Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis

Linda M. J. Kooijmansa,b,2, Wu Sunb, Juho Aaltoc,d, Kukka-Maarita Erkkiläc, Kadmiel Maseyke, Ulrike Seibtb, Timo Vesalac,e, Ivan Mammarellac, and Huilin Chena,2

Edited by Steven C. Wofsy, Harvard University, Cambridge, MA, and approved December 18, 2018 (received for review May 2, 2018)

Understanding climate controls on gross primary productivity (GPP) is crucial for accurate projections of the future land carbon cycle. Major uncertainties exist due to the challenge in separating GPP and respiration from observations of the carbon dioxide (CO2) flux. Carbonyl sulfide (COS) has a dominant vegetative sink, and plant COS uptake is used to infer GPP through the leaf relative uptake (LRU) ratio of COS to CO2 fluxes. However, little is known about variations of LRU under changing environmental conditions and in different phenological stages. We present COS and CO2 fluxes and LRU of Scots pine branches measured in a boreal forest in Finland during the spring recovery and summer. We find that the diurnal dynamics of COS uptake is mainly controlled by stomatal conductance, but the leaf internal conductance could significantly limit the COS uptake during the daytime and early in the season. LRU varies with light due to the differential light responses of COS and CO2 uptake, and with vapor pressure deficit (VPD) in the peak growing season, indicating a humidity-induced stomatal control. Our COS-based GPP estimates show that it is essential to incorporate the variability of LRU with environmental variables for accurate estimation of GPP on ecosystem, regional, and global scales.

Carbonyl sulfide (COS) follows the same diffusion pathway into the leaf chloroplasts as CO2 and is consumed by the enzyme carbonic anhydrase (CA) (1, 2). The hydrolysis of COS via CA is irreversible (3), such that no respiration-like COS flux is evident under ambient conditions. Consequently, the atmospheric drawdown of COS above an ecosystem reflects the uptake of COS by plants, provided that other sources and sinks in the ecosystem are negligible or known. The dominant vegetative sink of COS was therefore recognized as a way to separate net ecosystem exchange of CO2 (NEE) into gross primary production (GPP) and respiration (4–7). With a known ratio of FCO2 to CO2 at the leaf level, GPP can be determined from COS ecosystem fluxes (FCOS-E) following (5, 7):

\[
GPP_{COS} = -\frac{F_{COS}}{F_{CO2}} \cdot \frac{1}{LRU} \cdot C_{COS} \cdot C_{CO2}
\]

with atmospheric mole fractions \(C_{COS}\) and \(C_{CO2}\), and the leaf-scale relative uptake ratio \(LRU = \frac{F_{COS}}{F_{CO2}} \cdot \frac{C_{CO2}}{C_{COS}}\) with \(F_{COS}\) and \(F_{CO2}\) being the flux rates of COS and CO2 at the leaf level). LRU is also referred to as the ratio of deposition velocities of COS and CO2 (8). The accuracy of LRU is key in translating COS fluxes into GPP, and several studies have derived LRU for different plant species from chamber enclosure measurements (8–17). Those LRU values ranged from 0.4 to 9.5 with a median of 1.75 and with 50% of the values between 1.48 and 2.46 around the median (see ref. 18 for an overview).

Many of the laboratory studies measured LRU under constant conditions and few have investigated LRU response to environmental variations or under field conditions (13, 17). If effects of light, humidity, and temperature on dissolution, diffusion, and relevant enzyme reactions differ between COS and CO2, then LRU should be expected to vary (13). It has already been found that LRU changes with light intensity (13, 14, 17, 19, 20). This is due to the light independence of the CA enzyme that controls \(F_{COS}\) (14, 21, 22), whereas \(F_{CO2}\) depends on the light reactions in the photosystems.

LRU values are typically larger than 1.0, which implies that the deposition velocities of COS are typically higher than those of CO2. This is attributed to a lower reaction efficiency of ribulose-1,5-bisphosphate carboxylase/oxygenase with CO2 than that of CA with COS (9, 12), which can be expected because CA is known to be the enzyme with the highest molar activity (2).

Carbonyl sulfide (COS) measurements enable quantification of terrestrial photosynthesis, which cannot be directly measured at scales greater than the leaf level. The accuracy of COS-based estimates of gross primary production (GPP) depends on how we relate the COS uptake to that of CO2. This study shows that COS-based GPP estimates will be significantly overestimated if the different environmental responses of COS and CO2 uptake are not taken into account. These findings are relevant for studies that rely on COS to quantify ecosystem to regional scale GPP, and support the use of a COS-based approach to constrain ecosystem flux partitioning. Moreover, the strong stomatal control on COS uptake shown in this study makes COS a suitable tracer for stomatal diffusion.

Significance

Carbonyl sulfide (COS) measurements enable quantification of terrestrial photosynthesis, which cannot be directly measured at scales greater than the leaf level. The accuracy of COS-based estimates of gross primary production (GPP) depends on how we relate the COS uptake to that of CO2. This study shows that COS-based GPP estimates will be significantly overestimated if the different environmental responses of COS and CO2 uptake are not taken into account. These findings are relevant for studies that rely on COS to quantify ecosystem to regional scale GPP, and support the use of a COS-based approach to constrain ecosystem flux partitioning. Moreover, the strong stomatal control on COS uptake shown in this study makes COS a suitable tracer for stomatal diffusion.
Therefore, COS uptake is not expected to be strongly limited by biochemical reactions, unlike CO₂ uptake, which is limited by light reactions in the photosystems. As a result, the stomatal conductance should be a more limiting component for FCOS than for FCO₂, which makes LRU dependent on stomatal conductance (17). In line with this hypothesis, it has been found that a further decrease of LRU at high radiation levels may occur under conditions of increasing vapor pressure deficit (VPD) and lower stomatal conductance in the afternoon (17). Furthermore, the fact that COS and CO₂ do not share the photochemical reaction in the leaf, but only the diffusive pathway between air and the chloroplast, has recently motivated the use of COS as a tracer for diffusive conductance, of which the stomatal conductance is the dominant component (20, 23).

In this study, we aim to characterize FCOS at the branch level under field conditions and investigate if FCOS and FCO₂ respond similarly to environmental changes. We performed continuous COS and CO₂ branch chamber measurements over 5 mo during spring recovery and early summer in 2017 in a boreal forest in Finland, making this a study investigating FCOS at the branch level over different phenological stages. This dataset allows us to test the applicability of findings from previous studies—which were confined to laboratory conditions or field measurements over a short period of time—to different phenological stages and environmental conditions. With the different components of FCOS (ecosystem, soil, and branch fluxes) being characterized at the site, we are able to derive COS-based GPP estimates and test the effect of the variability of LRU on GPP.

Results and Discussion

Responses of FCOS and FCO₂ to Light and Stomatal Conductance. Both FCOS and FCO₂ show a strong diurnal cycle with a sink during the daytime (Fig. 1A). The increase of COS uptake (more negative FCOS) early in the morning coincides with the increase of stomatal conductance (gs,COS), whereas the increase of FCO₂ lags behind due to its light dependence. The peak of FCOS is typically 1 h earlier than that of FCO₂ (Fig. 1A), which was also observed by Geng and Mu (24) in a Chinese deciduous forest. Unlike FCOS, FCO₂ Shows continued uptake during nighttime of −1.14 ± 0.95 μmol m⁻² s⁻¹ (median ± SD) in May–July (Fig. 1A). The different responses of FCOS and FCO₂ to light is also evident from Fig. 2A and B; FCO₂ increases with the photosynthetically active radiation (PAR) up to ∼700 μmol m⁻² s⁻¹, whereas FCOS increases up to a PAR value of ∼200 μmol m⁻² s⁻¹. The light dependence of FCOS is caused by two distinct processes: (i) carbon fixation depends on the light reactions in the photosystems (25) and (ii) stomatal aperture, which controls the intercellular CO₂ available for fixation, increases with light as a strategy to optimize carbon gain against water loss (26, 27). In contrast to CO₂, the COS biochemical reactions are light independent (14, 21, 22), but FCOS responds to light solely due to the light response of stomatal conductance.

FCOS and FCO₂ peak early in the morning when VPD is still low and gs,COS is high (Fig. 1A and C), which confirms a shared stomatal control on both fluxes. We find strong correlations of FCOS with gs,COS at all light levels and even during night (Fig. 2E and F). This is strong evidence that FCOS could provide a means to constrain stomatal conductance—during both day and night—and therefore links to both the carbon and water cycles (23). However, we also find that, at high light levels, the increase of FCOS with gs,COS is smaller than at low light levels (Fig. 2E and F). This suggests that during the daytime FCOS is colimited by nonstomatal resistances, which will be further discussed in the next section.

In the correlation with PAR, we find a decrease of COS uptake (less negative FCOS) toward higher light levels (Fig. 2A and B) that is consistent with a decrease of gs,COS (SI Appendix, Fig. S2), while on average FCO₂ remains constant. This is in line with the hypothesis that the stomatal closure would affect FCO₂ more than it would affect FCOS because the stomatal conductance is a more dominant component for FCOS than it is for FCO₂ (17). This may also explain why the peak of FCOS occurs earlier than that of FCO₂ (Fig. 1A); FCOS becomes more limited as VPD increases and gs,COS is limited (Fig. 1C), whereas FCO₂ can continue to increase due to increasing PAR.

LRU varies largely over a day, which reflects the fact that COS uptake is light independent, whereas CO₂ uptake is restricted under low light conditions, e.g., around sunrise and sunset (Fig. 1B). Therefore, LRU decreases exponentially toward high PAR (Fig. 2C and D), which is similar to the findings in Stimler et al. (14) and Sun et al. (17). The variation of LRU with PAR largely explains the variation of daytime LRU between days (SI Appendix, Fig. S1). Moreover, LRU does not become constant toward high light conditions (Fig. 2C and D, Insets), which was also observed by Sun et al. (17) for vegetation in a freshwater marsh. At high light levels we find a correlation between LRU and VPD (P < 0.01) and between LRU and gs,COS (P < 0.05) in the peak of the growing season (SI Appendix, Fig. S3), which is likely due to the different responses of FCOS and FCO₂ to gs,COS. These findings support that differential stomatal limitations on FCOS and FCO₂ drive LRU variation.

The light-saturated LRU (for PAR > 700 μmol m⁻² s⁻¹) is on average 1.1, which is on the lower end of LRU values reported in previous studies (see ref. 18 for an overview). Note that previous LRU measurements could have been affected by the dependence of LRU to PAR. LRU values have not always been determined at high light levels, which would have led to overestimated LRU. For
and the limiting role of $g_{i,COS}$ on F_{COS} is ignored, this would lead to underestimation of daytime $g_{e,COS}$. When the F_{COS}-$g_{e,COS}$ relationship is assumed to be the same for daytime and nighttime (following the blue curve in Fig. 2 E and F), $g_{e,COS}$ would be equal to 0.012 and 0.020 mol m$^{-2}$s$^{-1}$ for chambers 1 and 2, respectively, at F_{COS} of \sim3 pmol m$^{-2}$s$^{-1}$ (the average F_{COS} at high light levels). These values are, respectively, 46% and 48% smaller than what is actually observed (following the orange curve in Fig. 2 E and F). Therefore, ignoring the role of $g_{e,COS}$ would lead to a substantial underestimation of $g_{e,COS}$.

Seasonal Variation of LRU Influenced by Environmental Variables. Fig. 3 shows the light-saturated LRU per month binned by VPD. The monthly median LRU decreases by 0.2 from April to July. No significant correlation between LRU and VPD can be detected before June, whereas a significant decrease of LRU with VPD is observed in June and July (indicated by the significance levels in Fig. 3). The fact that the LRU–VPD correlation follows the progression of the growing season is associated with the increase of daytime VPD. Early in the season F_{COS} and F_{CO2} are not solely limited by stomatal conductance but rather by low temperatures, as is shown in SI Appendix, Fig. S5. The low temperatures suppress enzyme activities or mesophyll diffusion and therefore $g_{e,COS}$ has a relatively larger limiting effect on F_{COS} than $g_{i,COS}$, early in the season. In the course of the season the limitation of VPD on stomatal conductance becomes stronger, which manifests in the LRU–VPD relationship. This emphasizes that the LRU–$g_{e,COS}$ correlation (SI Appendix, Fig. S3) only applies when both F_{COS} and F_{CO2} are controlled by stomatal conductance; i.e., at high temperatures and high light conditions.

Light and Humidity-Dependent LRU Required for Accurate COS-Based GPP Estimates. In Fig. 4 we compare COS-based GPP estimates (GPP_{COS}) from COS ecosystem fluxes (determined from eddy-covariance measurements and subtracted estimates of the soil flux) with GPP from a traditional flux-partitioning method (GPP_{NEE}) based on extrapolating nighttime respiration to the daytime (GPP_{SEE}). GPP_{COS} is determined using different parameterizations of LRU: (i) a fit of the measured LRU (averaged over chambers 1 and 2) against PAR, which captures the decrease of LRU toward simultaneously increasing VPD and PAR ($GPP_{COS,1}$); see SI Appendix, Fig. S6 for the LRU–PAR relationship) and (ii) a constant LRU fixed at 1.1 (the average LRU that we find at high light levels) and 1.6 [similar to what has been frequently used in other literature (7, 15, 29)], where the latter is shown in Fig. 4. The GPP_{COS} estimates of the GPP model represents the uncertainty based on Monte Carlo sampling of all parameters contributing to the GPP calculations (Methods). The GPP COS uncertainty is larger than that of GPPGPP_{NEE}, partly because the relative uncertainty of COS mole fraction measurements (~1.7% of a typical ambient level of 450 ppt) is greater than that of CO$_2$ mole fraction measurements (~0.06% of a typical value of 400 ppm) (30). Still, Fig. 4 shows that the accuracy of GPP_{COS} is sufficient to detect differences between GPP_{COS} and GPP_{NEE}. We also calculated GPP_{COS} with the measured hourly LRU to determine to what extent uncertainty in the LRU–PAR function adds uncertainty to GPP_{COS}. The uncertainties did not decrease with measured LRU values compared with the LRU–PAR function, implying that the empirical function captures the variability of LRU over the measurement period well.

With the constant LRU, the earlier peak of F_{COS} leads to an earlier peak in $GPP_{COS,const}$ compared with GPP_{NEE}. The peak of ecosystem F_{COS}, and thus that of $GPP_{COS,const}$, is 2 h later than the peak of F_{COS} measured at the branch level at the top of the canopy. The reason for the delay between the F_{COS} peak from branches and ecosystem is that the diurnal pattern of the bulk canopy conductance is more symmetric, because light rather than g_{i} is limiting CO$_2$ assimilation in the lower canopy, in contrast to the top of the canopy (31). When GPP_{COS} is calculated with the average LRU that we find at high light levels (1.1), we find GPP_{COS} (13.4 ± 1.3 g C m$^{-2}$d$^{-1}$; daytime data only) to

Example: Kesselmeier and Merk (9) determined LRU at a light level of 300 μmol m$^{-2}$s$^{-1}$ and Sandoval-Soto et al. (8) also measured LRU in Scots pine but at a light level of 600 μmol m$^{-2}$s$^{-1}$ where F_{CO2} is not PAR saturated.

Internal Conductance of COS Limits F_{COS} During Daytime. We estimated the internal conductance to COS ($g_{e,COS}$), which is a combination of nonstomatal conductance terms, and find that during daytime $g_{e,COS}$ is smaller than $g_{i,COS}$ (see SI Appendix, Fig. S4 and the accompanying explanation). The ratio of $g_{e,COS}$ over $g_{i,COS}$ determines the relative importance of the two conductances on F_{COS} and thereby also on LRU (see equation 8 in ref. 12). The fact that we find a relatively low $g_{e,COS}$ compared with $g_{i,COS}$ during the daytime implies that $g_{e,COS}$ has a relatively large control on F_{COS}. Wehr et al. (23) estimated that the biochemical conductance (the CA activity) was of similar magnitude as $g_{e,COS}$ during the daytime. The fact that we also find a relatively high importance of $g_{e,COS}$ emphasizes the need to take into account $g_{e,COS}$ on the total conductance of COS uptake (17). The day–night difference of $g_{e,COS}$ is larger than that of $g_{i,COS}$, and therefore $g_{e,COS}$ has a relatively larger effect on day–night differences of F_{COS} than $g_{i,COS}$ has. This means that the diurnal change of F_{COS} is largely controlled by $g_{i,COS}$. Furthermore, $g_{e,COS}$ has a relatively larger limiting role on F_{COS} during daytime than during nighttime (SI Appendix, Fig. S4). This variable role of $g_{e,COS}$ over a day explains why the relation between F_{COS} and $g_{i,COS}$ is different between different moments of the day, as depicted by different light levels in Fig. 2 E and F. If F_{COS} is used to determine $g_{i,COS}$,
be overestimated by 72% compared with \(\text{GPP}_{\text{COS-fit}} \). A fixed LRU value of 1.1 is not even sufficient for peak daytime values of \(\text{GPP}_{\text{COS}} \), because cloudy days would have lower PAR, leading to higher LRU and lower \(\text{GPP}_{\text{COS}} \). When \(\text{GPP}_{\text{COS-const}} \) is based on the LRU value that is frequently used in other studies (1.6), \(\text{GPP}_{\text{COS}} \) is underestimated at high light levels, but overestimated in the early morning and late afternoon (Fig. 4) with the daytime sum being 7% overestimated compared with \(\text{GPP}_{\text{COS-fit}} \) (daytime data only). These comparisons demonstrate that a constant LRU does not capture the variability of GPP. To the contrary, the diurnal cycles of \(\text{GPP}_{\text{NEE}} \) and \(\text{GPP}_{\text{COS-fit}} \) track closely in the early morning and late afternoon. The sum of daily GPP estimates differ by 13% (6.8 ± 0.3 and 7.8 ± 0.9 g C m\(^{-2}\)d\(^{-1}\) for \(\text{GPP}_{\text{NEE}} \) and \(\text{GPP}_{\text{COS-fit}} \), respectively). If LRU is held constant at a too-high value toward high PAR—when the different response of \(F_{\text{COS}} \) and \(F_{\text{CO}_2} \) to stomatal closure is ignored—this would lead to an overestimation of GPP during daytime.

Ideally, COS would be used to validate other flux-partitioning methods and to assess assumed relations, such as the relation between respiration and temperature that is used to determine methods and to assess assumed relations, such as the relation to an underestimation of GPP during daytime. Meanwhile, the strong relationship between \(\text{FCOS} \) and \(\text{gs} \) that was shown in this study can be used in process-based modeling studies to constrain the \(\text{CO}_2 \) diffusion pathway. Large improvements can be made particularly on the extent of nighttime stomatal closure, which is otherwise poorly quantified. Moreover, the strong relationship between \(F_{\text{COS}} \) and \(\text{gs} \) that was shown in this study can be used in process-based modeling studies to constrain the \(\text{CO}_2 \) diffusion pathway. Large improvements can be made particularly on the extent of nighttime stomatal opening, which is otherwise poorly quantified.

Conclusion

The different responses of \(F_{\text{COS}} \) and \(F_{\text{CO}_2} \) to environmental variables, especially light, should not be ignored when COS flux measurements (either at leaf, ecosystem, regional, or global scales) are used to interpret changes in photosynthetic \(\text{CO}_2 \) uptake. Our findings show that the strong variability of LRU...
with environmental variables and phenological stages must be incorporated to obtain accurate estimates of GPP from COS measurements. The LRU–PAR relationship found in this study can help to scale up LRU to ecosystem, regional, and global scales. Furthermore, the close relationship between FCO2 and gH2O that we observed can provide additional constraints to both the carbon and water cycles. With recent efforts to characterize sources and sinks of COS in ecosystems, accurate COS-based GPP estimates are now within reach and will allow testing and validation of other flux-partitioning methods.

Methods

Branch Measurements. Measurements were performed at the Station for Measuring Ecosystem–Atmosphere Relations II (SMEAR II) in Hyytiälä, Finland (61°51′ N, 24°17′ E, 181 m above sea level), which is dominated by Scots pine (Pinus sylvestris L.) (40). Four automated gas-exchange chambers were installed at the top of the canopy in two Scots pine trees between February 16 and July 17, 2017; details of those chamber measurements are provided in SI Appendix. PAR was measured by quantum sensors (Li-Cor LI-190) inside and outside the chambers. Temperature sensors (thermocouples and PT100) were placed inside the chambers. During measurements, the chambers were closed for 4 min and each chamber was measured once every hour. Air was pumped through a 4-mm (inner) diameter Synflex (Decabon) tube of 65-m length from the branch chambers to a quantum cascade laser spectrometer (QCLS) (Aerodyne Research Inc.) with a flow of 1.5 L min−1 which was constantly recorded with Honeywell flowmeters (AWMS101VN). No active supply flow was provided, but ambient air could enter the chamber through small holes in the chamber housing (41). The sample tubing outside the instrument cabin was heated to prevent condensation on the tubing walls. The QCLS measured COS, CO2, CO, and H2O mole fractions (1 Hz) from the branch chambers along with half-hourly cylinder measurements for calibration. We corrected for the spectral water vapor interference of COS (30). The overall uncertainty including scale transfer, water vapor corrections, and measurement precision was determined to be 7.5 parts per trillion for COS and 0.23 parts per million for CO2 (30). More information about the instrument and the calibration method can be found in Kooijmans et al. (30) and the deployment of the instrument at the SMEAR II station in Kooijmans et al. (42).

Figures were calculated from the change of molar concentrations within the chamber during chamber closure through the following mass balance equation:

\[
\frac{dC}{dt} = FA + g_c(C_a - C_{a,CO2})
\]

where C is the molar concentration of each species inside the chamber (mol m−3), C0 the ambient molar concentration (mol m−3), V the chamber volume (m3), F the uptake or emission rate (mol m−2 s−1), A the leaf area (m2), and q the flow rate (m s−1). The measured mole fractions of the gas species (mol m−3) are converted to molar concentrations using the ideal gas law with average temperature during chamber closure and pressure measurements at the site. The fluxes were calculated from least-square fit of the time series of molar concentrations inside the chamber and by solving Eq. 2. C0 was determined from open chamber measurements during a few minutes before chamber closure.

We measured fluxes in empty chambers (called “blank” measurements) to test and correct for gas exchange by the chamber and possibly by tubing materials. We measured blanks for all chambers in July and during a few days in March, May, and June. The fluxes were corrected for the blank emissions as is further described in SI Appendix.

In SI Appendix we also discuss the effect of leaf mitochondrial respiration on FCO2 and LRU. Since we do not have the means to quantify diurnal changes of leaf mitochondrial respiration we approximate leaf-level LRU with the observed FCO2.

Stomatal Conductance. With transpiration measurements (FH2O) available, we would ideally calculate stomatal conductance to water vapor (gH2O) from FCO2 normalized by VPD, where FCO2 is simultaneously determined along with FCO2 and FCO2 from the branch chamber measurements. However, in chamber measurements, transpiration is underestimated at high relative humidity (RH) levels because the transpired water vapor can get adsorbed on the chamber walls. Measurements of FCO2 therefore may not provide reliable gH2O estimates at high humidity levels. Therefore, we determined gH2O from the Ball–Berry model where the empirical slope (m) and intercept (g0) parameters are determined from gH2O, which is determined with FCO2 and VPD under low-humidity conditions. We use a threshold for RH (70%) to avoid the effect of condensation on the chamber walls. The Ball–Berry model describes gH2O as function of FCO2, RH and the atmospheric CO2 mole fraction (43):

\[
g_{H2O} = m \cdot F_{CO2} + RH_{a,CO2} \cdot g_0
\]

The model parameters m and g0 are determined through linear regression with an R2 of 0.98 and 0.99 for chambers 1 and 2, respectively. With the regression being linear, we do not expect that using the Ball–Berry model rather than the measured gH2O leads to a bias in the results. As the Ball–Berry model does not allow for gH2O estimates in the dark when there is no photosynthesis, we determined the nighttime gH2O based on FCO2 normalized by VPD (for RH < 70%). The leaf temperature used for VPD was calculated from a leaf energy balance model that incorporated heating by incoming shortwave radiation and cooling by transpiration and sensible heat transfer (44). The RH used for VPD calculations was determined from water vapor mole fractions in the open chamber a few minutes before chamber closure.

GPP Estimates. We determined GPP from NEE and extrapolated nighttime respiration following the traditional flux-partitioning method in Reichstein et al. (28). In addition to these NEE-based GPP estimates, we calculated GPP through Eq. 1 using different representations of LRU: with a PAR-dependent fit to the measured LRU (SI Appendix, Fig. S6) and with LRU fixed at 1.1 and 1.6. Vegetative COS fluxes were determined from eddy-covariance (EC) measurements in 2017 and soil COS fluxes that were characterized at the site in 2015 (45). The EC measurements of COS fluxes were made with a second QCLS of the same make at 10-Hz frequency together with a sonic anemometer (Solent Research HS1199; Gill Ltd.) at 23-m height. EC fluxes of COS were calculated from COS mixing ratios (corrected for water vapor in air) using the EddyUH software package developed at the University of Helsinki (46). Storage fluxes were estimated from mole fractions at 18 m assuming a constant height profile. More details about the flux and storage calculation procedure can be found in Kooijmans et al. (42). Data with low friction velocity (<0.3 m s−1) were filtered out. Soil COS fluxes were measured in 2015 at the Hyytiälä site and showed no seasonal or diurnal cycle (45). An average
soil flux of $-2.7 \text{ pmol m}^{-2} \text{s}^{-1}$ was subtracted from the ecosystem fluxes such that the remaining flux represents the vegetative COS exchange. The average uncertainty is shown in Fig. 1A based on 1,000 subsamples of Monte Carlo simulations that include uncertainties of all contributing components in the GPP calculation. That is, the SE of EC_DEC and NEE; the COS soil flux uncertainty of $1.1 \text{ pmol m}^{-2} \text{s}^{-1}$ (45); the SE of the fitting parameters of the LRU-PAR relation (using the median PAR in the calculation), or no uncertainty in LRU in the case of a constant LRU; the uncertainties of COS and CO$_2$ mole fractions of 6.0 ppt and 0.13 ppm respectively (30), and the range of respiratory calculations from figure 11 in ref. 47.

Meteoroelogical Data. In addition to the temperature and PAR sensors installed at the branch chambers we use the data that are made available through the SmartSMEAR database that contains continuous data records from all SMEAR sites (available at https://javaa.tdata.fi/).

Statistical Tests. The significance of correlations is tested with two-sided Monte Carlo simulations that include uncertainties of all contributing ages and uncertainties shown in Fig. 4 are based on 1,000 subsamples of 13. Stimler K, Montzka SA, Berry JA, Rudich Y, Yakir D (2010) Relationships between