Highly Enantioselective Catalytic Conjugate Addition and Tandem Conjugate Addition - Aldol Reactions of Organozinc Reagents**

Ben L. Feringa,* Mauro Pineschi, Leggy A. Arnold, Rosalinde Imbos, and André H. M. de Vries

Dedicated to Professor D. Seebach
on the occasion of his 60th birthday

Although efficient catalysts for a number of asymmetric carbon - carbon formations are known to date,[1] a highly enantioselective catalytic version of the conjugate addition of organometallic reagents to enones is lacking.[2] Recently chiral catalysts based on CuI, NiII, ZnII, or CoII complexes of a variety of ligands have shown enantioselectivities up to 90% in 1,4-additions of Grignard, organolithium, or dialkylzinc reagents.[3] The results so far have not revealed, however, the key elements for realization of complete stereocontrol but do reveal the rather complex nature of some of these chiral catalytic systems.[4] Previously we have demonstrated that copper complexes of chiral phosphorus amidites show relatively high ee values for the 1,4-adducts of R2Zn reagents and acyclic as well as cyclic enones.[5]

In this communication both the first catalytic asymmetric 1,4-addition reactions of organometallic reagents with complete

** We are grateful to Prof. Dr. P. Knochel, University of Marburg, for valuable discussions and suggestions on the preparation of organozinc reagents and to Dr. J. van Esch for the creation of the artwork. Financial support (TMR postdoctoral fellow for M. P.) from the European Community (EU contract no.: ERBFMBICT961635) is gratefully acknowledged.
stereocenters and highly enantioselective tandem conjugate addition–aldol reactions are reported. In our design of a catalytic asymmetric 1,4-addition the following aspects were considered: a) Can very efficient ligand-accelerated catalysis \(^{[6]}\) be achieved? b) Is it possible to use an enone and an olefin \([\text{Eq. (a)}]\) as starting material? c) Are functional groups tolerated?

The remarkable ligand effect of binaphthol-derived phosphorus amidites on the copper-catalyzed 1,4-addition of Et\(_2\)Zn to enones\(^{[5]}\) was explored by a modular variation of the stericly demanding \((R,R)\)-bis(1-phenylethyl)amine and unsubstated \((S,2,2\)'-binaphthol (as present in \(C_2\) symmetric ligand 1), resulted in a matched combination\(^{[7]}\) and a highly selective catalyst for the addition of Et\(_2\)Zn to cyclohexenone (Scheme 1). Thus the catalyst prepared from Cu(OTf)\(_2\)/

\[
\text{O} + \text{Et}_2\text{Zn} \rightarrow \text{Cu(OTf)}_2 \rightarrow \text{C}_7\text{H}_9\text{p} - 3\text{h}, -30^\circ \text{C} \rightarrow 4\text{a} > 98\% e\text{e}
\]

Scheme 1. Enantioselective 1,4-addition of Et\(_2\)Zn to \(2\), catalyzed by Cu(OTf)\(_2\)/1. Tf = trifluoromethane sulfonate.

(2 mol %) and 1 (4 mol %) provided \((S)-4\)a in 94 % yield and an ee value greater than 98 %. Excellent yields and enantio-
meric excesses ranging from 94 to greater than 98 % are obtained for cyclohexenone and substituted cyclohexenones with a variety of zinc reagents (Table 1).\(^{[9]}\) Having realized complete stereocontrol in the formation of a number of 3-substituted cyclohexanones \(4\) (Table 1, entries 1, 4 - 7),

we examined catalytic 1,4-additions of dihexyl zinc \((3e)\) and functionalized dialkylzinc reagents \((3e-3h)\).\(^{[9]}\) The R\(_2\)Zn reagents were prepared from the corresponding alkynes by hydroboration and subsequent zinc exchange according to \(\text{Knochel}^{[10,11]}\) or with the corresponding Grignard reagent (Table 1, entry 9). Again excellent enantioselectivities were achieved (Table 1, entries 8-13). It is particular noteworthy that the new catalyst tolerates ester and acetal functionalities. So far the catalyst based on Cu(OTf)\(_2\)/ligand 1 does not show satisfactory enantioselectivities for five- and seven-membered cyclic enones (Table 1, entries 2,3). For these substrates further ligand tuning is required.

A possible pathway for the 1,4-addition could involve transfer of an alkyl fragment from R\(_2\)Zn to the copper complex\(^{[12]}\) followed by \(\pi\)-complexation of the resulting copper alkyl species to the double bond of the enone \(2\) and o

\[
\text{O} + \text{R}_2\text{Zn} \rightarrow \text{Cu(OTf)}_2 \rightarrow \text{C}_7\text{H}_9\text{p} - 3\text{h}, -30^\circ \text{C} \rightarrow 4\text{a} > 98\% e\text{e}
\]

Scheme 2. Postulated catalytic cycle of the 1,4-addition.

It is anticipated that the zinc enolate \(5\), resulting from the conjugate addition, might be trapped by an aldehyde in a subsequent aldol reaction\(^{[13]}\) The regio- and enantioselective catalytic three-component coupling was indeed achieved with...
The synthetic versatility of the new catalytic enantioselective C-C bond formation is further illustrated by the 1,4-addition of Et2Zn to highly symmetrical diene 10 readily obtained by oxidation of hydroquinone 9 (Scheme 3).[15] view of the potential to use various zinc reagents, the multifunctional nature of 11, and the short, highly selective, and efficient route from hydroquinone, this new method may allow a versatile entry to a variety of optically active cyclohexenones.

Experimental Section

1: The procedure for related phosphorus amidites [5] was followed except that nBuLi/THF was used instead of Et3N/Noeulene in the second step. Chromatography (SiO2, 30% ethyl acetate, 70% hexanes) and oxidized to a single isomer of diketone 8a with 95% ee. The results shown in Table 2 indicate that other representative aldehydes undergo the tandem 1,4-addition - aldol reactions (in the presence of Lewis acid) affording the corresponding trans-2,3-disubstituted cyclohexanones with enantioselectivities always exceeding 90%. In all cases small amounts of copper catalyst (1.2 mol %) lead to clean zinc enolate formation, fast and regioselective aldol reactions and trans-vinyl disubstituted cyclohexanones are exclusively obtained. The relative and absolute stereochemistry of (-)-trans-erythro-6b was established to be 2S,3S,1’S on the basis of single crystal X-ray analysis.[14] As far as we know this represents the first catalytic one-pot organozinc conjugate addition - enolate-trapping reaction that proceeds with high enantioselectivity.

Table 2. 1,4-Additions of dialkylzinc compounds and subsequent aldol reactions of the zinc enolates 5.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis acid[a]</th>
<th>t[min] (°C)</th>
<th>Products</th>
<th>erythro/threo</th>
<th>Yield (%)[b]</th>
<th>ee [%][c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10 (-30)</td>
<td>6a/7a</td>
<td>6a + 7a</td>
<td>31:69</td>
<td>88</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>10 (-30)</td>
<td>6b/7b</td>
<td></td>
<td>38:62</td>
<td>85</td>
<td>93</td>
</tr>
<tr>
<td>3</td>
<td>3 (-30)</td>
<td>6c/7c</td>
<td></td>
<td>54:46</td>
<td>64</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>3 (-20)</td>
<td>6d/7d</td>
<td></td>
<td>38:62</td>
<td>67</td>
<td>91</td>
</tr>
<tr>
<td>5</td>
<td>3 (-20)</td>
<td>6e/7e</td>
<td></td>
<td>52:48</td>
<td>>99</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6h/7h</td>
<td>6f/7f</td>
<td></td>
<td>32:68[d,e]</td>
<td>88</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>6i/7i</td>
<td></td>
<td></td>
<td>45:55[e]</td>
<td>82</td>
<td>>99</td>
</tr>
<tr>
<td>8</td>
<td>6j/7j</td>
<td></td>
<td></td>
<td>65:35[e]</td>
<td>81</td>
<td>97</td>
</tr>
<tr>
<td>9</td>
<td>6k/7k</td>
<td>6l/7l</td>
<td></td>
<td>48:52</td>
<td>75</td>
<td>97</td>
</tr>
</tbody>
</table>

[a] 1.0 equiv of Lewis acid added. [b] Yields of isolated, pure aldols. [c] See Experimental Section for the determination of the ee values. [d] An unseparable mixture of aldols was obtained. [e] The relative configuration (erythro/threo) has not been established.

The synthetic versatility of the new catalytic enantioselective C-C bond formation is further illustrated by the 1,4-addition of Et2Zn to highly symmetrical diene 10 readily obtained by oxidation of hydroquinone 9 (Scheme 3).[15]

[7] a) Mismatched ligand S,S,S-1 afforded 4a with 82% yield and 75% ee; b) the introduction of substituents at the 3,3´-positions of the binaphthol moiety only marginally affected the enantioselectivities.

[8] The spectral and analytical data for all new compounds were in agreement with the indicated structures.

[14] The X-ray structural analysis of compound 6b was performed by Dr. A. L. Spek (Utrecht University). Details will be reported separately.
