Phosphodiesterases as therapeutic targets for respiratory diseases

Haoxiao Zuo a,c,⁎, Isabella Cattani-Cavaliere a,b,d, Nshunge Musheshe a, Viacheslav O. Nikolaev c,e, Martina Schmidt a,b

a Department of Molecular Pharmacology, University of Groningen, the Netherlands
b Groningen Research Institute for Asthma and COPD, GRMAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
c Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany
d Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany

Abstract

Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: phosphodiesterases, cAMP, cGMP, COPD, asthma

Contents

1. Introduction .. 226
2. Systematic overview of the PDE superfamily 226
3. PDE3 .. 227
4. PDE4 .. 228
5. PDE5 .. 231
6. PDE7 .. 232
7. PDE8 .. 232
8. Dual PDE inhibitors .. 233
9. Future directions .. 234
Author contributions ... 235
Conflicts of interest ... 235
Acknowledgments ... 236
References ... 236

Abbreviations: COPD, chronic obstructive pulmonary disease; β2-AR, β2-adrenoceptor; PDE, phosphodiesterase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine monophosphate; ASM, airway smooth muscle; ACs, adenylyl cyclases; PKA, cAMP-dependent protein kinase; PKG, cGMP-dependent protein kinase; Epacs, exchange proteins directly activated by cAMP; UCRs, upstream conserved regions; CS, cigarette smoke; PCLS, precision cut lung slices; MMP, matrix metalloproteinase; GM-CSF, granulocyte/macrophage colony-stimulating factor; CCL, C-C motif ligand; CXCL, C-X-C motif ligand; TNF-α, tumor necrosis factor-α; LPS, lipopolysaccharides; TNF-α, tumor necrosis factor-α; IL, interleukin; IFN-γ, interferon gamma; BAL, bronchoalveolar lavage; NF-κB, nuclear factor kappa B; EMT, epithelial-to-mesenchymal transition; TGF-β, transforming growth factor beta; HDM, house dust mite; WT, wild type; NO, nitric oxide; PAH, polycyclic aromatic hydrocarbons; EP, E prostanoid receptors.

⁎ Corresponding author at: Antonius Deusinglaan 1, Groningen, the Netherlands.
E-mail address: h.zuo@rug.nl (H. Zuo).

https://doi.org/10.1016/j.pharmthera.2019.02.002
0163-7258/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are among the leading causes of morbidity and mortality today. COPD and asthma combined affect at least 300 million people worldwide, making investigation of more therapeutic targets and the development of effective drugs a relevant task in the treatment of these respiratory diseases (Vogelmeier et al., 2017).

COPD and asthma are characterized by airway obstruction, chronic inflammation, and airway remodeling. Despite both COPD and asthma being characterized by airway obstruction, the airflow obstruction in COPD is progressive and not fully reversible, while that in asthma is reversible by bronchodilators and is associated with airway hyperresponsiveness (Guerra, 2009; Hogg & Timens, 2009; Meurs, Gosens, & Zaagsma, 2008). In addition, airway inflammation in COPD is characterized by an increased number of neutrophils, macrophages and CD8+ T-lymphocytes, while that in asthma is characterized by the infiltration of eosinophils, mast cells and CD4+ T-lymphocytes (Mauad & Dohlnikoff, 2008; Vogelmeier et al., 2017; Welte & Groneberg, 2006).

Currently, therapeutic management of COPD relies mainly on the use of bronchodilators (β2-adrenoceptor (β2-AR) agonists, anticholinergics and theophylline), and a combination therapy of inhaled corticosteroid plus long-acting β2-AR antagonists. In patients with severe COPD associated with bronchitis and a history of frequent exacerbations, the phosphodiesterase (PDE) 4 inhibitor roflumilast is typically used as an add-on treatment to the above mentioned therapies (Giembycz & Maurice, 2014). In asthma treatment and/or management, the combination therapies of inhaled corticosteroid and short-acting β2-AR agonists or long-acting β2-AR agonists are used to control symptoms and relieve bronchoconstriction (Deekers, Rakel, & Schmidt, 2013; Reddel et al., 2015; Silva & Jacinto, 2016). In addition to current therapies, oral umilast has been proposed as a beneficial add-on therapy for use in patients with moderate-to-severe asthma (Beghè, Rabè, & Fabbrì, 2013).

In this review, we discuss several PDE subtypes and how their selective inhibitors are of interest for therapeutic application in COPD and asthma treatment. The possibility to combine various PDE inhibitors to increase their therapeutic effectiveness is also emphasized.

2. Systematic overview of the PDE superfamily

Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) are ubiquitous second messengers. cAMP and cGMP play important roles in regulating numerous cellular functions in physiology and pathology of the lung, including but not limited to the airway smooth muscle (ASM) tone, cell proliferation, differentiation, apoptosis, migration, secretion of inflammatory mediators, deposition of extracellular matrix, and the maintenance of the endothelial and epithelial barrier (Beavo & Brunton, 2002; Billington, Ojo, Penn, & Ito, 2013; Sayner, 2011; Zhang, Zhang, Qi, & Xu, 2016).

Following activation of adenylyl cyclases (ACs) or guanylyl cyclases, cAMP and cGMP are synthesized from adenosine triphosphate and guanosine triphosphate, respectively (Omori & Koteru, 2007). Subsequently, cAMP and cGMP bind to specific intracellular effector proteins, such as: cyclic nucleotide-gated ion channels, cAMP-dependent protein kinase (PKA), cGMP-dependent protein kinase (PKG), exchange proteins directly activated by cAMP (Epacs) (Oldenburger, Maarsingh, & Schmidt, 2012; Omori & Koteru, 2007; Pfeifer, Kilić, & Hoffmann, 2013) and the most recently described Popeye domain containing proteins which bind CAMP with a high affinity (Schindler & Brand, 2016). The intracellular cyclic nucleotide concentrations are substantially determined by PDEs (shown in Fig. 1), which hydrolyze CAMP and cGMP and prevent it from diffusing to other compartments thereby compartmentalizing the cyclic nucleotide signal.

The superfamily of PDEs is composed of 11 families with a distinct substrate specificity, molecular structure and subcellular localization (Omori & Koteru, 2007). In this article, some of the key features of the PDE superfamily are discussed, with the reader being referred to more specific reviews for future insights in the molecular mechanisms of the regulation of PDE subtypes (Abbott-Banner & Page, 2014; Omori & Koteru, 2007; Page, 2014; Page & Spina, 2012). Each PDE family has at

![Fig. 1. Cyclic nucleotides signaling in the lung. cAMP is synthesized by adenylyl cyclase (AC) from adenosine triphosphate. AC is activated by a range of molecules via stimulatory heterotrimeric G-protein subunits. Similarly, cGMP is synthesized by guanylyl cyclase (GC) from guanosine triphosphate. Soluble GC is directly activated by nitric oxide, whereas particulate GC is activated by natriuretic peptides. Cyclic nucleotides binding proteins are cyclic nucleotide-gated ion channels, cAMP-dependent protein kinase A, cGMP-dependent protein kinase G, and exchange proteins directly activated by cAMP (Epacs). cAMP and cGMP are hydrolyzed by phosphodiesterases. In the lung, PDE inhibition exerts anti-inflammatory, anti-remodeling and bronchodilator effects. β2-AR, β2-adrenoceptor; AC, adenylyl cyclase; ATP, adenosine triphosphate; GC, guanylyl cyclase; GTP, guanosine triphosphate; sGC, soluble guanylyl cyclase; NO, nitric oxide; pGC, particulate guanylyl cyclase; NPs, natriuretic peptides; PKA, cAMP-dependent protein kinase A; Epacs, exchange proteins directly activated by cAMP; PKG, cGMP-dependent protein kinase G; PDE, phosphodiesterases.](image-url)
least one (e.g. Pde5a) and often multiple coding genes, resulting in the mammalian PDE superfamily being composed of more than 21 genes. (Omori & Kotera, 2007; Page & Spina, 2012). Moreover, most PDE encoding genes have distinct promoters, and multiple transcriptional products which are generated by alternative splicing, resulting in nearly 100 different PDE messenger RNAs (Conti & Beavo, 2007; Otero et al., 2012).

Based on the substrate preferences for either cAMP or cGMP, PDEs are sub-divided into 3 groups: the cAMP-specific PDEs (PDE4, PDE7, and PDE8), the cGMP-specific PDEs (PDE5, PDE6, and PDE9) and dual-specific PDEs which hydrolyze both cAMP and cGMP (PDE1, PDE2, PDE3, PDE10 and PDE11). It is worth noting that some dual-specific PDEs play vital roles in the crosstalk between cAMP and cGMP. For instance, PDE2 is referred to as a cGMP-stimulated cAMP PDE. When cGMP binds to the amino terminus of the allosteric regulatory site known as the GAF-B domain of PDE2, the hydrolysis rate of cAMP is increased by 10-fold, and therefore cGMP is able to negatively regulate the cellular concentration of cAMP via PDE2 (Martinez et al., 2002; Pavlaki & Nikolaev, 2018). Another PDE involved in the cAMP and cGMP crosstalk is PDE3, which is termed a cGMP-inhibited cAMP PDE. Due to a higher affinity and lower catalytic hydrolysis rate for cGMP compared to cAMP, PDE3 acts as a competitive inhibitor of cAMP hydrolysis by PDE3 (Degerman, Belfrage, & Manganiello, 1997; Shakur et al., 2001). In Table 1, the PDE substrate specificities, their expression profile in the lung, and prominent PDE inhibitors are summarized.

3. PDE3

PDE3 is transcribed from two genes, PDE3A and PDE3B, which show high affinity to both cAMP and cGMP. Due to a lower Vmax Value for cGMP compared to that for cAMP, cGMP functions as a competitive inhibitor for cAMP hydrolysis by PDE3 and therefore PDE3 is referred to as a cGMP-inhibited cAMP PDE (Omori & Kotera, 2007). Three isoforms are encoded by Pde3a, PDE3A1 to PDE3A3, and only one isoform is described for PDE3B (Movsesian, Ahmad, & Hirsch, 2018). PDE3A is abundant in the cardiovascular system, including the myocardium, arterial and venous smooth muscle, bronchial, genitourinary and gastrointestinal smooth muscle as well as the epithelium, megakaryocytes, and oocytes, while PDE3B is highly expressed in adipose tissue (Reinhardt et al., 1995). In the lung, PDE3 was detected in alveolar macrophages, lymphocytes, monocytes, platelets, endothelial cells, as well as in epithelial cells and ASM cells (Beute et al., 2018; Chung, 2006; Gantner, Schult, Wendel, & Hatzelmann, 1999; Wright, Seybold, Robichaud, Adcock, & Barnes, 1998; Zuo et al., 2018). A substantial body of evidence suggests that PDE3 inhibitors including siguazodan, SK&F94120 and org9935 are potent relaxants in ASM (Bernareggi, Belvisi, Patel, Barnes, & Giembycz, 1999; Nicholson et al., 1995; Torphy et al., 1993). Despite detecting PDE3 in T-lymphocytes, however, PDE3 inhibition has been found to have little effect on T-cell proliferation and cytokine generation (Giembycz, Corrigan, Seybold, Newton, & Barnes, 1996).

Recently, Beute and co-workers investigated the role of PDE3 in an acute house dust mite-driven (HDM-driven) allergic airway inflammation mouse model. Using a targeted deletion of Pde3a or Pde3b gene in mice, the number of inflammatory cells and the concentration of pro-inflammatory cytokine were evaluated. They showed that the number of eosinophils in bronchoalveolar lavage (BAL) fluid was significantly decreased in both HDM-treated PDE3A-/- mice and PDE3B-/- mice when compared to HDM-treated wild type (WT) mice. Other inflammatory cells, including T-lymphocytes, neutrophils, macrophages followed roughly the same pattern. Moreover, the proportion of IL-5- and IL-13-positive CD4+ T cells in BAL fluid was significantly decreased in HDM-

<table>
<thead>
<tr>
<th>PDE family</th>
<th>Subfamilies</th>
<th>Substrate</th>
<th>Lung cell types</th>
<th>PDE inhibitor</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDE1</td>
<td>PDE1A</td>
<td>cAMP/cGMP</td>
<td>Pulmonary arterial smooth muscle cells; epithelial cells; fibroblasts; macrophages</td>
<td>8-methylxymethyl-IBMX; vinpocetine; nimodipine; IC86340; IC205; oxindole; ND-7001</td>
<td>Brown et al. (2007), Dunkern et al. (2007), Kogiso et al. (2017), Murray et al. (2007), Schemury et al. (2007)</td>
</tr>
<tr>
<td>PDE2</td>
<td>PDE2A</td>
<td>cAMP/cGMP</td>
<td>Pulmonary arterial smooth muscle cells; endothelial cells; macrophages</td>
<td>Cilostamide; rolipram; roloumast; colomast; BAY73401; Ro20-1724; CHF6001; GPD-1116; ASP3258; YM976</td>
<td>Bubl et al. (2014), PDE2 inhibition, 2013, Snyder, Esselstyn, Loughney, Wold, and Florio (2005), Witzenrath et al. (2009)</td>
</tr>
<tr>
<td>PDE3</td>
<td>PDE3A</td>
<td>cAMP/cGMP</td>
<td>Bronchial epithelial cells; airway smooth muscle cells; vascular smooth muscle cells; fibroblasts; T-lymphocytes; macrophages</td>
<td>Olpinorine; cilostamide; milrinone; cilostazol; milrinone; siguazodan; exonoxime; motapizone; SK&F94120; org9935; Rolipram; roloumast; colomast; BAY73401; Ro20-1724; CHF6001; GPD-1116; ASP3258; YM976</td>
<td>Giembycz et al. (1996), Hwang et al. (2012), Mokra, Drgova, Pulkin, and Calviska (2012), Selige et al. (2010), Zuo et al. (2018)</td>
</tr>
<tr>
<td>PDE4</td>
<td>PDE4A</td>
<td>cAMP</td>
<td>Inflammatory cells, fibroblasts, pulmonary arterial smooth muscle cells; airway smooth muscle cells; epithelial cells; endothelial cells</td>
<td>Zaprinast; DMPPO; sildenafil; tadalafil; vardenafil; dipyridamole; E4021; avanafil; Zaprinast; DMPPO; sildenafil; vardenafil</td>
<td>Armaji et al. (2014), Barber et al. (2004), Belleguic et al. (2000), Hatzelmann and Schudt (2001), Kudo et al. (2011), Millen et al. (2006), Mori et al. (2008), Sachs et al. (2007), Aldaashe et al. (2005), Dent et al. (1998), Sekhbi et al. (2003), Selige et al. (2010)</td>
</tr>
<tr>
<td>PDE5</td>
<td>PDE5A</td>
<td>cGMP</td>
<td>Airway smooth muscle cells; vascular smooth muscle cells; epithelial cells; fibroblasts</td>
<td>Zaprinast; DMPPO; sildenafil; tadalafil; vardenafil; dipyridamole; E4021; avanafil</td>
<td>Nikolova et al. (2010), Zhang et al. (2005)</td>
</tr>
<tr>
<td>PDE6</td>
<td>PDE6A</td>
<td>cGMP</td>
<td>Epithelial cells; other cell types largely unknown</td>
<td>Zaprinast; DMPPO; sildenafil; tadalafil; vardenafil; dipyridamole; E4021; avanafil</td>
<td>Gantner et al. (1998), Lee et al. (2002), Miró, Casacuberta, Gutíerrez-López, de Landázuri, and Puigdoménech (2000), Smith et al. (2003), Wright et al. (1998)</td>
</tr>
<tr>
<td>PDE7</td>
<td>PDE7A</td>
<td>cAMP</td>
<td>Inflammatory cells; bronchial epithelial cells; airway smooth muscle cells; lung fibroblasts; pulmonary arterial smooth muscle cells; vascular endothelial cells</td>
<td>BRL 50481; IC242; T-2585; compound 212a</td>
<td>Glavas et al. (2001), Johnstone et al. (2018), Vang et al. (2010)</td>
</tr>
<tr>
<td>PDE8</td>
<td>PDE8A</td>
<td>cAMP</td>
<td>Airway smooth muscle cells; T-lymphocytes; pulmonary arterial smooth muscle cells; vascular endothelial cells</td>
<td>PF-4957325; dipyridamole;</td>
<td>Patel et al. (2018), Tajima, Shinoda, Utakawa, Shimizu, and Kaneda (2018), Tian et al. (2011)</td>
</tr>
<tr>
<td>PDE9</td>
<td>PDE9A</td>
<td>cGMP</td>
<td>Tracheal smooth muscle cells; pulmonary arterial smooth muscle cells; other cell types largely unknown</td>
<td>BAY-73–6901; PF-04447943</td>
<td>Schmidt et al. (2008), Tian et al. (2011), Wilson et al. (2015), Zhu et al. (2017), Tian et al. (2011)</td>
</tr>
</tbody>
</table>
treated PDE3A−/− and PDE3B−/− mice compared with HDN-treated WT mice. The effect of PDE3 inhibition was further confirmed in HDN-sensitized WT mice using PDE3 inhibitors enoximone and milrinone (Beute et al., 2018), thereby implicating PDE3 as a novel anti-inflammatory target in allergic airway inflammation.

4. PDE4

Four distinct subfamily genes, Pde4a to Pde4d, encode the cAMP-specific hydrolyzing PDE4 enzyme. The PDE4 family includes a number of splice variants, which share similar and highly conserved catalytic and carboxy terminal domains (Omori & Koterla, 2007). Based on the presence or absence of upstream conserved regions (UCRs) at the amino terminus, PDE4 variants are classified as long forms (which have UCR1 and UCR2 modules), short forms (which lack the UCR1) and super-short forms (which lack UCR1 and have a truncated UCR2) (Omori & Koterla, 2007). It has been demonstrated that UCR1 and UCR2 form a regulatory module that integrates the regulatory effect of phosphorylation by PKA (Mackenzie et al., 2002; Sette & Conti, 1996).

In addition, it has been reported that UCR1 and UCR2 play an important role in PDE4 dimerization (Richter & Conti, 2002) and also serve to orchestrate the functional consequences of extracellular signal-related kinase phosphorylation of the PDE4 catalytic domain (MacKenzie, Baillie, McPhee, Bolger, & Houslay, 2000).

The human Pde4a gene, for instance, encodes a short isoform called PDE4A1 (Sullivan et al., 1998), and the long forms PDE4A4 (Havekes et al., 2016), PDE4A7 (Johnston et al., 2004), PDE4A10 (Reina et al., 2001) and PDE4A11 (Wallace et al., 2005). PDE4A protein is detected in various tissues, with the PDE4A1 isoform specifically expressed in the cerebellum (Shakur et al., 1995), the PDE4A4 isoform expressed highly in the cerebral cortex and olfactory bulb (McPhee, Pooley, Lobban, Bolger, & Houslay, 1995), the PDE4A8 isoform expressed exclusively in the testis (Bolger, McPhee, & Houslay, 1996), and the PDE4A10 isoform expressed strongly in heart, kidney, olfactory bulb and major island of Calleja (Reina et al., 2001) while the PDE4A11 isoform is expressed predominantly in the stomach, testis, adrenal gland and thyroid (Wallace et al., 2005). Interestingly, a novel human PDE4A8 isoform has been found to be highly expressed in skeletal muscle and brain (Mackenzie et al., 2008). With the exception of PDE4A1, all other PDE4A isoforms have been detected in the lung, especially in inflammatory cells, fibroblasts and pulmonary artery smooth muscle cells (shown in Table 1) (Barber et al., 2004; Mackenzie et al., 2008; Millen, MacLean, & Houslay, 2006; Sachs et al., 2007).

The Pde4a family is comprised of a super-short form PDE4B5 (Cheung et al., 2007), a short isoform PDE4B2 (McLaughlin, Ciesinski, Burman, Torphy, & Livi, 1993; Obernolte et al., 1993) and the long isoforms PDE4B1 (Bolger et al., 1993), PDE4B3 (Huston et al., 1997) and PDE4B4 (Shepherd et al., 2003). PDE4B shows ubiquitous expression, and is especially highly detected in the inflammatory cells, the brain and the testis (Cheung et al., 2007). Apart from PDE4B5, which is a brain-specific isoform, other PDE4B isoforms have been detected in various organs and tissues, including the lung (shown in Table 1) (Cheung et al., 2007; Shepherd et al., 2003).

There are seven isoforms of PDE4C, PDE4C1 to PDE4C7 (Engels, Fichtel, & Lübbert, 1994; Engels, Sullivan, Müller, & Lübbert, 1995; Obernolte et al., 1997; Owens et al., 1997). It has been demonstrated that human PDE4C is highly expressed in total brain and particularly in the substantia nigra while it is almost absent in the same regions of rat brain, indicating that PDE4C has a species-specific expression pattern (Engels et al., 1994). In addition, PDE4C is expressed in several different human organs, including but not limited to the brain, liver, lung, kidney and heart. Surprisingly, unlike other PDE4 subfamilies, PDE4C is absent in inflammatory cells (lymphocytes, neutrophils, eosinophils) (Engels et al., 1994, 1995).

The Pde4d gene encodes 9 isoforms, PDE4D1 to PDE4D9 (Beavo, Francis, & Houslay, 2006). Six of the PDE4D isoforms (PDE4D3, PDE4D4, PDE4D5, PDE4D7, PDE4D8 and PDE4D9) are long isoforms (Bolger et al., 1997; Sheppard et al., 2014; Wang et al., 2003) while PDE4D1 and PDE4D2 are short forms (Bolger et al., 1997). In addition, PDE4D6 is categorized as a supershort form with a truncated UCR2 (Wang et al., 2003). The expression of PDE4D is ubiquitous, and different organs, tissues and cells express a varied pattern of PDE4D isoforms which may contribute to the multiple and specialized functions that are unfortunately not yet fully understood (Richter, Jin, & Conti, 2005). In addition, it has been reported that some PDE4D isoforms show a dramatically different tissue distribution pattern in different species. For instance, in humans, PDE4D7 is highly expressed in the lung and kidney, while in the mouse it is expressed in the heart and testis. In the rat, PDE4D7 is expressed in the testis (Wang et al., 2003). Of note is that the mRNA transcripts of all PDE4D isoforms have been detected in the lung, albeit expression levels of PDE4D4 and PDE4D6 are relatively low (Richter et al., 2005).

4.1. PDE4: from basic research to clinical findings

Reports have shown that expression levels of PDE4 isoforms vary between the lung tissue derived from patients with COPD or asthma as compared to those of healthy donors, thereby pointing to PDE4 as an interesting and potential drug target in the treatment of chronic pulmonary diseases. The mRNA expression of PDE4A4, PDE4B and PDE4D for example, was significantly increased in alveolar macrophages from COPD donors compared to that in macrophages from non-smoking controls (Lea, Metryka, Facchinetti, & Singh, 2011). Also, the mRNA of PDE4A4 was significantly increased in alveolar macrophages from smokers with COPD compared to smokers without COPD, suggesting that PDE4A4 could serve as a macrophase-specific anti-inflammatory target in COPD (Barber et al., 2004). Compared to non-smokers, PDE4A4 and PDE4B2 transcripts were significantly up-regulated in peripheral blood monocytes of smokers (Barber et al., 2004). In addition, a significant increase in the mRNA levels of PDE4B and PDE4D, but not of PDE4A or PDE4C, was detected in neutrophils from patients with COPD compared with healthy subjects (Milara et al., 2014). In a genome-wide association study, a novel single nucleotide polymorphism in the PDE4D gene, rs16878037 was identified as being significantly associated with COPD (Yoon et al., 2014).

Cigarette smoke (CS), one of the most important risk factors in COPD (Vogelmeier et al., 2017), plays a critical role in modulating PDE4 subtypes. By using a novel Förster resonance energy transfer based cAMP biosensor in mice in vivo and ex vivo precision cut lung slices (PCLS), a study was conducted to demonstrate the effect of CS on intracellular cAMP regulation, mainly focusing on cAMP hydrolysis by PDE3 and PDE4 (Zuo et al., 2018). It was shown that CS exposure for 4 days increased the activity of PDE4 in the airway. The upregulation was mainly associated with increased PDE4A (CS in vivo exposure for 24 hours), PDE4B (CS in vivo exposure for 4 days) and PDE4D (CS in vivo and ex vivo exposure) mRNA and protein levels (Zuo et al., 2018). In another study, it was shown that the activity of PDE4 in the lung was higher in mice exposed in utero to CS. In addition, the lung from CS exposed mice exhibited increased PDE4 protein, especially PDE4D5 (Singh et al., 2003, 2009), thereby emphasizing the importance of PDE4D5.

Studies in ASM cells from asthmatic and non-asthmatic patients demonstrated that the production of cAMP induced by the β2-AR agonist isoproterenol was reduced by about 50%, an effect related to an increased activity of PDEs but not to a change in the expression profile of the β2-AR (Trian et al., 2011). Further investigation by immunoblots indicated a significant increase of PDE4D in ASM cells from patients with asthma compared to the ones without asthma (Trian et al., 2011). In another study, Jones and colleagues studied the mRNA transcripts of PDE4 subtypes (PDE4A, PDE4B, PDE4C and PDE4D) in CD4+ and CD8+ lymphocytes from healthy and asthmatic subjects (Jones et al., 2007). They found that, although all PDE4 subtypes were present in relatively high quantities in both CD4+ and CD8+ lymphocytes obtained from healthy...
and asthmatic subjects, in comparison with healthy subjects no altered mRNA expression level of any PDE4 subtype was detected in mild asthmatic subjects (Jones et al., 2007). These conflicting findings could be partly explained by differences in the cell types. Furthermore, the selection of patients is crucial in these kinds of studies as it may only be possible to detect the molecular differences when studying individuals with a more severe pathology (Jones et al., 2007).

The clinical efficacy and safety of roflumilast has been evaluated in several phase III/IV randomized double-blind clinical trials in the treatment of COPD (shown in Table 2). In all studies, patients were recruited with at least 10–20 years pack history of smoking. Studies M2-124, M2-125, M2-127, M2-128, ACROSS, REACT and RE2SPOND included patients with severe to very severe airflow limitation as assessed by Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria (Calverley et al., 2009; Fabbri et al., 2009; Martinez et al., 2015, 2016; Zheng et al., 2014). All clinical studies demonstrated that treatment with 500 μg of roflumilast significantly increased the post-bronchodilator FEV1 value ranging from 39 ml to 80 ml compared with placebo. In patients with frequent exacerbations, roflumilast significantly lowered the rate of exacerbations as compared to placebo (Martinez et al., 2015, 2016). Additionally, roflumilast showed more beneficial effects in patients already receiving treatment with the long-acting β2-AR agonist salmeterol or the anticholinergic bronchodilator tiotropium (Fabbri et al., 2009) as compared to those that were not, thereby indicating that roflumilast bears the potential to be used as an add-on treatment to the existing therapies in COPD.

4.2. The role of PDE4 inhibition

4.2.1. Anti-inflammatory effect

Due to the fact that PDE4 is widely expressed in inflammatory and immune cells (eosinophils, neutrophils, monocytes, macrophages, T-lymphocytes and B-lymphocytes) (shown in Table 1), it is believed that inhibition of PDE4 is an effective way to reduce the activation and

Table 2

<table>
<thead>
<tr>
<th>Clinical trials</th>
<th>Patients</th>
<th>Study design</th>
<th>Therapy</th>
<th>Key findings</th>
<th>Number of patients</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECORD</td>
<td>1411 patients (age ≥ 40), history of COPD ≥ 12 months, current or ex-smoker (≥ 1 year of smoking cessation) with a smoking history of ≥ 10 pack-years, PB FEV1 30–80% pred., PB FEV1/PVC ratio ≤ 0.70</td>
<td>Placebo-controlled, double-blind, randomized, multicenter study</td>
<td>Roflumilast 250 μg (n=576), roflumilast 500 μg (n=555), or placebo (n=280) orally once daily for 24 weeks</td>
<td>PB FEV1 was improved significantly with roflumilast 250 μg (by 74 ml) and roflumilast 500 μg (by 97 ml) compared with placebo; health-related quality of life was improved with roflumilast 250 μg and roflumilast 500 μg, PB FEV1 increased with roflumilast 500 μg by 39 ml compared with placebo</td>
<td>382 (66%) with roflumilast 250 μg, 370 (67%) with roflumilast 500 μg and 174 (62%) in the placebo group</td>
<td>Rabe et al. (2005)</td>
</tr>
<tr>
<td>RATIO</td>
<td>1513 patients (age ≥ 40), current or ex-smokers (≥ 1 year of smoking cessation) with a smoking history of ≥ 10 pack-years, PB FEV1 ≤ 50% pred., PB FEV1/PVC ratio ≤ 0.70</td>
<td>Placebo-controlled, double-blind, parallel-group randomized study</td>
<td>Roflumilast 500 μg (n=760) or placebo (n=753) orally once daily for 52 weeks</td>
<td>PB FEV1 was increased with roflumilast 500 μg by 48 ml compared with placebo. The rate of exacerbations that were moderate or severe per patient per year was 1.14 with roflumilast and 1.37 with placebo. Roflumilast 500 μg improved mean PB FEV1 by 49 ml in patients treated with salmeterol.</td>
<td>592 (77.9%) with roflumilast 500 μg, 584 (77.6%) in the placebo group</td>
<td>Calverley et al. (2007)</td>
</tr>
<tr>
<td>M2-124</td>
<td>3091 patients with COPD (age ≥ 40), with severe airflow limitation, bronchitic symptoms, and a history of exacerbations</td>
<td>Placebo-controlled, double-blind, double-center study</td>
<td>Roflumilast 500 μg (n=1537) or placebo (n=1554) orally once daily for 52 weeks. Patients were allowed to use SABA or LABA</td>
<td>PB FEV1 was increased with roflumilast 500 μg by 48 ml compared with placebo. The rate of exacerbations that were moderate or severe per patient per year was 1.14 with roflumilast and 1.37 with placebo. Roflumilast 500 μg improved mean PB FEV1 by 49 ml in patients treated with salmeterol.</td>
<td>1040 (67%) with roflumilast and 963 (62%) in the placebo group</td>
<td>Calverley et al. (2009)</td>
</tr>
<tr>
<td>M2-125</td>
<td>933 patients (age ≥ 40), moderate-to-severe COPD, current or former smokers with a smoking history (≥ 10 pack-years), PB FEV1 40–70% pred., PB FEV1/PVC ratio ≤ 0.70</td>
<td>Double-blind, multicenter study</td>
<td>Roflumilast 500 μg (n=466) or placebo (n=467) orally once daily for 24 weeks, in addition to salmeterol</td>
<td>Roflumilast 500 μg improved mean PB FEV1 by 49 ml in patients treated with salmeterol.</td>
<td>83 (18%) with salmeterol and roflumilast, 14 (3%) with salmeterol and placebo</td>
<td>Fabbri et al. (2009)</td>
</tr>
<tr>
<td>M2-128</td>
<td>743 patients (age ≥ 40) with moderate-to-severe COPD, current or former smokers with a smoking history (≥ 10 pack-years), PB FEV1 40–70% pred., PB FEV1/PVC ratio ≤ 0.70</td>
<td>Double-blind, multicenter study</td>
<td>Roflumilast 500 μg (n=371) or placebo (n=372) orally once daily for 24 weeks, in addition to tiotropium</td>
<td>Roflumilast 500 μg improved mean PB FEV1 by 80 ml in those treated with tiotropium.</td>
<td>45 (12%) with tiotropium and roflumilast, and 6 (2%) with tiotropium and placebo</td>
<td>Fabbri et al. (2009)</td>
</tr>
<tr>
<td>ACROSS</td>
<td>626 patients with a history of COPD ≥ 12 months, current or ex-smokers with a smoking history (≥ 10 pack-years), ≥ 14 puffs of rescue medication</td>
<td>Placebo-controlled, double-blind, parallel-group, multicenter study</td>
<td>Roflumilast 500 μg (n=313) or placebo (n=313) orally once daily for 24 weeks. Patients were allowed to use ICS + LABA or LAMA</td>
<td>Roflumilast 500 μg improved mean PB FEV1 by 71 ml compared with placebo.</td>
<td>65 (20.6%) with roflumilast and 18 (5.8%) in the placebo group</td>
<td>Zheng et al. (2014)</td>
</tr>
<tr>
<td>REACT</td>
<td>1935 patients (age ≥ 40) with a diagnosis of COPD with severe airflow limitation, symptoms of chronic bronchitis, a smoking history (≥ 20 pack-years), at least two exacerbations in the previous year.</td>
<td>Placebo-controlled, double-blind, parallel-group, multicenter study</td>
<td>Roflumilast 500 μg (n=969) or placebo (n=966) orally once daily for 52 weeks together with a fixed ICS and LABA combination</td>
<td>Roflumilast 500 μg lowered the rate of exacerbations by 13.2% according to a Poisson regression analysis and by 14.2% according to a predefined sensitivity analysis using negative binomial regression.</td>
<td>648 (67%) with roflumilast and 572 (59%) in the placebo group</td>
<td>Martinez et al. (2015)</td>
</tr>
<tr>
<td>RE2SPOND</td>
<td>2354 patients (age ≥ 40) with severe/very severe COPD, chronic bronchitis, two or more exacerbations and/or hospitalizations in the previous year.</td>
<td>Placebo-controlled, double-blind, randomized, multicenter study</td>
<td>Roflumilast 500 μg (n=1178) or placebo (n=1176) orally once daily for 52 weeks, pre-treated with ICS-LABA with or without LAMA for 3 months</td>
<td>Roflumilast 500 μg significantly reduced the rate of moderate or severe exacerbations in a post hoc analysis in patients with a history of more than three exacerbations and/or one or more hospitalizations in the prior year.</td>
<td>804 (68.3%) with roflumilast and 758 (64.6%) in the placebo group</td>
<td>Martinez et al. (2016)</td>
</tr>
</tbody>
</table>

PB, post-bronchodilator; FEV1, forced expiratory volume in 1 second; pred., prediction; PVC, forced vital capacity; ICS, inhaled corticosteroids; SABA, short-acting β2-adrenoceptor agonists; LABA, long-acting β2-adrenoceptor agonists; LAMA, long-acting muscarinic antagonists.
recruitment of inflammatory cells, and the release of various cytokines (shown in Fig. 2). A range of studies has shown that PDE4 inhibition repressed the release of a variety of pro-inflammatory mediators from neutrophils, such as matrix metalloproteinase (MMP)-9, leukotriene B4, neutrophil elastase, myeloperoxidase and reactive oxygen species (ROS) (Grootendorst et al., 2007; Hatzelmann & Schudt, 2001; Jones, Boswell-Smith, Lever, & Page, 2005; Kubo et al., 2011). Likewise, several research groups showed that PDE4 inhibition was able to block eosinophil infiltration into the lungs (Aoki et al., 2000; Lagente, Pruniaux, Junien, & Moodley, 1995; Silva et al., 2001), to reduce eosinophil survival (Momose et al., 1998), to inhibit degranulation by granulocyte/macrophage colony-stimulating factor (GM-CSF) or platelet-activating factor (Momose et al., 1998), and to suppress eosinophil chemotaxis, eosinophil cationic protein, CD11b expression and L-selectin shedding (Berends et al., 1997; Grootendorst et al., 2007; Kaneko, Alvarez, Ueki, & Nadel, 1995; Liu et al., 2004). In lung macrophages isolated from peripheral tissues, the PDE4 inhibitor rolipram and its active metabolite rofilumilast N-oxide concentration-dependently decreased the release of chemokine (C-C motif) ligand (CCL)2, CCL3, CCL4, C-X-C motif ligand (CXCL)10 and tumor necrosis factor-α (TNF-α) after stimulation with lipopolysaccharide (LPS) (Buenestado et al., 2012).

In the murine macrophage cell line J774, the PDE4 inhibitor Ro20-1724 (4-[[3-butoxy-4-methoxybenzyl]-2-imidazolidinone]) showed an inhibitory effect on the oxidant tert-butylhydroperoxide (tBHP)-induced release of tumor necrosis factor-α (TNF-α) protein (Brown et al., 2007). In human monocytes, PDE4 inhibition by rolipram and Ro20-1724 reduced LPS-induced TNF-α and GM-CSF release from monocytes (Seldon, Barnes, Meja, & Giembycz, 1995; Seldon & Giembycz, 2001). In human peripheral CD4+ T cells it has been shown that PDE4 inhibition by RP73401 reduced the release of interleukin (IL)-2, IL-5 and interferon gamma (IFN-γ) (Peter, Jin, Conti, Hatzelmann, & Zitt, 2007). Likewise, house dust mite-stimulated T-cell proliferation was inhibited by PDE4 inhibition (Arp et al., 2003; Manning et al., 1999; Peter et al., 2007). Additionally, PDE4 inhibition reduced cytokine and chemoattractant release from lung structural cells. The PDE4 specific inhibitor rolipram blocked the LPS-induced IL-6 and TNF-α secretion from alveolar epithelial cells (Haddad et al., 2002). Moreover, it was reported that PDE4 inhibitors rolipram and rofilumilast decreased LPS-induced CXCL1 release in the bronchial lavage fluid in a C57BL/6 mouse model (Konrad, Bury, Schick, Ngamsri, & Reutershan, 2015). In the same study, rolipram and rofilumilast reduced LPS-induced cytoskeletal remodeling in human distal lung epithelial NCI-H441 cells (Konrad et al., 2015). Furthermore, CHF8001, a highly potent and selective PDE4 inhibitor designed for inhaled administration (Armani et al., 2014; Villetti et al., 2015), reduced rhinovirus (RV1B)-induced IL-8, IL-29, CXCL10 and CCL5 mRNA and protein in human bronchial epithelial BEAS-2b cells (Edwards, Facchinetti, Civelli, Villetti, & Johnston, 2016). In human ASM cells, PDE4 inhibition by RP73401 significantly suppressed the IL-8 release induced by the Toll-like receptor 3 agonist poly I:C (Van Ly et al., 2013). However, in lung fibroblast and human lung microvascular endothelial cells, PDE4 inhibition alone did not effectively decrease the release of inflammatory mediators and other functional molecules but, in combination with appropriate activation of β2-AR, PDE4 inhibition was able to potently inhibit the inflammatory process (Blease, Burke-Gaffney, & Hellowell, 1998; Tannheimer, Wright, & Salmon, 2012).

In COPD models, the accumulation and infiltration of neutrophils was effectively inhibited by the PDE4 inhibitor cilomilast after 3 days of CS exposure (Leclerc et al., 2006; Martorana, Beume, Lucattelli, Wollin, & Lungarella, 2005). In chronic CS exposure studies, 8 weeks oral administration of the PDE4 inhibitor GPD-1116 markedly attenuated the development of CS-induced emphysema in mice (Mori et al., 2008). Importantly, this finding was confirmed in another study by oral administration of rofilumilast for a duration of 7 months, resulting in fully preventing CS-induced emphysema (Martorana et al., 2005). In addition, several different research groups showed that LPS-induced neutrophil recruitment was significantly attenuated by PDE4 inhibition in mouse (McCluskie et al., 2006; Tang et al., 2010), rat (Kubo et al., 2012) and monkey models (Seehase et al., 2012). In patient-related studies, the PDE4 inhibitors rofilumilast and cilomilast were able to reduce neutrophil and eosinophil accumulation as well as IL-8, TNF-α and GM-CSF in the sputum of patients with COPD as compared to placebos (Grootendorst et al., 2007; Profita et al., 2003).

In asthma models, the PDE4 inhibitor rofilumilast suppressed ovalbumin-induced eosinophil increase in both blood and BAL fluid, and largely reduced the production of IL-4, IL-5, nuclear factor kappa B (NF-κB) and TNF-α (Mokry et al., 2017). These findings were confirmed by using other PDE4 inhibitors, such as rolipram and YM976 (Mokry et al., 2016; Nejman-Grzyz, Grubeck-Jaworska, Glapiński, Hoser, & Chazan, 2006). In a separate study it was shown that PDE4B knockout mice had a significant decrease in eosinophil recruitment...
and did not develop hyperresponsiveness. More importantly, T(H)2 cytokines (IL-4, IL-5, and IL-13), but not the T(H)1 cytokine IFN-γ, were decreased in the BAL fluid of PDE4B knockout mice, suggesting that PDE4B is a vital target in T(H)2-cell function and in the development of airway hyperresponsiveness in allergic asthma (Jin et al., 2010). Moreover, the PDE4 inhibitor rolflumast significantly suppressed the allergen-induced increase of sputum eosinophils and neutrophils in mild allergic asthma subjects (Gauvreau et al., 2011). Moreover, T-cell receptor-stimulated IFN-γ, IL-2 and IL-17 secretion in BAL fluid was inhibited by PDE4 inhibitors in both mild and moderate asthma patients (Southworth et al., 2018), providing robust evidence for the anti-inflammatory effect of PDE4 inhibitors in asthma patients.

4.2.2. Anti-remodeling effect

Epithelial-to-mesenchymal transition (EMT) is a potential mechanism of small airway remodeling, which contributes to small bronchial narrowing in COPD (Sukhwinder S. Sohal et al., 2010; Sohal & Walters, 2013; Soldani et al., 2010). PDE4 inhibition by rolflumast N-oxide was able to reduce the CS-induced increase in mesenchymal markers (α-smooth muscle actin, vimentin and collagen type I) and the loss in epithelial markers (E-cadherin, ZO-1 and KRT5), to restore CS-induced apoptosis, and to diminish the CS-induced increase in transforming growth factor beta (TGF-β1) release as well as phospho ERK1/2 and Smad3 formation, thereby emphasizing PDE4 as a key pharmacological target in inhibiting CS-induced EMT (Milara et al., 2014; Milara et al., 2015). Further investigation demonstrated that rolflumast or PDE4 small interfering RNA potently inhibited TGF-β1-induced EMT changes in a Smad-independent manner by reducing ROS, p38 and extracellular signal-regulated kinase phosphorylation in the human alveolar epithelial type II cell line A549 (Kolesionek et al., 2009). Additionally, PDE4 inhibition was able to rescue decreased cystic fibrosis transmembrane conductance regulator activity (Blanchard et al., 2014; Lambert et al., 2014; Raju et al., 2017; Schmid et al., 2015), to increase airway surface liquid volume (Schmid et al., 2015; Tyrrell, Qian, Freire, & Tarran, 2015), to stimulate ciliary beating frequency (Milara et al., 2012; Schmid et al., 2015; Zuo et al., 2018), and subsequently to reverse CS-induced mucociliary dysfunction. Also, PDE4 inhibitors rolflumast and picamilast were able to significantly decrease goblet cell hyperplasia (Kim et al., 2016; Sun et al., 2006).

Furthermore, Sisson and co-workers showed that PDE4 inhibition significantly reduced collagen accumulation, decreased the release of several fibrosis-related chemokines (CCL1, CCL10, CCL5 and CCL5), and inhibited fibroblast profibrotic gene expression (type-1 collagen and fibronectin) (Sisson et al., 2018). PDE4 inhibitors were able to attenuate proliferation (Kim et al., 2016; Selige, Hatzelmann, & Dunkern, 2011; Selige, Tenor, Hatzelmann, & Dunkern, 2010; Vecchio et al., 2013) and apoptosis (Park, Ryter, Kyung, Lee, & Jeong, 2013). In lung fibroblasts, RP73-401, a selective PDE4 inhibitor, significantly reduced the MMP-9 activity in ovalbumin-sensitized and -challenged mice (Belleguic et al., 2000). Interestingly, it has been shown that colimast and rolipram were able to inhibit fibroblast-mediated collagen contraction (Kohyama et al., 2002; Kohyama et al., 2002). An inhibitory effect of rolflumast on TGF-β1-induced fibronectin deposition in human ASM cells and on TGF-β1-induced connective tissue growth factor, collagen I and fibronectin protein expression in human bronchial rings was also observed (Burgess et al., 2006). This data point to an anti-remodeling role of PDE4 inhibitors, which would benefit both COPD and asthma.

4.2.3. Bronchodilator effect

In ASM, cAMP regulation is of importance, as elevated cAMP profoundly regulates broncho-relaxation. Since PDE4 is also highly expressed in ASM cells, it is believed that PDE4 inhibitors could also serve as bronchodilators. However, conflicting findings have been reported. It has been proven that rolflumast is able to specifically reduce airway resistance after nebulization in ovalbumin-sensitized guinea pigs, and this finding was further confirmed with a significant decrease in tracheal and lung smooth muscle contractility after cumulative doses of histamine in the in vitro organ bath model (Medvedova et al., 2015). Whilst similar conclusions were made by separate studies which showed that PDE4 inhibition could relax airway tone in isolated bronchial muscle (Schmidt et al., 2000; Shahid et al., 1991), other studies have indicated that PDE4 inhibition alone was not effective (Rabe et al., 1993), especially on allergen- or leukotriene C4-induced contraction of human ASM (Schmidt et al., 2000). Intriguingly, using siRNA targeted to PDE4DS, it has been demonstrated that PDE4DS plays a vital role in the control of β2-AR-stimulated cAMP levels in human ASM cells (Billington, Le Jeune, Young, & Halle, 2008). The importance of this PDE isoform in modulating contractile ability of ASM was further studied in PDE4DS-/- mice. A significant reduction in ASM contractility was observed in isolated PDE4DS-/- tracheas, with a dramatic decrease in maximal tension and sensitivity to muscarinic cholinergic agonists (Méhats et al., 2003), thereby indicating that PDE4D was involved in ASM contractility.

5. PDE5

PDE5 is a cGMP-specific hydrolyzing PDE and is comprised of 3 spliced variants, PDE5A1, PDE5A2 and PDE5A3 (Omori & Kotera, 2007). In humans, high PDE5A transcript levels were detected in various tissues, especially in the heart, kidney, lung, skeletal muscle, pancreas and small intestine (Kotera et al., 1999; Yanaka et al., 1998). In the lung, PDE5A is widely expressed in ASM, bronchial epithelial cells, lung fibroblasts, pulmonary vascular smooth muscle of pulmonary arteries as well as in veins and bronchial blood vessels (Aldashev et al., 2005; Dent et al., 1998; Dunkern, Feurstein, Rossi, Sabatini, & Hatzelmann, 2007; Sekhki, Strange, Phillips, Wharton, & Willkins, 2003). Currently a series of inhibitors has been designed and is available on the market to target PDE5. These include zaprinast, E4021, dipyridamole, sildenafil, tadalafil, vardenafil, and avanafil (shown in Table 1). While these compounds preferentially inhibit PDE5, none of them is exclusively selective for PDE5, especially at higher concentrations. Intriguingly, most PDE5 inhibitors act excellently as PDE6 inhibitors (Zhang, Feng, & Cote, 2005). Therefore, it is required that more attention is paid to the concentrations of PDE5 inhibitors used in research.

PDE5 has a relatively high expression level in vascular smooth muscle cells. In line with this expression profile, PDE5 inhibitors play a pivotal role in pulmonary hypertension, due to the fact that inhibition of PDE5 results in pulmonary vasodilation and inhibition of vascular hypertrophy and remodeling via the cGMP/PKG signaling pathway (Ghofrani, Osterloh, & Grimminger, 2006). Since asthma and pulmonary hypertension - a common complication of COPD - share several pathological features, such as inflammation, smooth muscle constriction, and smooth muscle cell proliferation, PDE5 may be a potential therapeutic target in the treatment of both asthma and COPD (Chouquet, Naeije, & Weitzenblum, 2008; Said, Hamidi, & Gonzalez Bosc, 2010). Zaprinast, also known as M&B 22948, was originally used as an orally absorbed mast cell stabilizer. Oral administration of 10mg zaprinast was used in 12 patients with asthma induced by histamine or with asthma induced by exercise, respectively. Interestingly, zaprinast had no significant effect on the response to inhaled histamine but a significant effect on the drop in forced expiratory volume in 1s (FEV1) induced by exercise on a treadmill (Rudd, Gellert, Studdy, & Geddes, 1983), indicating that zaprinast could be used in the treatment of exercise-induced asthma.

In addition, it is well established that nitric oxide (NO) released by epithelial ciliated cells, by type II alveolar cells, and by neural fibers, is responsible for ASM cell relaxation (Belvisi, Ward, Mitchell, & Barnes, 1995; Ricciardolo, Sterk, Gaston, & Folkerts, 2004). Several experimental data demonstrated that NO–induced ASM cell relaxation via activation of the soluble guanylyl cyclase resulted in an increase of intracellular cGMP, and the subsequent activation of PKG. Activation of PKG resulted
in an inhibition of the inositol trisphosphate receptor (IP₃R), a reduction of Ca²⁺ sensitivity and deactivation of the myosin light-chain kinase, consequently leading to airway relaxation (Perez-Zoghibi, Bai, & Sanderson, 2010). Thus PDE5 inhibitors are likely to induce airway relaxation since PDE5 inhibition is able to contribute to further accumulation of cGMP. In concert with the above findings, therefore, inhibition of PDE5 by zaprinast was able to enhance NO-induced airway relaxation by maintaining high intracellular cGMP concentrations (Perez-Zoghibi et al., 2010). In a separate study, the PDE5 inhibitor tadalafil suppressed acetylcholine and histamine induced contraction in an asthma model of ovalbumin-sensitized guinea pigs (Urbanova et al., 2017). Similar data were obtained in previous studies with sildenafil—a short acting PDE5 inhibitor (Sousa et al., 2011; Toward, Smith, & Broadley, 2004). Additionally, inhibition of PDE5 has proven its effectiveness in inflammation. Intraperitoneal injection of 1.0 mg/kg tadalafil for 7 consecutive days led to a decrease in blood leukocytes and eosinophils, and eosinophils in BAL fluid, confirming findings from several previous studies (Al Qadi-Nassar et al., 2007; Toward et al., 2004; Urbanova et al., 2017). However, even though the concentration of IL-5 was significantly decreased in the tadalafil-treated group compared to the ovalbumin-sensitized group, IL-4 and TNF-α levels in lung homogenates were not significantly suppressed (Urbanova et al., 2017), indicating a plethora of additional complicated mechanisms that may be involved in the potential anti-inflammatory effect of PDE5. Moreover, in patients with severe COPD and modestly increased pulmonary artery pressure, clinical trials with the selective PDE5 inhibitor sildenafil did not improve the gas exchange ability (Blanco et al., 2013), while preventive treatment with tadalafil completely inhibited the development of emphysema, inhibited structural remodeling of the lung vasculature, and alleviated right ventricular systolic pressure as well as right ventricular hypertrophy induced by 6 months CS exposure (Seimetz et al., 2015), thereby indicating additional therapeutic benefits of PDE5 inhibition.

6. PDE7

Since PDE4 is widely distributed in various cell types, oral PDE4 inhibitors inevitably have a limited therapeutic window and are associated with gastrointestinal side effects (Abbott-Banner & Page, 2014). Thus studies of other PDE families are urgently needed for a more targeted therapy. An alternative and promising approach is to inhibit the cAMP-specific PDE isoenzyme PDE7, which is a highly selective cAMP-hydrolyzing PDE (Safavi, Baerei, & Abdollahi, 2013). Two genes encoding for PDE7, Pde7a and Pde7b, have been identified in humans (Omori & Kotera, 2007).

There are three isoforms reported in the PDE7A subfamily. The expression of PDE7A1 is ubiquitous and highly detected in the immune system (including spleen, lymph node, blood leukocyte and thymus), whereas PDE7A2 is found mostly in the skeletal muscle, the heart, and the kidney (Bloom & Beavo, 1996; Wang, Wu, Egan, & Billah, 2000). It has been demonstrated that PDE7A3 is mainly expressed in the immune system, the heart, skeletal muscle and the testis (Glavas, Ostenson, Schaefer, Vasta, & Beavo, 2001; Omori & Kotera, 2007). PDE7B is the only PDE7B isoform that has been identified in humans. However, there are three splice variants, PDE7B1 to PDE7B3, in rats (Omori & Kotera, 2007). PDE7B which has approximately 70% homology to PDE7A is detected in a variety of tissues, such as liver, brain, heart and skeletal muscle (Gardner, Robas, Cawkill, & Fidock, 2000; Sasaki, Kotera, Yuasa, & Omori, 2000; Strahm, Rane, & Ekström, 2014). In the lung, PDE7A1, PDE7A2 and PDE7A3 are expressed in T cells, in the airways as well as in vascular structural cells, with PDE7B exhibiting a lower distribution (Smith et al., 2003).

PDE7 is considered to be a promising anti-inflammatory target for alleviating chronic inflammation since PDE7 exists ubiquitously in pro-inflammatory and immune cells (Glombczy & Smith, 2006; Smith et al., 2003), albeit no significant differences were observed in the mRNA expression of PDE7A and PDE7B between healthy and mild asthmatic or COPD subjects (Jones et al., 2007). It has been shown that T-lymphocyte activation up-regulated the mRNA and protein expression of both PDE7A1 and PDE7A3 (Glovàs et al., 2001). Moreover, inhibition of PDE7 expression using PDE7 antisense oligonucleotides was able to dramatically decrease human T-lymphocyte proliferation in a PKA-dependent manner, indicating that PDE7 plays an essential role in T-lymphocyte activation (Li, Yee, & Beavo, 1999). A similar conclusion was drawn by using the PDE inhibitor T-2585 in a dose range (0.1–10μm) at which the drug inhibits PDE7A activity. The study showed that PDE7A inhibition could suppress IL-2, IL-4 and IL-5 mRNA expression and cell proliferation of human peripheral T-lymphocytes (Nakata et al., 2002). In contrast to these data obtained in humans, Yang and colleagues reported completely different findings using PDE7A-deficient mice in which the deletion of the PDE7A gene did not exhibit any reduction in terms of in vitro T-lymphocyte proliferation and cytokine production (IL-2, IFN-γ, or TNF-α) (Yang et al., 2003). Moreover, no significant improvement of airway inflammation and airway hyperreactivity could be observed in ovalbumin-sensitized mice using the PDE7 specific inhibitor compound 21a (Chevalier et al., 2012). These studies point to different regulatory mechanisms of PDE7 on cAMP signaling in humans and mice.

In addition, several selective small-molecule PDE7 inhibitors have been reported and used in vitro studies (Kadoshima-Yamaoka et al., 2009; Martín-Álvarez et al., 2017; Safavi et al., 2013; Smith et al., 2004). The sulfonamide PDE7 inhibitor BRL 50481 is significantly more active against PDE7A than against PDE7B (IC50: PDE7A 0.15 μM, PDE7B 12.1 μM) (Alaemery et al., 2010). It was shown that BRL 50481 was able to enhance the inhibitory effect of the PDE4 inhibitor rolipram on the TNF-α release from blood monocytes and lung macrophages, even though the inhibitory effect of BRL 50481 alone was very limited, indicating that BRL 50481 acted additively with other PDE inhibitors to inhibit pro-inflammatory cells (Smith et al., 2004). Additionally, a novel series of benzyl derivatives of 2,1,3-benzoxazepine and benzothieno [3,2-a] thiadiazine 2,2-dioxides (Castro, Abasolo, Gil, Segarra, & Martinez, 2001; Martinez et al., 2000), 5-substituted 8-chloro-spirocyclohexane-quinazolinones (Bernardelli et al., 2004), thiadiazoles (Vergne et al., 2004) and thioxoquinazoline derivatives (Castaño et al., 2009) have been developed as potent and selective PDE7 inhibitors. Their therapeutic effects have been demonstrated in neurological disorders, for instance Parkinson disease (Banerjee et al., 2012; Morales-García et al., 2011), Alzheimer's disease (Perez-Gonzalez et al., 2013; Pérez-Torres et al., 2003), spinal cord injury (Paterniti et al., 2011), autoimmune encephalomyelitis (Martín-Álvarez et al., 2017) as well as multiple sclerosis (Mestre et al., 2015). However, their pharmacological effects have not been investigated in pulmonary disorders, including asthma and COPD. Therefore, more studies are urgently needed to explore the potential therapeutic effects of novel PDE7 inhibitors in pulmonary disorders.

7. PDE8

As another cAMP-specific hydrolyzing PDE, PDE8, consisting of PDE8A and PDE8B, exhibits a higher-affinity and lower Km (≈0.04 - 0.15 μM) for cAMP compared to other PDE isoforms, thus acting as a potential drug target to shape low-level intracellular cAMP signals (Fisher, Smith, Pillar, St. Denis, & Cheng, 1998; Hayashi et al., 1998; Soderling, Bayuga, & Beavo, 1998; Yang et al., 2010; Yan, Wang, Cai, & Ke, 2009). PDE8A is highly expressed in the testis, liver and heart (Fisher et al., 1998; Soderling et al., 1998), whereas PDE8B is richly found in the thyroid and brain (Hayashi et al., 1998). In the lung, both PDE8A isoforms have been detected, albeit the relevant expression levels are low. As PDE8 is one of the PDEs that cannot be inhibited by the non-selective PDE inhibitor IBMX, there is urgent need to design and develop new PDE8 selective inhibitors to explore the physiological and pathological role of PDE8 (Soderling et al., 1998; Soderling & Beavo, 2000). So far,
only a few PDE8 inhibitors are available on the market and two out of three are dual PDE inhibitors (dipyridamole, PDE5/8; BC8-15, PDE4/8). The recently developed PDE8 selective inhibitor PF-4957325 by Pfizer has been widely used in PDE8 research. This novel compound has an IC50 value of 0.7 nM for PDE8A, < 0.3 nM for PDE8B and >1.5 μM for other PDE isoforms (Vang et al., 2010).

It has been reported that PDE8 plays a vital role in adenal steroidogenesis (Shimizu-Albergine, Tsai, Patrurco, & Beavo, 2012; Tsai, Shimizu-Albergine, & Beavo, 2011), Ca2+ movement in ventricular myocytes (Patrurco, Albergine, Santana, & Beavo, 2010), and thyroid dysfunction (Gamanuma et al., 2003). In the lung, Johnstone and colleagues demonstrated for the first time that PDE8A was highly expressed in human ASM cells and that inhibition of PDE8, together with β2-AR stimulation by isoproterenol, profoundly reduced serum-induced human ASM cell proliferation compared to isoproterenol alone (Johnstone et al., 2018), thereby indicating a potential pharmaceutica benefit of PDE8 in ASM cells.

In addition, T cell activation up-regulated both mRNA and protein expression of PDE8A1, suggesting a potential therapeutic role of PDE8 in immune cells (Glavas et al., 2001). Since lymphocyte migration is a key feature in inflammatory diseases, such as COPD and asthma, inhibition of the migration of activated lymphocytes would therefore provide a full therapeutic effect (Ainslie, McNulty, Huynh, Symon, & Wardlaw, 2002). It was reported that PDE8 was able to inhibit the migration of unstimulated and concanavalin A-stimulated mouse splenocytes. This inhibition was further increased by forskolin and diminished by the PKA antagonist Rp-cAMPs, indicating that PDE8 may act as a promising novel target for inhibition of chemotaxis of activated lymphocytes (Dong, Osmanova, Epstein, & Brocke, 2006). In addition, T cell interaction with vascular endothelial cells plays a crucial role during the inflammatory process (Carman & Martellini, 2015). In spite of the abundant expression of PDE3 and PDE4 in T lymphocytes, the highly selective PDE4 inhibitor RP73401 and the PDE3-selective inhibitor motapizone failed to reduce T cell adhesion to endothelial cells, whereas inhibition of PDE8 by dipyridamole suppressed adhesion and directed migration of activated T cells (Vang et al., 2010). Dipyridamole also modulated the gene expression of recruitment chemokine CXCL12 and vascular adhesion molecules (vascular cell adhesion protein 1, intercellular adhesion molecule 1, and tight junction molecule claudin-5), indicating that PDE8 might serve as a novel and promising target for inhibition of activated T-lymphocyte migration from the bloodstream into the tissue during the inflammatory response (Vang et al., 2010).

8. Dual PDE inhibitors

Although the orally administered PDE4 selective inhibitor roflumilast N-oxide has been approved by both the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMEA) to be used as an add-on treatment for severe COPD patients associated with bronchitis and a history of frequent exacerbations (Vogelmeier et al., 2017), unwanted side effects including nausea, headache and gastrointestinal issues have been reported, thereby representing a major drawback for the wider therapeutic use of PDE4 inhibitors (Page & Spina, 2012). Therefore, it is conceivable that administration of PDE4 inhibitors together with another PDE family inhibitor via inhalation at a concentration that does not cause any side effects could provide an additive or even synergistic therapeutic benefit (Giembycz, 2005; Turner et al., 2016).

8.1. Dual PDE 3/4 inhibitors

Due to the wide distribution of PDE3 and PDE4 in the lung structural cells and most inflammatory cells, dual inhibition of PDE3/4 appears to be an attractive way to target pathological key characteristics of COPD, particularly as one might expect additive anti-inflammatory and bronchodilator effects. Milara et al. reported that inhibition of PDE3 with the PDE3 selective inhibitor motapizone alone or inhibition of PDE4 with the PDE4 selective inhibitor rolipram alone resulted in about 20% reduction of LPS-induced IL-8 and TNF-α secretion from human alveolar macrophages, whereas combined PDE3/4 inhibition caused an up to 90% reduction of LPS-induced cytokine secretion (Milara et al., 2011). Moreover, oxidative stress induced by H2O2 and CS, which is known to profoundly minimize inhibitory effects of cortico-steroids, did not impair the inhibitory effect of PDE3/4 inhibition (Milara et al., 2011). The synergistic anti-inflammatory effect of combined PDE3/4 inhibition was also confirmed in other studies (Hatzelmann & Schudt, 2001; Rieder et al., 2013). In addition, a greater effect on glucocorticoid- and β2-AR agonist-dependent gene transcription was observed upon combined PDE3/4 inhibition compared to when either a PDE3 or PDE4 inhibitor was used alone (BinMahfouz et al., 2015; Giembycz & Newton, 2011), suggesting that dual PDE3/4 inhibition may play an add-on role to long-acting β2-AR agonists and inhaled corticosteroids plus long-acting β2-AR agonist combinations, further enhancing their therapeutic efficacies (Giembycz & Maurice, 2014). As regards the potential bronchodilator effects of PDE3/4 inhibition, it has been demonstrated that the combination could significantly relax the inherent bronchial tone (Calzetta et al., 2013; Rabe et al., 1993).

Many dual PDE3/4 inhibitors have been tested at the pre-clinical stage. At least five dual inhibitors have reached the clinical trial stage, including zardaverine, benzafentrine, pumafentrine, tolafentrine and RPL554 (Page, 2014). It was reported that inhalation of zardaverine led to a significant increase of FEV1 and specific airway conductance within the first hour of application to patients with reversible bronchial obstruction compared to placebo (Brunnée, Engelstätter, Steinjänsic, & Kunkel, 1992). However, three patients out of twelve reported side effects (headache, drowsiness, vertigo, nausea), and one patient dropped out of the study due to vomiting (Brunnée et al., 1992). Another phase II clinical trial in ten patients with partially reversible chronic airflow obstruction reported that single doses of 1.5 mg, 3.0 mg, or 6.0 mg zardaverine by metered dose inhaler did not improve airway functions compared to 0.3 mg salbutamol and placebo (Ukena, Rentz, Reiber, & Sybrect, 1995). The potential bronchodilator effect of another dual PDE3/4 inhibitor, benzafentrine, was examined in healthy volunteers by the oral, intravenous, and inhalation routes (Foster, Rakshi, Carpenter, & Small, 1992). Oral administration of 9 mg, 20 mg, or 90 mg benzafentrine failed to induce any bronchodilator response. However, intravenous administration of 20 mg or 40 mg showed a short-lived bronchodilator response without affecting the blood pressure or pulse rate. Benzafentrine produced the most significant bronchodilator effect upon application via inhalation, leading to a dose-dependent broncho-protection to challenge with methacholine, with an effective dose (ED50) of approximately 9.2 mg (Foster et al., 1992). Except for RPL554, all other dual inhibitors have not been developed beyond the clinical stage due to unwanted side effects on the gastrointestinal system.

RPL554, as one of the most effective dual inhibitors, was shown to relax bronchial AMS in both the guinea pig model and in isolated human (medium and small) bronchi. It was also shown to increase cilia beat frequency and mucociliary clearance in human primary bronchial epithelial cells by activation of the cystic fibrosis transmembrane conductance regulator gene, by inhibition of TNF-α release from LPS-stimulated human monocytes and by suppression of monocyte proliferation, which attests to its bronchodilator and anti-inflammatory effects (Boswell-Smith et al., 2006; Calzetta et al., 2015; Turner et al., 2016; Venkatasamy & Spina, 2016). Additionally, oral administration of 10 mg/kg RPL554 1 hour before ovalbumin challenge in guinea pigs induced a significant reduction of eosinophil infiltration into the lung. A similar effect was observed by RPL554 inhalation in conscious guinea pigs 1.5 h before ovalbumin exposure (Boswell-Smith et al., 2006). Franciosi et al. demonstrated that 0.018 mg/kg RPL554 inhalation
produced bronchodilation with a 17.2% increase of maximum FEV1 in mild-to-moderate COPD patients compared to placebo. Moreover, in healthy volunteers, the percentage of neutrophils in sputum after 6 hours LPS challenge was not significantly changed after 0.018 mg/kg RPL554 inhalation. It was shown, however, that RPL554 significantly reduced the absolute numbers of total cells - neutrophils, macrophages, lymphocytes, and eosinophils - in sputum (Franciosi et al., 2013), suggesting that the molecule also possessed substantial anti-inflammatory activity. More importantly, the inhaled dose of RPL554 was well tolerated by both healthy volunteers and patients with gastrointestinal or cardiac side effects (Franciosi et al., 2013). Of note, however, is that only short-term inhalation of RPL554 for up to 7 days was monitored in the study of Franciosi et al. (Wedzicha, 2013), and therefore the long-term therapeutic and cardiovascular side effects of RPL554 need to be carefully assessed in future studies.

Although RPL554 is considered as a dual PDE3/4 inhibitor, it is speculated based on its 3000-fold higher affinity to PDE3 compared to PDE4 that RPL554 acts primarily as a PDE3 inhibitor rather than as a dual PDE3/4 inhibitor (IC50 for PDE3: 0.4 nM; PDE4: 1479 nM) (Boswell-Smith et al., 2006). In that regard, it is likely that the clinical benefits in human subjects are due to PDE3 inhibition rather than to dual PDE3/4 inhibition. Therefore, more investigation is needed to explore the real pharmaceutical target of RPL554. Also, novel dual PDE3/4 inhibitors with similar inhibitory potencies on PDE3 and PDE4 are necessary to test in future studies.

8.2. Dual PDE 4/7 inhibitors

PDE7 is another leading candidate in the dual inhibitor family approach because of its anti-inflammatory ability (Li et al., 1999; Nakata et al., 2002). Several groups studied the possibility of inhibiting both PDE4 and PDE7. In normal human bronchial epithelial cells, cytokine secretion (TNF-α, IL-1β, and IFN-γ)-induced secretion of IL-8 and human monocytic chemoattractant protein-1 was significantly decreased to baseline levels by using multi-target antisense oligonucleotides to address specifically PDE4B/4D and 7A protein expression (Fortin et al., 2009). In addition, the multi-target antisense oligonucleotides showed promising protection against the CS-induced recruitment of neutrophils, keratinocyte chemoattractant production and pro-MMP-9 upregulation (Fortin et al., 2009), thereby indicating a potent and broad anti-inflammatory effect against CS-induced lung inflammation. Additionally, Mokry and colleagues reported on the relaxing effect of combined PDE4/7 inhibition (rolipram plus BRL50481) on acetylcilcholine-induced and airway contraction in ovalbumin-sensitized guinea pigs (Mokry, Joskova, Mokra, Christensen, & Nosalova, 2013). In another study, BC54, a novel dual PDE4/7 inhibitor, showed a superior anti-inflammatory effect on TNF-α production by macrophages and IL-2 production by T-lymphocytes as compared to rolipram alone or to a combination of rolipram and BRL50481 (de Medeiros et al., 2017). However, there is no further clinical evidence to prove the superior anti-inflammatory activity of dual PDE4/7 inhibition over PDE4 inhibition alone, therefore, more studies are needed (Giembycz & Maurice, 2014).

8.3. Dual PDE 4/5 inhibitors

Increasing the intracellular levels of cAMP and cGMP via PDE4 and PDE5 inhibition, respectively, is an attractive idea as a novel treatment in respiratory diseases. Intrapulmonary treatment with either roflumilast (daily dose 1.0 mg/kg body weight) or tadalafil (daily dose 1.0 mg/kg body weight) for 7 days reduced the airway resistance after nebulization of histamine, decreased airway contraction to cumulative doses of histamine and acetylcholine, and suppressed the production of several inflammatory mediators (IL-4, IL-5, NF-κB, and TNF-α) in ovalbumin-sensitized guinea pigs. However, the combination of roflumilast and tadalafil at a reduced dose (daily dose of 0.5 mg/kg body weight) did not show any additive effect compared to PDE4 inhibition alone (Mokry et al., 2017).

9. Future directions

PDEs are attractive pharmaceutical targets for COPD and asthma treatment as their inhibition is able to induce broad anti-inflammatory and/or bronchodilator effects (Chung, 2006; Giembycz & Maurice, 2014). More importantly, dual inhibition of PDE3/4 by inhalation maximizes the therapeutic potential of the inhibitors, and minimizes the unwanted side effects (BinMahfouz et al., 2015). However, considering that PDE is composed of at least 21 different isoforms, the key challenge is to develop PDE isoform-selective inhibitors, which could be used to study the potential inhibitory roles during the pathogenesis of COPD and asthma.

Even though the oral administration of the PDE4 inhibitor roflumilast has been approved for the treatment of severe COPD patients associated with bronchitis and a history of frequent exacerbations, unwanted side effects including nausea and vomiting still limit the oral administration of PDE4 inhibitors (Giembycz & Maurice, 2014). As inhalation delivers the drugs directly to the site of action, it is likely to assume that this administration route may improve the therapeutic index required to overcome the unwanted side effects. However, to date none of the very potent inhaled PDE4 inhibitors have shown any convincing evidence of efficacy in the treatment of respiratory diseases (D. Singh et al., 2016; Watz, Mistry, Lazar, & IPC101939 investigators, 2013). GS256066 is an inhaled PDE4 inhibitor developed by GlaxoSmithKline to treat patients with COPD. In a phase IIa, multicenter, parallel-group, double-blind, three-arm, placebo-controlled, four-week, randomized study, two doses (25 μg, 87.5 μg) of GS256066 were tested in patients with moderate COPD (Watz et al., 2013). Although there was an increase in post-bronchodilator FEV1 at both GS256066 concentrations being applied compared to placebo on day 28, these differences were not statistically significant. Additionally, no changes were observed in the relative proportion or total numbers of neutrophils or macrophages in the sputum of treated subjects (Watz et al., 2013). Another inhaled PDE4 inhibitor is CHF6001 developed by Chiesi Farmaceutici. It was reported that CHF6001 was well tolerated when administered by once daily single-dose (100 μg, 300 μg, 600 μg, 1200 μg, 1600 μg) dry-powder inhalation for 7 days (Mariotti, Govoni, Lucci, Santoro, & Nandeuil, 2018). In a double blind, placebo controlled, 3-way cross-over study, 36 atopic asthmatics (not under treatment with inhaled corticosteroids and characterized by a late asthmatic response) received CHF6001 400 μg or 1200 μg or placebo once a day using a dry powder inhaler for 9 days. Allergen challenges were performed on day 9 and induced sputum was obtained 10 hours after challenge (Singh et al., 2016). Both CHF6001 doses significantly increased FEV1, while the difference between the two doses was not significant. CHF6001 caused a greater reduction in sputum eosinophil counts as compared to placebo, albeit no significance was observed (Singh et al., 2016). Taken together, based on the current knowledge, the addition of inhaled/oral administration of PDE4 inhibitors seems to exert beneficial effects for COPD patients but obviously more clinical trials are warranted to strengthen the initial findings.

Air pollution-induced oxidative stress is another important risk factor in the pathogenesis of COPD and asthma (Bernardo, Bozinovski, & Vlahos, 2015; Holguin, 2013; Kirkham & Rahman, 2006; Wang et al., 2018). Increased attention has been focused specifically on diesel exhaust exposure (Hart, Eisen, & Laden, 2012; Hart, Laden, Schenker, & Garshick, 2006; Wade & Newman, 1993). During diesel fuel combustion, several types of pollutants are released, including but not limited to particulate matter, metals and polycyclic aromatic hydrocarbons (PAH) (Steiner, Bisig, Petri-Fink, & Rothen-Rutishauser, 2016). It has been proven that diesel exhaust is highly associated with lung inflammation (de Brito et al., 2018; De Grove et al., 2018; Steiner et al., 2016). Moreover, a few studies reported that PAH exposure reduced...
cAMP production induced by the β2-AR agonist procaterol in primary murine tracheal epithelial cells and human ASM cells, thereby indicating that the cAMP signaling pathway is impaired by PAH (Factor et al., 2011). Therefore, further investigation is needed to study the effect of air pollution, including diesel fuel, on cyclic nucleotide signaling.

Cyclic nucleotides, as the most ubiquitous second messengers, control a wide range of physiological and pathophysiological processes by modulating signaling cascades in a spatio-temporal manner. Comprehensive understanding of the fluctuations (generation and degradation) of cAMP and cGMP and their potential functions within certain compartments will most likely help in the screening of novel pharmaceutical targets which have higher efficacy and less side effects (shown in Fig. 3). Recently, Johnstone and colleagues used classical molecular biological tools to study the role of PDE8 in β2-AR-AC6 and E prostanoid receptor (EP)2/4-AC2 compartments (Johnstone et al., 2018). It was demonstrated that knockdown of PDE8A using shRNA evoked more cAMP production in response to forskolin and 3-isobutyl-1-methylxanthine specifically in AC6 overexpressing human ASM cells, but not in AC2 overexpressing ASM cells, indicating that β2-AR/AC6/PDE8 is a functional signalosome. Also, they found that β2-AR/AC6/PDE8 are mainly expressed in caveolae (Johnstone et al., 2018) (shown in Fig. 3). This finding emphasizes the microdomain-specific cAMP modulation, which helps to fully understand cAMP and cGMP functions as second messengers. However, of note, it is difficult to monitor intracellular cAMP dynamics using standard biochemical techniques. So far, several FRET based biosensors have been developed to achieve real-time visualization of cAMP and cGMP with high spatial and temporal resolutions (Nikolaev, Bünemann, Hein, Hannawacker, & Lohse, 2004; Pavlaki & Nikolaev, 2018; Sprenger et al., 2015; Violin et al., 2008). It was reported by Billington and colleagues that the cAMP biosensor CFP-Epac (dDEP,CD)-VENUS could be used to study the β-AR-mediated signaling kinetics in human primary ASM cells, revealing ligand and dose dependent differences of several β-AR agonists (indacaterol, isoproterenol, salmeterol and formoterol) (Billington & Hall, 2011). Using another cAMP biosensor with fluorescently tagged PKA subunits, Schmid et al. studied the effect of CS on the PDE4 inhibitor roflumilast-induced intracellular cAMP changes in fully differentiated normal human bronchial epithelial cells (Schmid et al., 2015). Recently, a study monitored intracellular cAMP dynamics in the airway using PCLS and cAMP reporter Epac1-camps mice, indicating the possibility to visualize cAMP fluctuations in intact lung tissue (Zuo et al., 2018). It is noteworthy that all of these studies used globally targeted cAMP biosensors to study cAMP dynamics (Musheshe, Schmidt, & Zaccolo, 2018; Sprenger & Nikolaev, 2013). In addition, there are no reports using cGMP FRET biosensors to investigate the intracellular cGMP levels in either lung structural cells or tissues so far. Thus, it is conceivable that monitoring microdomain-specific intracellular cAMP and cGMP levels and, more importantly, their crosstalk modulated by PDE2 and PDE3 will provide important new knowledge that will help to design novel drugs targeting cyclic nucleotides with higher efficacy and with less side effects.

Author contributions

H.Z., I.C., N.M., V.O.N. and M.S. wrote the manuscript.

Conflicts of interest

The authors declare no conflict of interest.
References

