen we spent a lot of time together on our kinetics experiments. Because you had a million funny stories, I never had a boring moment, not even when we stayed in the isotope lab till 10 o’clock because we were sure that “another 5 minutes” would definitely conclude the experiment. Antoine, I enjoyed working together with you on the same protein complex. On the outside you are a French gentleman, but once I got to know you, I realized that a (not so) little devil is hiding on the inside. It’s good to know that as a backup plan, we can always pursue a career in German folk dancing. Jan Freark, het is niet te tellen hoe vaak ik bij jou ben geweest voor de oplopende druk van de FPLC. Op het laatst wist je al precies hoe laat het was wanneer ik bij je kwam aankloppen. Jouw kalme aanpak bracht de druk gelukkig altijd weer naar beneden. Karin en Ydwine, bedankt voor de vele series samples die jullie hebben opgewerkt en gemeten voor de proteomics. Uiteindelijk heeft dit tot een hoop mooie resultaten geleid! Frank, bedankt voor je hulp en het meedenken met mijn experimenten op het isotopenlab. Albert, het was altijd gezellig met jou op het metabole lab, als ik mijn neus nog niet om de hoek had wist jij al hoe laat het was (“cholesterol?”).

Beste Rick, Vincent, Theo, Renze, Martijn en Niels, bedankt voor jullie hulp bij mijn laatste serie experimenten. Niels, bij jou kon ik altijd terecht om dingen te vinden op het Y2 lab, of gewoon voor een gezellig praatje. Vincent, bedankt voor de hulp bij het opzetten van de experimenten, Rick, voor de hulp bij de galcanulaties (en koffie met koekjes achteraf),
Renze, voor het verwerken van mijn samples, Martijn, voor de MS-metingen, en Theo, voor de berekeningen. Ik was ontzettend blij met jullie expertise bij experimenten die op dat moment nieuw voor mij waren.

Rene, Minke, Maarten, Marijn, Dianne en Ilse, bedankt voor jullie inzet tijdens jullie stages. Het uitleggen van mijn projecten, en jullie daaropvolgende vragen, heeft me geholpen mijn onderzoek tot in de details en vanuit meerdere invalshoeken te bekijken.

Paula en Evelien, bedankt voor jullie hulp bij praktisch alles wat geregeld moest worden. Daarnaast was het altijd gezellig om even te komen buurten!

Natalia, Karin, Marijke and Marieke (Transcard ladies!). Our afterparties during the Transcard meetings were always a lot of fun, and I hope we will continue our circle of housewarming-high teas! Marijke, bedankt voor je hulp en advies bij het vinden van een nieuwe baan na mijn PhD.

Liana, Angela, Mariska en Ar, de vele uren in het CDP zouden zonder jullie nog een stuk meer zijn geweest! Bedankt voor de goede zorgen voor mijn muizen, en voor jullie gezelligheid. Michel, bedankt voor het meedenken met de experimenten, je was altijd oplossingsgericht, en dacht nooit in problemen.

Ook zou ik graag dr. Wouter Nagengast en prof. dr. Rinse Weersma willen bedanken. Beste Wouter, beste Rinse, jullie hebben me naast de ruimte voor het (bijna) afronden van mijn proefschrift ook de gelegenheid gegeven om te beginnen aan een nieuwe uitdaging. Ik hoop dat we een goede samenwerking tegemoet gaan!

Verder wil ik mijn vrienden en familie bedanken. Bedankt voor jullie interesse in mijn onderzoek (‘hoe is het met de muizen?’). Jullie omgeving waarin ik me kon ontspannen en het werk van me af kon zetten, heeft me de afgelopen jaren ontzettend gesteund. Lieve pap en mam, bedankt voor jullie geloof in mij. Ik heb altijd gevoeld dat jullie er geen moment aan twijfelden of ik mijn PhD succesvol zou afronden, en dit heeft mij erg geholpen. Ik had altijd het gevoel dat jullie achter mij stonden. Lieve familie en schoonfamilie, (oma, Peter, Djaylano, Rob, Gea, Jan, Lien, Hans, Jannie, Hans, Renate, Martijn, Celine, Bas, Lianne, Marian, Eddy, Diede, Jeroen en Yara) door de lange dagen kwam het meer dan eens voor dat ik later aanschoof tijdens verjaardagen of familiedagen. Ik waardeer het ontzettend dat de enige opmerkingen hierover “fijn dat je er bent” waren, bedankt voor jullie support!
Celine, bedankt voor jouw creatieve interpretatie van mijn werk!

Gina, ook al zien we elkaar soms een hele tijd niet, als we weer met elkaar afspreken kletsen we zo verder en is het altijd net alsof er nauwelijks tijd voorbij is gegaan, ik ben blij dat we nog steeds regelmatig contact hebben! Marleen, Tara en Iris, sinds de studie hebben we trouw volgehouden om weekendjes met z’n allen te plannen. Ik ben blij met deze traditie! Tara, onze ontspanningsdagen waren soms hoognodig, en altijd een goed moment om bij te kletsen. Iris, we houden allebei van sporten en spelletjes spelen, dit geeft ons altijd genoeg te doen. Marleen, ik denk dat de combinatie van sushi en series het recept is voor onze succesformule. Els, onze vriendschap is begonnen tijdens de biologieles op de middelbare school, en sinds die tijd hebben we een hoop samen gedeeld. Hanneke, Helena en Pim, bedankt voor de gezellig pubquiz-avonden en het op peil houden van mijn (soms nutteloze) feitenkennis. An, Anne, Claire, Dieuwke, Elke, Johanna, Maaieke, Marlies, Rianda, Sandra en Sanne, ten eerste is en blijft dames 6 natuurlijk het allergezelligste team! Bij jullie kon ik altijd mijn frustraties kwijt (en van me af slaan) tijdens de training.

Tenslotte wil ik graag Harco bedanken. Lieve Harco, bedankt voor je steun de afgelopen jaren. Bij jou kon ik alles kwijt, zowel positief als negatief, en je hebt me altijd aangespoord om door te zetten. De mooie dingen die we samen hebben meegemaakt (vakanties, uitstapjes, maar zeker ook onze avondjes lekker op de bank) gaven me altijd nieuwe energie. Ik ben blij om samen met jou als paranimf mijn promotieperiode af te kunnen sluiten. Ik hoop dat er nog veel mooie momenten in het verschiet liggen!
List of publications

The hepatic WASH complex is required for efficient plasma LDL and HDL cholesterol clearance.

The COMMD family regulates plasma LDL levels and attenuates atherosclerosis through stabilizing the CCC complex in endosomal LDLR trafficking.

News on the molecular regulation and function of hepatic low-density lipoprotein receptor and LDLR-related protein 1.

CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL.

Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.
The life cycle of the low-density lipoprotein receptor: Insights from cellular and in-vivo studies.

Wijers ME, Kuivenhoven JA, van de Sluis B.

Curr Opin Lipidol. 2015 Apr;26(2):82-7.

The U2-spliceosome and its interactors play a key role in the regulation of LDL receptor activity in humans.

In preparation

* These authors contributed equally
Curriculum vitae

Melinde Wijers was born on November 20th 1989 in Groningen. After obtaining her diploma from the Praedinius Gymnasium in 2008, she enrolled at the University of Groningen to study Biology. Melinde followed a Major in Biomedical Sciences and obtained her high school teaching qualification during her educational Minor. After graduating as BSc in 2011, she started her Master’s program in Biomedical Sciences. During her Master, she wrote a thesis on epigenetic regulation of tumor suppressor genes in ovarian cancer, under the supervision of prof. dr. Marianne Rots. Melinde’s Master was successfully completed by her internship at the Mayo Clinic in Rochester (USA), where she studied cellular senescence under the supervision of prof. dr. Jan van Deursen. In 2014 she started her PhD project at the Molecular Genetics section of the department of Pediatrics at the UMCG, under the guidance of prof. dr. Bart van de Sluis and prof. dr. Jan Albert Kuivenhoven. During her PhD, Melinde has written a granted research proposal for the Jan Cornelis de Cock foundation and presented her work on numerous national and international conferences. For her presentations she received multiple awards, including the young-investigator award at the European Lipoprotein conference. Her research was concluded in November 2019 with a PhD dissertation on the molecular mechanisms of endosomal trafficking of lipoprotein receptors. In March 2019 she continued her career by starting as a scientific project manager at the department of hepatology and gastroenterology of the university medical center Groningen, for dr. Wouter Nagengast and prof. dr. Rinse Weersma.