Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species
Adams, Stephen R; Mackey, Mason R; Ramachandra, Ranjan; Palida Lemieux, Sakina F; Steinbach, Paul; Bushong, Eric A; Butko, Margaret T; Giepmans, Ben N G; Ellisman, Mark H; Tsien, Roger Y
Published in:
Cell Chemical Biology
DOI:
10.1016/j.chembiol.2016.10.006

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2016

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-09-2020
Multicolor Electron Microscopy for Simultaneous Visualization of Multiple Molecular Species

Stephen R. Adams,1,6,4 Mason R. Mackey,2 Ranjan Ramachandra,2 Sakina F. Palida Lemieux,1 Paul Steinbach,3 Eric A. Bushong,2 Margaret T. Butko,1,6 Ben N.G. Giepmans,2,7 Mark H. Ellisman,2,4 and Roger Y. Tsien1,3,5,8

1Department of Pharmacology
2National Center for Microscopy and Imaging Research
3Howard Hughes Medical Institute
4Department of Neurosciences
5Department of Chemistry & Biochemistry
6Present address: Department of Cell Biology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
7Present address: Biodesy Inc, 384 Oyster Point Boulevard Suite #8, South San Francisco, CA 94080, USA
8Deceased August 24, 2016

*Lead Contact
*Correspondence: sadams@ucsd.edu
http://dx.doi.org/10.1016/j.chembiol.2016.10.006

SUMMARY

Electron microscopy (EM) remains the primary method for imaging cellular and tissue ultrastructure, although simultaneous localization of multiple specific molecules continues to be a challenge for EM. We present a method for obtaining multicolor EM views of multiple subcellular components. The method uses sequential, localized deposition of different lanthanides by photosensitizers, small-molecule probes, or peroxidases. Detailed view of biological structures is created by overlaying conventional electron micrographs with pseudocolor lanthanide elemental maps derived from distinctive electron energy-loss spectra of each lanthanide deposit via energy-filtered transmission electron microscopy. This results in multicolor EM images analogous to multicolor fluorescence microscopy. In this work, we demonstrate a method (Figure 1A) that can differentiate the DAB precipitate from the general staining of endogenous cellular material and permits identification and imaging of successively deposited DAB, each at a targeted or specified protein or cellular target. By precipitating DAB-conjugated to lanthanide chelates rather than DAB itself, a specific metal such as Ce3+ is locally deposited. After washing out the unreacted DAB-chelator-Ln, a further round of deposition of DAB-chelator bound to another lanthanide ion such as Pr3+ is carried out by photooxidation of a second photosensitizer targeted to another cellular site or protein, at wavelengths that do not excite the first fluorophore. Alternatively, peroxidases can be used to generate the second precipitate. Following conventional postfixation staining with osmium tetroxide and electron microscopy of sections from embedded samples, the two or nucleic acid using long-established and poorly selective stains. Selective visualization of specific proteins or macromolecules can be achieved using antibodies conjugated to gold particles or quantum dots of distinctive size, but poor penetrability of such labels in fixed cells or tissues limits the use of optimal fixation methods that preserve ultrastructure (Schnell et al., 2012). This limitation can be avoided by the in situ oxidation of diaminobenzidine (DAB) generating a localized osmiumophilic precipitate by photosensitizing dyes conjugated to antibodies or ligands (Deerinck et al., 1994; Maranto, 1982), genetically targeted biarsenicals (Gaietta et al., 2002) and genetically encoded chimeras of miniSOG (Shu et al., 2011). Peroxidases (such as horseradish peroxidase, HRP) also generate similar precipitates from DAB on treatment with hydrogen peroxide (H2O2) and robust genetically encoded versions have been developed recently (Kuipers et al., 2015; Lam et al., 2015; Martell et al., 2012). The high penetrability of small dyes, DAB, and oxygen or H2O2 into optimally fixed cells or tissues enables specific labeling with preservation of cellular ultrastructure. The target protein becomes negatively stained by the surrounding oxidized DAB precipitate, which may not be readily distinguishable from heavy staining from endogenous cellular structures such as membranes and the postsynaptic density.

INTRODUCTION

Electron microscopy (EM) of biological samples remains the ultimate method for imaging cellular ultrastructure despite the recent advances in super-resolution microscopy (Betzig et al., 2006; Hell, 2007; Huang et al., 2009). Contrast in standard EM of epoxy-embedded samples is dependent upon the deposition of heavy metals such as osmium, uranium, or lead to highlight cellular components including protein, lipid, or nucleic acid using long-established and poorly selective stains. Selective visualization of specific proteins or macromolecules can be achieved using antibodies conjugated to gold particles or quantum dots of distinctive size, but poor penetrability of such labels in fixed cells or tissues limits the use of optimal fixation methods that preserve ultrastructure (Schnell et al., 2012). This limitation can be avoided by the in situ oxidation of diaminobenzidine (DAB) generating a localized osmiumophilic precipitate by photosensitizing dyes conjugated to antibodies or ligands (Deerinck et al., 1994; Maranto, 1982), genetically targeted biarsenicals (Gaietta et al., 2002) and genetically encoded chimeras of miniSOG (Shu et al., 2011). Peroxidases (such as horseradish peroxidase, HRP) also generate similar precipitates from DAB on treatment with hydrogen peroxide (H2O2) and robust genetically encoded versions have been developed recently (Kuipers et al., 2015; Lam et al., 2015; Martell et al., 2012). The high penetrability of small dyes, DAB, and oxygen or H2O2 into optimally fixed cells or tissues enables specific labeling with preservation of cellular ultrastructure. The target protein becomes negatively stained by the surrounding oxidized DAB precipitate, which may not be readily distinguishable from heavy staining from endogenous cellular structures such as membranes and the postsynaptic density.
precipitates containing different tightly bound lanthanide ions can be spectrally separated using spatially resolved electron energy-loss spectroscopy (EELS), which is implemented by energy-filtered transmission electron microscopy (EFTEM). Elemental distribution maps for the two metals obtained by EFTEM reveal their spatial distribution, and can be overlaid as pseudocolors on the conventional black and white electron micrograph to give a multicolor image superimposed on the cellular ultrastructure. The method is also useful for only a single deposit of endogenous cellular structures by osmium or other heavy metals used for contrast in EM.

RESULTS

Synthesis of DAB-Metal Chelate Conjugates

In designing metals complexed to DAB that would precipitate on oxidation, we considered the following requirements. The metal ions should have strong, distinct EELS peaks that are simultaneously quantifiable, and must form high-affinity chelates to prevent any loss of metal ions during DAB oxidation and subsequent processing leading to a decreased EELS signal or a false-positive signal. The lanthanide series have a similar charge (3+), ionic radii, and suitable EELS signals and should bind to a conjugate of diethylenetriamine-pentaacetic acid (DTPA) with two DAB (Figure 1B) and with three carboxylates to form a high-affinity complex on oxidation. The complexation of DTPA-DAB2 to lanthanide ions, Ln3+, was measured by titration using arsenazo III as a colorimetric indicator to the endpoint and by comparison with an equal concentration of DTPA. Each batch synthesized gave between 75% and 85% purity by weight from titration, assuming the expected 1:1 stoichiometry, and closely matched the percent purity of DTPA-DAB2 measured by HPLC (Figure S2). Precipitation of the so formed Ln DTPA-DAB2 (Ln-DAB2) following photooxidation by photosensitization of eosin at 480 nm was measured by monitoring the absorbance from increasing scattering at 650 nm (Deerinck et al., 1994; Natera et al., 2011). Typical time courses for La-, Ce-, Pr-, Nd-, and Sm-DAB2 were similar to that of DAB (Figure 1C) and were in contrast to greatly decreased precipitation when no lanthanide was present, confirming the requirement of charge neutralization for efficient precipitation (data not shown). The complexation of DTPA-DAB2 to lanthanide ions, Ln3+, was measured by titration using arsenazo III as a colorimetric indicator to the endpoint and by comparison with an equal concentration of DTPA. Each batch synthesized gave between 75% and 85% purity by weight from titration, assuming the expected 1:1 stoichiometry, and closely matched the percent purity of DTPA-DAB2 measured by HPLC (Figure S2). Precipitation of this so formed Ln DTPA-DAB2 (Ln-DAB2) following photooxidation by photosensitization of eosin at 480 nm was measured by monitoring the absorbance from increasing scattering at 650 nm (Deerinck et al., 1994; Natera et al., 2011). Typical time courses for La-, Ce-, Pr-, Nd-, and Sm-DAB2 were similar to that of DAB (Figure 1C) and were in contrast to greatly decreased precipitation when no lanthanide was present, confirming the requirement of charge neutralization for efficient precipitation (data not shown). All the Ln-DAB2 tested showed limited solubility in 100 mM sodium cacodylate, pH 7.4, the buffer conventionally used for photooxidation in fixed cells and tissues and optimal for preserving ultrastructure in EM. To achieve a concentration close to the 2.5 mM value typically used for DAB, 2.5% dimethylformamide (DMF) was added as a co-solvent and the cacodylate buffer concentration was decreased to 50 mM. The final metal ion concentrations following filtration were determined by inductively coupled plasma mass spectroscopy to be about 0.8 mM with about 2 mM total DAB content (DTPA-DAB2 and DAB) as measured by absorbance at 309 nm using an extinction coefficient of 14,200 M⁻¹ cm⁻¹.

Figure 1. Two-Color EM using EELS and EFTEM

(A) Scheme of the process applied to cells with stained mitochondrial (red) and nuclear membranes (green) are first selectively irradiated to photooxidize the red photosensitizer and precipitate Ce-DAB2 (brown ring). After washing and replacement with Pr-DAB2, illumination at an orthogonal wavelength generates a precipitate at the nuclear membrane. Alternatively, the Pr-DAB2 can be oxidized by hydrogen peroxide following immunoperoxidase labeling. Following conventional osmification (black ring), embedding, sectioning, and TEM, EFTEM yields pseudocolored elemental maps for Ce and Pr that are overlaid on the conventional osmium image. (B and C) Structure of Ln-DAB2 (B) and La- and Ce-DAB2 (C) are precipitated at a similar rate to DAB by photosensitization of eosin.

DAB was removed from the material by high-performance liquid chromatography-mass spectrometry (LC-MS) (Figure S2). When free DTPA-DAB2 despite containing some unreacted DAB and monomer DTPA-DAB as measured and quantified by liquid chromatography-mass spectrometry (HPLC), the purified DTPA-DAB generated less precipitate in cuvette experiments and failed to generate the expected localized precipitate in cells (data not shown).
We next tested whether two Ln-DAB2 could be orthogonally precipitated in cells and whether the specific EELS signals of the two metals could be detected and separated as elemental images. Madine-Darby canine kidney (MDCK) cells stably expressing GFP fused to an epithelial cell adhesion molecule (GFP-EPCAM), were initially stained with NBD-ceramide, a Golgi-selective fluorescent probe capable of photosensitizing DAB (Pagano et al., 1991; Pagano et al., 1989; Takizawa et al., 1993), and then subsequently an antibody to the cell surface marker, EPCAM (Schnell et al., 2013), followed by a biotinylated secondary antibody. Following mild fixation, irradiation at 480 nm in the presence of La-DAB2 and oxygen gave faint darkening from formation of reaction product in cell regions corresponding to the fluorescence image of NBD-ceramide. The cells were treated with acetic anhydride to block any unreacted amines of the DAB moiety of the reaction product to prevent further reaction of the deposited precipitate. Ce-DAB2 was then precipitated after further labeling of EPCAM sites by HRP-streptavidin and incubation with hydrogen peroxide. Following osmification, resin embedding, and sectioning, a low-magnification unfiltered electron micrograph (Figure 2A) of a typical cell reveals the expected intracellular and plasma membrane staining from deposited precipitates at the Golgi and cell surface.

However, EELS of regions at the Golgi or plasma membrane (circled in Figure 2A) revealed characteristic peaks from predominately La or Ce, respectively (Figure 2B). The small contaminating Ce signal at the Golgi probably resulted from unwanted deposition of Ce-DAB2 at the site of previously photooxidized Ln-DAB2 despite acetylation of any residual free amines, and could be mathematically subtracted in the EELS spectra (Figure 2B'), and the elemental maps for La and Ce (Figures 2C, 2D, and 2D'). To do this we selected a region in the field being observed that was expected to only contain La, such as the Golgi, and integrated the La and Ce peaks of the EELS spectrum in this area to give the fraction of contaminating Ce in the La channel, which was then subtracted from the La elemental map. These core-loss elemental maps were generated by subtraction of four images (two pre-edge and two after-peak images, see Experimental Procedures for details) rather than two with the traditional three-window method (Egerton, 1996), to minimize any effects of signal bleed-through of the lanthanides resulting from inaccurate background extrapolation. To reduce sample warping and drift, we found that taking multiple short-image acquisitions and carbon coating the sample were greatly beneficial. This five-window method shows a distinct signal from the appropriate cell regions with La at the Golgi and Ce at the plasma membrane.
How should the two energy-filtered lanthanide maps and conventional transmission EM (TEM) be visually combined? We first tried “mixing,” in Photoshop, the conventional TEM in grayscale (normal or inverted) with the lanthanide maps in red and green, respectively. However, the grayscale image tended to drown out the color images because the black pixels stayed black regardless of any colors mixed in (Figures S3A–S3E). Next we tried displaying the conventional TEM in blue, so that a region with strong La-DAB2 or Ce-DAB2 would appear cyan or magenta, respectively (Figures S3F and S3G). Unfortunately, regions with conventional TEM only tend to suffer because of the low psychophysical visibility of the blue channel. Assigning green to the conventional TEM and blue to the Ce-DAB2 de-emphasized the latter too much and merely shifted the problem.

Finally, we realized that the conventional TEM image has high spatial frequencies, resolution, and signal-to-noise, analogous to the luminance channel in television, whereas the colors should be displayed as lower-resolution overlays, effectively modulating the alpha channel for transparency versus opacity. Therefore, we used a custom algorithm to generate pseudocolored overlays of the La and Ce elemental maps on the monochrome unfiltered osmium image (conventional EM image) to yield a two-hue representation of marker distribution with the resolution of an electron micrograph (Figures 2E and S3H). An advantage of this algorithm is that it can be generalized to three or more pseudocolor channels.

Hippocampal Astrocyte Cell Tracing in Brain Slices

Following this proof of principle, we tested the application of this method to biological questions that required the ultrastructural resolution of EM and labeling of two cell markers. Protoplasmic astrocytes in the mouse hippocampus establish distinct territories with limited overlap between peripheral processes. These fine peripheral processes intimately contact and modulate neuronal synapses (Haydon, 2001; Haydon and Carmignoto, 2006). Whether synapses located at domain boundaries are shared by two astrocytes is unknown because both synaptic profiles and the fine astrocytic processes near synapses are generally beyond the resolution limit of light microscopy (Bushong et al., 2004; Bushong et al., 2002; Halassa et al., 2007). We injected two adjacent astrocytes in fixed hippocampal slices with either lucifer yellow or a combination of Alexa 568 and neurobiotin (Figure 3A). Ce-DAB2 was photooxidized by lucifer yellow at 470 nm. Acetylimidazole was used to passivize the Ce-DAB2 precipitate instead of acetic anhydride because of its greater stability at neutral pH, higher solubility in water, and...
self-buffering at pH 5, which favors reaction with the aromatic amines of DAB (Oakenfull and Jencks, 1971). Then neurorobin was captured with HRP-streptavidin, which in turn was reacted with Pr-DAB2 and H₂O₂. After osmium and embedding in resin, sections were examined by EM for synapses with surrounding densely stained astrocyte processes containing both Ce and Pr signals by EELS. An example of a perforated synapse with clearly defined synaptic cleft and pre- and postsynaptic components marked by synaptic vesicles and postsynaptic densities, respectively, is shown in Figure 3B. EELS of sub-regions of each of the two astrocytic processes contacting the synapse revealed predominately Ce or Pr signals (Figure 3C). Some signal from Pr is still present in the Ce astrocyte, perhaps from incomplete inactivation of the first Ce-DAB2 precipitate by limited penetration of the acetylcholinesterase into the fixed brain slice. The individual elemental maps (Figures 3D and 3E, and corrected Pr map, 3F) and their overlay with an unfiltered EM (Figure 3F) also indicate that the processes from two astrocytes can share a single synapse.

Endosomal Uptake of Cell-Penetrating Peptides

We next explored whether it is feasible to precipitate Ce- and Pr-DAB by successive irradiation of two spectrally distinct photosensitizers rather than photooxidation followed by HRP-mediated oxidation. We first generated a Ce-DAB2 precipitate by 480 nm irradiation of nuclear targeted miniSOG (Shu et al., 2011) and then tested the ability of ReASH-labeled tetracysteine-tagged connexin 43 that form gap junctional plaques (Gaietta et al., 2002) to photooxidize DAB2 when excited at 560 nm. Pr-DAB2 was precipitated as expected at the plasma membrane but also in the nucleus suggesting that the initial precipitate itself could act as a photosensitizer of DAB (data not shown). Ce-DAB2 photooxidized in a cuvette shows a broad absorbance centered at 500 nm that extends to 600 nm, and correspondingly in cells we found that after nuclear deposition of Ce-DAB2 by miniSOG at 480 nm, irradiation at >630 nm would not precipitate Pr-DAB2. ReASH does not absorb at 630 nm, so we tested the ability of far-red photosensitizers such as the phthalocyanine dye, IRDye 700DX (Mitsunaga et al., 2011; Peng et al., 2006), to photooxidize Pr-DAB2.

Cell-penetrating peptides (CPP), including oligomers of cationic amino acids such as arginine (n = 9–14), have been extensively used to deliver membrane-impermeant molecules or particles into the cytoplasm of cells (Copolovici et al., 2014). CPPs rapidly bind to the plasma membrane and are hypothesized to enter cells via endocytosis (Brock, 2014; Kaplan et al., 2005; Richard et al., 2003). To determine whether polyarginine CPPs enter cells via the endocytic pathway, we examined the localization of an internalized Arg₁₀ peptide compared with Rab5A, a small GTPase that localizes to endosomal membranes, at a scale too small to resolve using conventional light microscopy. We incubated HeLa cells expressing Rab5A fused to miniSOG (Shu et al., 2011) with an Arg₁₀ peptide conjugated to an IRDye 700DX photosensitizer (Figure S4) that can polymerize DAB. After the cells were incubated with Arg₁₀-IRDye 700DX peptide for 2 hr, they were fixed and imaged by light microscopy (Figure 4). We detected bright intracellular puncta from the endocytosed Arg₁₀-IRDye 700DX peptide (Figure 4C) that partially co-localized with miniSOG fluorescence (Figures 4B and 4D).

We then irradiated the sample at 480 nm to photooxidize Ce-DAB2 catalyzed by miniSOG, removed unreacted Ce-DAB2 by washing, blocked amines with acetylcholinesterase, and then illuminated it at 680 nm to photooxidize Pr-DAB2 catalyzed by IRDye 700DX. Both endosomes and multivesicular bodies (MVB) were photooxidized and visible in the unfiltered EM and both contain precipitated Ce and Pr by EELS (Figures 4E and 4I, respectively). The elemental maps and overlay with conventional EM image (Figures 4F–4H) indicate that Ce is concentrated on the endosome periphery in accordance with the expected cytoplasmic localization of RAB5A, whereas Pr is predominately in the endosome lumen. In this example, we could not correct the Ce channel for contaminating Pr as EELS spectra with adequate signal-to-noise could not be obtained solely for endosomal lumen or the periphery. The corresponding images of MVB (Figures 4J–4L) also show a similar distribution of Ce and Pr but with less cytosolic Ce, and several densely Ce-stained luminal vesicles formed by inward budding of the endosomal membrane. Endosomal localization of RAB5A has been shown to progressively decrease during early endosome maturation to MVB (Rink et al., 2005) which is in agreement with our results. In addition, Arg₁₀-IRDye 700DX colocalization with RAB5A in intracellular vesicles confirms that polyarginine-based CPPs enter the cell via endocytosis.

Tracking Newly Synthesized PKMᵺ in Cultured Neurons

Finally, we used EELS analysis of a single lanthanide-conjugated DAB to confirm DAB-based labeling that is not readily distinguishable from background with conventional TEM, particularly in regions that are normally electron dense such as the neuronal postsynaptic density. The kinase PKMᵺ has been implicated in long-term memory maintenance and is upregulated following neuronal activity (Shao et al., 2012), but the function and precise sub-synaptic localization of these new PKMᵺ copies is unclear. We fused PKMᵺ cDNA to a TimeSTAMP reporter, TS:YSOG3 (Palida et al., 2015), that contains both YFP and miniSOG and allows newly synthesized proteins to be labeled in a drug-dependent manner using the small-molecule BILN-2061. New copies can be visualized by correlated light and EM in a manner similar to previous TimeSTAMP reporters incorporating a split YFP and miniSOG (Butko et al., 2012) (Figure S5). We induced chemical long-term potentiation by stimulating TS:YSOG3-PKMᵺ-transfected rat neurons in culture with forskolin and rolipram and then immediately added BILN-2061 for 24 hr to label newly synthesized copies of PKMᵺ. These new copies were visible by YFP fluorescence and then were illuminated so that miniSOG would catalyze photooxidation of Ce-DAB2. After osmium, darkening was visible throughout the neuron at low magnification (Figure 5A) and labeling appeared at postsynaptic membranes in TEM (Figure 5B), yet it was unclear whether this signal was derived from DAB deposition or endogenous synaptic electron density. To confirm that the apparent signal was representative of newly produced PKMᵺ protein, we used EELS to visualize Ce at the same synapse. We found that the Ce signal was enhanced at the postsynaptic membrane (Figures 5C and 5D at lower magnification, E and F at higher magnification) confirming that new copies of PKMᵺ preferentially localize to the postsynaptic membrane, consistent with previous reports for PKMᵺ localization (Hernández et al., 2014). Unstimulated neurons that
DISCUSSION

In summary, we have developed a method that permits concurrent and selective visualization by EELS and EFTEM of two cellular components that can be labeled by photosensitizing fluorescent tracers or by peroxidases that can oxidize Ln-DAB2. Many fluorescent dyes are known to generate sufficient singlet oxygen via triplet sensitization of molecular oxygen so the method should be of wide scope. The use of genetically encoded singlet oxygen generators, such as miniSOG when fused to proteins of interest, also permits the selective visualization by fluorescence and correlated EFTEM of their cellular localization in samples ranging from tissue culture cells to complex tissues such as the mammalian brain. Ln-DAB2 is efficiently precipitated by HRP for immunoperoxidase labeling but with some
limitations. Unexpectedly, we found that HRP or its genetically encoded versions and the more recently developed APEX (Lam et al., 2015; Martell et al., 2012), a mutated ascorbate peroxidase, act as photosensitizers and precipitate Ln-DAB2 (or DAB) when illuminated between 400 and 650 nm (data not shown). This property limits their use with multicolor EM unless they are introduced after the first round of Ln-DAB2 photooxidation, as described above (Figures 2 and 3). Both peroxidases contain a heme prosthetic group that has not been reported to photosensitize molecular oxygen but, if insufficient heme is available in the cell, protoporphyrin IX (Durner and Klessig, 1995) is known to bind both HRP and APEX (Jullian et al., 1989; Lam et al., 2015; Martell et al., 2012). We speculate that trace-bound amounts of this efficient photosensitizer (Fernandez et al., 1997) are responsible for the photooxidation of Ln-DAB2 by these enzymes over the range of illuminating wavelengths that match that of protoporphyrin IX absorbance. APEX2 was engineered to improve heme binding but still deposited DAB upon illumination. Chemical inactivation (Durner and Klessig, 1995) of APEX2 to permit a second Ln-DAB2 to be photooxidized by another photosensitizer was ineffective. Further mutation of APEX or methods for increasing cellular heme availability during APEX expression will probably be required for their use in multicolor EM. Despite these limitations, multicolor EM has demonstrated the feasibility of selective deposition of metals by DAB oxidizers that are organelle stains, genetically targetable or encodable, or immunoreactive. EFTEM, although predominantly used today for chemical analysis of materials, has been applied to biological samples using the generally weak signals from endogenous elements (Aronova and Leapman, 2012), but is sufficiently sensitive to detect and distinguish many of the 14 stable lanthanides when precipitated as Ln-DAB2. The sensitivity of the method is probably not limited by Ln-DAB oxidation as it photooxidizes at a comparable rate to DAB which can yield close to single-molecule detectability after extended illumination, staining with osmium, and conventional TEM (our unpublished results). There is negligible Ln background signal in EELS spectra of non-photooxidized cells, so similar sensitivity might be expected, but EELS is an inherently insensitive technique. The major current limitation is probably the noise introduced by sample drift during the long energy-filtered exposures required for the images.

Improvements are underway to boost the sensitivity of multicolor EM by increasing the amount of lanthanide that...
is deposited during the oxidation of Ln-DAB chelates. Further development should lead to a greater understanding of the relationship between structure and metal deposition and will improve signal-to-noise, decrease acquisition time and sample damage, and potentially permit greater resolution through tomography. The use of DAB to precipitate metals limits the scope of photooxidation because the polymer itself acts as a photosensitizer of further DAB oxidation up to about 600 nm, and limits the number of different Ln-DABS that can be successively deposited by spectrally distinct photosensitizers. Acylation of unreacted amino groups in the Ln-DAB precipitate diminished its undesired reaction with a subsequent Ln-DAB Efforts are underway to completely chemically block it and the photosensitizing effects of precipitated Ln-DAB, and thereby eliminate the present requirement for deconvolution that can be problematic when the elemental signals are all co-localized.

SIGNIFICANCE

Major improvements in multicolor and super-resolution fluorescence microscopy over the last two decades have dramatically improved our understanding of cellular microarchitecture and function. Comparable progress in electron microscopy has been achieved in throughput and automation, but methods for marking multiple molecules of interest have been more limited. This work describes a new methodology for selective detection or painting by sequential localized oxidation and precipitation of diaminobenzidine conjugates of Ln chelates by genetically encoded photosensitizers, small-molecule probes, or peroxidases. Electron energy-loss spectroscopy of these orthogonally deposited lanthanide metals and their imaging by energy-filtered transmission electron microscopy yields elemental maps that can be displayed on conventional electron micrographs as color overlays.

EXPERIMENTAL PROCEDURES

Reagents and solvents were from Sigma-Aldrich and cell culture reagents and probes were obtained from Life Technologies except where noted. All animal procedures were approved by the Institutional Animal Care and Use Committee of the University of California, San Diego.

Synthesis of Ln-DAB2

Diethylene-triamine-N,N,N'-triacetic acid bis(dimethylbenzidine)amine, DTPA-DAB2, was synthesized in dry DMF (33 mL) with triethylamine (1.30 mL, 9.33 mmol) under N2 to give a gray precipitate until dissolved. After cooling to room temperature, the solution was added dropwise over 30 min with stirring under N2, to DAB (10 g, 46.65 mmol) and triethylamine (18.66 mmol, 2.60 mL) dissolved in dry DMF (33 mL). After stirring overnight at room temperature, the reaction was evaporated, dissolved in water (100 mL), and adjusted to pH 8 with 1 N NaOH until the pH stabilized (about 15 min). The mixture was stirred under N2 for 1 hr, and then unreacted DAB was removed by filtration followed by extraction with EtOAc (3 × 100 mL). The aqueous layer was partially evaporated to remove EtOAc and then acidified to pH 5.4 with a concentration of HCl to give the product as a gray precipitate, which was collected by filtration and washed with water. Drying over P2O5 in vacuo overnight gave 2.75 g (38%) of a gray solid that was used without further purification. LC-MS indicated 70%–80% purity with unreacted DAB as the remainder (Figure S2).

Ln-DAB2 Solutions

Ln-DAB2 solutions in cacodylate buffer were prepared immediately before use at room temperature. To make 10 mL of a 2 mM Ln, Ce, or Pr-DAB solution, 15.6 mg (20 μmol) of DTPA-DAB2 was suspended in DMF (0.25 mL) and sonicated/vortexed to disperse. Water (8.33 mL) was added to give a cloudy solution that cleared on addition of LnCl3 aqueous solution (0.1 M of LaCl3 6H2O, CeCl3 6H2O, or PrCl3 xH2O; the latter stock solution was dissolved in 0.1 M HCl) with 120 μL of La or Ce solutions or 140 μL of Pr solution, followed by vortexing and bath sonication to give clear light-brown solutions. Aqueous NaOH solution (1 M) was added sequentially in six equal portions (6 × 10 μL) with vortexing after each addition. A precipitate was initially formed during the early steps of this neutralization but a mostly clear solution was present by the end. Cacodylate buffer (1.67 mL of 0.3 M sodium cacodylate [pH 7.4]) was added, mixed, and centrifuged (3000 × g, 10 min) to remove any precipitate. Solutions were syringe-filtered (0.22 μm, Millipore) immediately prior to addition to cells. Metal ion concentrations were measured by inductively coupled plasma mass spectroscopy (Agilent 7700).

Synthesis of Arg10-IRDye 700DX

Arg10-IRDye 700DX was prepared by reaction of H2N-GGRRRRRRRRRRRCONH2 (where G and R are L-glutamic and L-arginine, respectively; synthesized by standard Fmoc chemistry with a Protein Technologies Prelude peptide synthesizer), with IRDye 700DX NHS ester (LI-COR Biosciences) in DMSO and N-methylmorpholine as base. The conjugate was purified by reverse-phase HPLC and characterized by LC-MS. Found, 575.0 (M + 6H+), 689.6 (M + 5H+), 861.9 (M + 4H+), 1,148.8 (M + 3H+). Deconvolved to 3,343.6, calculated 3,443.5.

Eosin-Sensitized Photooxidation

A solution of DAB or Ln-DAB2 (0.4 mM, diluted from freshly prepared 100 mM stock solutions in DMF) and eosin (20 μM) in 100 mM 3-(N-morpholino)propanesulfonic acid sodium salt (pH 7.2), or 0.1 M sodium cacodylate (pH 7.4) in a 3-mL cuvette was irradiated at 480 nm (30 nm band pass) using a solar simulator (Spectra-Physics 92191-1000 solar simulator with 1,600 W mercury arc lamp and two Spectra-Physics SP66239-3767 dichroic mirrors to remove infrared and UV wavelengths). The remaining light was filtered through 10-cm square-band-pass filters (Chroma Technology) with a deflector mirror set at 45° while bubbling with air. At set time points, the absorbance of the reaction was measured at 650 nm until the increase was complete.

Cell Culturing, Labeling, and Transfection

MDCK and HEK293 cells were cultured on poly-D-lysine-coated 35-mm glass-bottom dishes (MatTek) in DMEM supplemented with 10% fetal bovine serum. MDCK cells were labeled with 5 μM NBD C6-ceramide in medium containing 10% fetal calf serum for 30 min, washed, and incubated for 30 min in new culture medium, all at 37°C with 5% carbon dioxide, then washed (5 times) with Hank’s balanced salt solution (HBSS) at 37°C. Cells were then incubated with mouse monoclonal EPCAM antibody (KS1/4) (Santa Cruz Biotechnology) at 1:1,000 dilution for 12 min at 37°C in HBSS, washed with HBSS, incubated for 60 min in secondary antibody-biotinylated goat anti-mouse immunoglobulin G (Jackson Laboratory, 115-065-003) at 1:250 dilution at 37°C in HBSS and then washed. HEK293 cells were transfected with a miniSOG-RAB5A plasmid at 60–80% confluence using Lipofectamine 2000, which was removed after 8 hr. Cells were treated 48 hr after transfection with 2 μM Arg10-IRDye 700DX (prepared in distilled water) and added to the culture medium for 2 hr at 37°C, after which time the medium was removed and cells were rinsed once in HBSS. Primary mouse cortical neurons were cultured, transfected with T3:YSOG3-PKMC, and chemically stimulated with 50 μM forskolin and 0.1 μM rolipram for 10 min, then incubated with 1 μM BILN-2061 as described previously (Palida et al., 2015).

General Procedure for Photooxidation and HRP Reaction of Ln-DAB2

Labeled cells were fixed and blocked (Shu et al., 2011). Samples were then transferred either to a Bio-Rad MRC1024 with a Zeiss Axiosvert 35M microscope or a Leica SPE microscope. MDCK cells stained with NBD C6-ceramide and transfected HEK293 cells exhibiting peptide uptake were identified either
by NBD C6-ceramide, miniSOG, or IRDye 700DX fluorescence, respectively, and imaged by confocal microscopy. Freshly prepared and filtered La-DAB2 (2 mM) or Ce-DAB2 (2 mM) for the first photooxidation reaction was added to the dish of cells for 5 min while a stream of pure oxygen was gently blown continuously over the solution. Cells were irradiated to excite NBD C6-ceramide depositing La-DAB2 or miniSOG depositing Ce-DAB2 reaction product both using 450–490 nm excitation (Ex) and 515 nm emission (Em) long-pass (LP) filters with a 580 nm dichroic minor. Reaction product formation was monitored by transmitted light microscopy and illumination was stopped as soon as a light-brown reaction product appeared. Acetic anhydride (MDCK cells) was added (20 x 20 mM freshly prepared) for 1 min each to block precipitated La-DAB2. Alternatively, MDCK cells were rinsed 3 x 5 min with fresh 100 mM acetylimidazole in 0.15 M NaCl to prevent further polymerization of either La-DAB2 or Ce-DAB2, then treated with freshly prepared Ce-DAB2 (2 mM) for HRP enzymatic reaction, or irradiated to excite IRDye 700DX (Ex 675/67 nm, Em, 736 LP) depositing Pr-DAB2 reaction product. Cells were rinsed 5 x 2 min, postfixed, dehydrated, infiltrated, and embedded as described previously (Shu et al., 2011).

Hippocampal Astrocyte Filling with Lucifer Yellow and Neurobiotin Intracellular Astrocyte Filling with Fluorescent Dyes in Fixed Tissue A mouse (2-month-old BALB/c male) was perfused with Ringers, followed by 4% paraformaldehyde, 0.2% glutaraldehyde in 0.1 M PBS (Bushong et al., 2002). Coronal slices (100 μm thick) were cut through the hippocampus using a vibratome. In the CA1 stratum radiatum, one astrocyte was iontophoretically injected with 5% lucifer yellow-CH in water and an adjacent astrocyte was injected with 2.5% Alexa Fluor 568/2% neurobiotin (Vector, SP-1120) in 200 mM KCl (Bushong et al., 2002). The tissue slices were then postfixed with 4% paraformaldehyde, 0.2% glutaraldehyde in 0.1 M PBS. Confocal volumes were taken of the filled astrocytes with a Leica SPE inverted confocal microscope, and the slices were further fixed with 2.0% glutaraldehyde in 0.15 M sodium cacodylate buffer for 10 min on ice, followed by washing several times with 0.15 M sodium cacodylate buffer (pH 7.4).

Photooxidation of Lucifer Yellow Filled Astrocytes Tissues were treated for 15 min in blocking buffer (50 mM glycine, 5 mM KCl, and 5 mM aminotriazole) to reduce nonspecific background reaction of DAB derivatives, filtered Ce-DAB2 solution was added to a tissue slice at room temperature and incubated for 10 min before photooxidation. A stream of pure oxygen was gently blown continuously over the solution. The lucifer yellow was then excited using a standard fluorescein isothiocyanate filter set (Ex 470/40, DM510, Em 520S2) with intense light from a 150 W xenon lamp. Illumination was stopped as soon as a light-brown reaction product appeared within the filled astrocyte (8–10 min), as monitored by transmitted light.

Blocking of First Ln-DAB2 Product Following photooxidation, each tissue slice was washed several times with cold 0.15 M sodium cacodylate buffer (pH 7.4) and then blocked with freshly prepared 100 mM acetylimidazole in 0.15 M sodium chloride (3 x 5 min).

HRP Labeling and Enzymatic Reaction of Photooxidized Cells The tissues were incubated with cryoprotectant, then freeze-thawed to permeabilize the tissues (Knot et al., 2009). The tissues were washed several times with 0.15 M sodium cacodylate buffer (pH 7.4), incubated with 1% BSA in the cacodylate buffer for 30 min followed by overnight incubation with a Vectorstain Elite ABC staining kit (Vector, PK6100). After rinsing several times for 1 hr with cold 0.1 M cacodylate buffer (pH 7.4), 20 mL of Pr-DAB2 solution and 5 μL of 30% H2O2 were added to each tissue. After the neurobiotin-filled astrocyte turned brown, the tissue was washed several times with 0.15 M sodium cacodylate buffer (pH 7.4).

Tissue Processing for TEM Tissues were fixed with 2% glutaraldehyde in cacodylate buffer for 20 min, washed several times with cacodylate buffer, postfixed with 0.5% of OsO4 in cacodylate buffer for 30 min, dehydrated in an ethanol series of 0%, 20%, 50%, 70%, 90%, and 100% on ice for 5 min each, 100% ethanol twice for 5 min each at room temperature, 1:1 100% dry ethanol:dry acetone for 5 min, 100% dry acetone for 5 min, 50:50 dry acetone:Durcupan ACM for 30 min, four changes of Durcupan for 1 hr each, and embedded in a 60°C oven for 48 hr.

Section Preparation from Cells and Tissue Sections (100 nm thick) were cut by an Ultra 45 Diatome diamond knife using a Leica UltratS UCT ultramicrotome, and sections were picked up on a 50-mesh copper grid (Ted Pella, G50). Sections were carbon coated on both sides by a Cressington 208 carbon coater to prevent charging of the plastic which can cause drift and thermal damage.

Electron Microscopy EFTEM was performed with a JEOL JEM-3200EF transmission electron microscope operating at either 200 or 300 KV, equipped with an in-column Omega filter and a LaB6 electron source. The samples were pre-irradiated at a low magnification of 100x for about 30 min to stabilize the sample and minimize contamination (Egerton et al., 2004). The elemental maps were obtained at the M6.5 core-loss edge, the onset of which occurs at 832, 883, and 931 for lanthanum (La), cerium (Ce), and praseodymium (Pr), respectively (Ahn and Kriwanek, 1983). The EFTEM images of the pre- and post-edges were obtained using a slit of 30 eV width. The electron energy-loss spectrum was acquired using the Ultrascan 4000 CCD detector from Gatan. The conventional images and elemental maps were acquired using both the Ultrascan 4000 detector and the direct detection device DE-12 from Direct Electron LP. See Supplemental Experimental Procedures for details.

Two-Color Elemental Map Merge and Overlay on TEM Elemental maps and TEM were pre-aligned in Photoshop (Adobe) and merged pixel-by-pixel using the following custom algorithm running in C++.

\[
\text{Display Pixel}_{R\text{,G,B}} = (1 - T) \cdot \text{Pixel}_{\text{TEM}} + T \cdot \text{Pixel}_{\text{OVR}}
\]

where PixelTEM is the 24-bit red-green-blue (RGB) coordinate for the gray scale TEM image, and PixelOVR is the 24-bit RGB coordinate for the overlay hue at maximum saturation and brightness. T is a transparency factor, the value of which determines what percentage of the overlay color coordinate contributes to the final display pixel. The color coordinate for PixelOVR is calculated in the HSL (hue, saturation, and lightness) color space. In the following example, the hue (H) for PixelOVR is determined using two EELS channels:

\[
S_1 = \frac{I_1}{I_1 + I_2},
\]

\[
S_2 = \frac{I_2}{I_1 + I_2},
\]

\[
H = (S_1 \cdot H_1) + (S_2 \cdot H_2),
\]

where S is a scale factor and I is the intensity of the signal for each respective channel, and H1 and H2 are the arbitrary hues selected for each channels (e.g., red and green).

The lightness (L) for PixelOVR is calculated as follows:

\[
L = (S_1 \cdot L_1) + (S_2 \cdot L_2).
\]

Finally, the RGB coordinate for PixelOVR is determined using an HSL to RGB color space conversion algorithm where S is set to maximum. The transparency factor is calculated as follows:

\[
T = \frac{1}{255},
\]

The raw EELS data need to be scaled between 0 and 255 (8-bits) and should be done prior to implementing the algorithm.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and five figures and can be found with this article online at http://dx.doi.org/10.1016/j.chembiol.2016.10.006.

AUTHOR CONTRIBUTIONS

S.A., R.T., and M.E. conceived and designed the experiments, S.A., M.M., R.R., and R.T. wrote the manuscript.
ACKNOWLEDGMENTS

We thank David Mastronarde (University of Colorado Boulder) and Liang Jin (Direct Electron) for help with scripting in Serial EM and DE-12 direct detection device, respectively, and James Bouwer, Thomas Deerinck, and Junru Hu for advice and technical assistance. This work was supported by UCSD Graduate Training Programs in Cellular and Molecular Pharmacology (T32 GM007752) (S.P.) and in Neuroplasticity of Aging (T32 AG000216) (S.P.), NIH GM103412 (M.E.), the W.M. Keck Foundation (M.E.), and NIH GM086197 (R.T.).

Received: June 13, 2016
Revised: August 16, 2016
Accepted: October 12, 2016
Published: November 3, 2016

REFERENCES

