Two-stage enzyme mediated drug release from LMWG hydrogels
van Bommel, KJC; Stuart, Marcus; Feringa, B.L.; van Esch, J; Bommel, Kjeld J.C. van; Feringa, B.L.

Published in:
Organic & Biomolecular Chemistry

DOI:
10.1039/b507157g

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2005

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Two-stage enzyme mediated drug release from LMWG hydrogels

Kjeld J. C. van Bommel, Marc C. A. Stuart, Ben L. Feringa and Jan van Esch

A enzymatically cleavable low molecular weight gelator–drug conjugate system can be employed to effect a two-step enzyme mediated drug release, demonstrating the potential of LMWG systems for the development of drug delivery devices.

Introduction

One of the central problems in drug delivery today is striking the balance between toxicity and therapeutic effect of pharmaceuticals. By limiting the delivery to specific target sites, possible toxic effects at non-target sites can be avoided and the efficiency of the drug is increased. For this reason, smart drug delivery systems have been a major focus of pharmaceutical and materials research. Two-stage drug delivery systems are particularly attractive as they allow an even higher degree of selectivity, with release depending on the consecutive action of two trigger mechanisms. One of the most interesting stimuli that can be employed for drug release is the action of enzymes, which allows the release of pharmaceuticals in very specific locations. For instance, drug release in tumors as a result of the enzymatic action of tumor-associated proteases, such as, e.g., plasmin, or in designated areas of the GIT tract under the influence of digestive enzymes has been reported.

In our search for smart, responsive drug delivery systems, we investigated two-step drug delivery hydrogels based on low molecular weight gelator–drug conjugates. Hydrogels of LMWG can be made responsive to a variety of stimuli to which they can respond by a fast gel to solution phase transition. Hence, gels of LMWGs can have rapid response times (in the order of a few seconds), not attainable by conventionally studied polymeric systems. Here we present an enzymatically cleavable LMWG–drug conjugate system (Fig. 1) and demonstrate that incorporation into the gel fibers protects molecules from enzymatic cleavage. Upon applying a stimulus (e.g., via a pH or temperature change, as in Fig. 1) these gel fibers dissociate into individual molecules that can be cleaved by the enzyme, resulting in a two-step release mechanism for drugs.

Results and discussion

Recently we reported the excellent gelation properties of a novel class of cyclohexane trisamide-based hydrogelators with a modular architecture and demonstrated that, through the introduction of pH sensitive moieties onto the gelator scaffold, the inherently thermoreversible gels could be made responsive to changes in pH as well. For the two-step release system described here, use was made of the cyclohexane trisamide scaffold to which an L-phenylalanyl–amidoquinoline (L-Phe–AQ) moiety as well as two ethylene glycol chains were connected (Scheme 1). The L-Phe–AQ moiety can be enzymatically cleaved by α-chymotrypsin (α-ch), resulting in the release of the fluorogenic “model drug” 6-aminoquinoline (6-AQ). The two ethylene glycol chains were introduced to give the overall structure a minimum degree of water solubility, which improves the gelation properties.

Scheme 1 Enzymatically cleavable LMWG 1 and non-gelator 2.

Compound I indeed proved capable of gelating water with a critical gelator concentration (CGC, i.e., the lowest concentration at which gelation occurs) at room temperature as low as 0.45 mM (= 0.03 wt%), making it a so-called super hydrogelator. All gels up to 0.75 wt% are highly transparent, indicative of gelator aggregates with small diameters. This was confirmed by cryo-transmission electron microscopy experiments, which showed that hydrogels of LMWG consist of a dense network of unbranched, very long, relatively straight tubular fibers (Fig. 2). Remarkably, all fibers were found to have identical diameters of ca. 4.2 nm, corresponding to the length of two molecules. Such monodispersity is rare and indicates that fibers are formed under thermodynamic, rather than kinetic, control.

Fig. 1 Schematic representation of the enzymatic cleavage of a gelator–drug conjugate and the influence of aggregation on enzymatic cleavage: Δ = trigger for gel-to-sol transition (e.g., temperature, pH).

Fig. 2 Cryo-TEM images of a hydrogel of I (0.25 wt% = 4.77 mM). Note the uniform fiber thickness (bars correspond to 100 nm).

www.rsc.org/obc
Gel formation by 1 is completely thermoreversible, with gel-sol transition temperatures ranging from 52 °C for a 0.03 wt% gel, to 114 °C for a 0.55 wt% gel. Furthermore, owing to the presence of the basic quinoline moiety, gels of 1 can be reversibly switched to solutions by decreasing the pH (between pH 3–5, depending on the concentration of the LMWG). Several cycles of temperature- or pH-induced dissolution-gelation can be carried out without any loss in gelation capability, demonstrating the excellent responsiveness, as well as the robustness, of our system.

The first step in demonstrating this two-step drug release system is to prove that incorporation into gel fibers protects molecules from enzymatic cleavage. To this end, enzyme kinetics for the cleavage of LMWG 1 and non-gelating model compound 2 were studied by means of fluorescence spectroscopy. In order to prevent the diffusion of the enzyme from being rate limiting, α-chymotrypsin needs to be included homogeneously into gels of 1, rather than being injected into or added as a solution on top of a gel. As α-chymotrypsin is sensitive to large changes in temperature and the experiments necessitated the use of buffered solutions (pH 7.75), enzyme incorporation via temperature or pH induced dissolution-gelation was not possible. A solution was found in the use of mixed solvent systems. The rapid addition of a buffer solution of α-chymotrypsin to a solution of LMWG 1 in a small amount of DMSO resulted in the instantaneous formation of a clear, homogeneous gel suitable for fluorescence experiments (buffer : DMSO = 9 : 1).

The initial rates of hydrolysis (V_a) of the non-gelating substrate 2 as a function of the concentration (S) are accurately described using standard enzyme kinetic models (Fig. 3). The maximum initial rate V_{max} (22.4 μmol min$^{-1}$) and Michaelis constant K_m (4.8 mM) were calculated by means of an Eadie-Hofstee plot.

The behavior observed for LMWG 1 is in total contrast to that of 2. At low concentrations of 1 the values of V_a increase as a function of the substrate concentration ($V_{\text{max}} = 4.1$ μmol min$^{-1}$, $K_\text{m} = 1.8$ mM). However, V_a levels off abruptly at a concentration of ca. 1.5 mM (inset of Fig. 3), which corresponds to the CGC in this solvent mixture. Since the fraction of gelator molecules in excess of the CGC is incorporated in the gel fibers, the CGC is also the maximum concentration of gelator in solution. As the value for V_a no longer increases once the concentration of LMWG 1 has reached the CGC, this strongly indicates that only the molecules in solution are cleaved, and molecules that are incorporated into the gel fibers are protected from enzymatic cleavage. The inclusion of the α-chymotrypsin in the gel did not lead to an inhibition of its activity, as was shown in a reference experiment using a gel sample of LMWG 1 containing substrate 2 (both present in 7.54 mM). The observed value for V_a (13.7 μmol min$^{-1}$) is well above the maximum observed value for the pure gel samples of 1 (1.8 μmol min$^{-1}$; see Fig. 3) and close to the value observed for an equimolar solution sample of 2 (13.8 μmol min$^{-1}$; see Fig. 3), demonstrating that α-chymotrypsin included in the gel matrix retains an activity level similar to that in solution.

As more gel fibers of 1 disassociate at higher temperatures, this should result in an increased release of 6-AQ. In order to demonstrate that the rate of enzymatic cleavage is controllable by altering the gel-sol equilibrium, hydrolysis experiments were carried out over the temperature range 25–45 °C. Studying the formation of 6-AQ in solutions of 2, demonstrates that the increase in the rate of hydrolysis (V) as a result of the temperature-induced increase in enzymatic activity only corresponds to ca. 100% over a 20 °C interval (Fig. 4, lower data points). Conversely, in the gel sample of LMWG 1, V increased by nearly 1200% over a 20 °C interval (upper data points), confirming that increasing the temperature results in an augmented release of 6-AQ as a result of the two-step mechanism of gel fiber dissolution followed by enzymatic cleavage.

In conclusion, a simple model system based on hydrogels from a LMWG-(model)drug conjugate has successfully been used to demonstrate the concept of two-stage enzyme mediated drug release. It was shown that LMWG-(model) drug molecules are protected from enzymatic cleavage by incorporation into the gel fibers, although the enzyme included in the gel is still fully functional. By raising the temperature of the LMWG system, the gel-sol equilibrium is altered and more gelator becomes available for enzymatic cleavage, resulting in a dramatic increase in the rate of release of the model ‘drug’. The results reported here demonstrate the potential of LMWG gels for controlled drug release systems and we plan to use such systems for the development of drug delivery devices.

Experimental

Materials

α-Chymotrypsin (α-CT) from bovine pancreas (MW 40.0 kDa) was purchased from Sigma and used without further purification. α-CT was Type II Sigma preparation, 3 times crystallized, dialyzed, and lyophilized. All other chemicals were purchased from Aldrich or Fluka and used without further purification. Doubly-distilled, deoxygenated water was used for all gelation tests.
Characterization

NMR experiments were performed using a Varian Gemini NMR spectrometer operating at 200 MHz, or a Varian VXR NMR spectrometer operating at 300 MHz. All spectra were recorded in DMSO-d6 unless stated otherwise. MS-spectra were measured on a JEOL JMS-600H or a Science API 3000 mass spectrometer. All gel-to-solution transition temperatures (Tgs) were determined by dissolving a weighed amount of the gelator in acidic water (HCl). Subsequently, small volumes of a slightly basic solution were added until the onset of gelation could be observed (either a thickening of the solution or the appearance of small "gel flakes"), upon which the pH of the solution was measured. The total volume of the gelator solution was then used to calculate the exact gelator concentration. After completion of the reaction H2O (300 mL) was added and the resultant precipitate was filtered off, washed with H2O (3 x 100 mL), and dried. The crude product was purified by column chromatography (SiO2, CH2Cl2 : MeOH × 100 mL), and dried. The crude product was purified by column chromatography (SiO2, CH2Cl2 : MeOH = 9 : 1 – 8 : 2) to give pure 1 as a light yellow solid. Yield: 1.60 g (2.41 mmol = 42.1%).

1HN NMR: δ 10.50 (s, 1H, NH), 8.80 (d, 1H, J = 4 Hz, ArH), 8.37 (s, 1H, ArH), 8.28 (m, 2H, ArH), 7.98 (d, 1H, ArH), 7.35–7.17 (m, 5H, PhH), 4.74 (m, 1H, CH), 4.59 (m, 2H, OH), 3.5–3.35 (m, 12H, CHOCCH2N), 3.19 (d, 4H, CH2OCH2CH2N), 3.05 (m, 1H, CHex), 2.31 (m, 4H, CHex).

The synthesis of compounds 2 and 3 was synthesized according to a literature procedure. The synthesis of compounds 4 and 1 is depicted in Scheme 2.

CHeX(AmPh–6AQ)(AmEtOEtOH)H2 (1). A solution of compound 4 (2.80 g, 5.73 mmol), 2-(2-aminoethoxyl)-1-ethanol (1.36 g, 12.94 mmol), and DMT-MM (3.58 g, 12.94 mmol) in MeOH (100 mL) and DMSO (150 mL) was stirred overnight at RT. After completion of the reaction H2O (300 mL) was added and the resultant precipitate was filtered off, washed with H2O (3 x 100 mL), and dried. The crude product was purified by column chromatography (SiO2, CH2Cl2 : MeOH = 9 : 1 – 8 : 2) to give pure 1 as a light yellow solid. Yield: 1.60 g (2.41 mmol = 42.1%).

Acknowledgements

Dr Menno R. de Jong is kindly acknowledged for helpful discussions.

References

13 Only the obtained points at concentrations below 1.5 mM were used for the determination of V_{max} and K_m. Inherently, this will result in a certain error, even though an R^2 value of >0.995 was obtained for the E–H plot.

14 The CGC of compound 1 in pure water is 0.45 mM. The CGC of 1 in buffer–DMSO = 9 : 1, however, is 1.5 mM.