Suppression by developing ovarian follicles of the low-dose endotoxin-induced glomerular inflammatory reaction in the pregnant rat

Gerard A. Schuiling, PhD, Neeltje Valkhof, AS, and Maria M. Faas, PhD
Groningen, The Netherlands

OBJECTIVE: In the current study the role of developing ovarian follicles in the control of the endotoxin-induced pregnancy-specific inflammatory reaction was evaluated.

STUDY DESIGN: Follicular development was induced in pregnant rats (n = 20) by means of daily intraperitoneal injections of follicle-stimulating hormone from day 11 of pregnancy until the end of the experiment. Control pregnant rats (n = 20) received daily sodium chloride injections. All pregnant rats were infused for 1 hour with either 2 mL endotoxin solution (1.0 µg/kg body weight) or 2 mL sodium chloride solution on day 14 and killed 4 hours or 3 days later. At death, the left kidneys were snap-frozen and immunohistologically stained for the presence of polymorphonuclear leukocytes and monocytes.

RESULTS: The results show that in control pregnant rats endotoxin significantly increased glomerular polymorphonuclear leukocyte and monocyte numbers at both 4 hours and 3 days after endotoxin infusion. Induction of follicular development did not affect glomerular polymorphonuclear leukocyte number after endotoxin infusion but significantly decreased the number of monocytes in the glomeruli at both 4 hours and 3 days after endotoxin infusion.

CONCLUSION: We conclude that follicles stimulated with follicle-stimulating hormone produce a follicular factor or factors that are able to prevent the endotoxin-induced influx of monocytes into the glomeruli of pregnant rats. It is suggested that these factors play a role in the control of inflammatory processes associated with reproduction, including the disease of pregnancy, preeclampsia. (Am J Obstet Gynecol 2000;183:89-93.)

Key words: Pregnancy, endotoxin, ovarian follicles, polymorphonuclear leukocytes, monocytes
Material and methods

Experimental animals. Female Wistar rats (Harlan) were kept in a temperature- and light-controlled room (lights on from 6 AM to 6 PM) with free access to food and water. To follow estrus cyclicity, vaginal smears were taken daily until selection for experiments at the age of 3 to 4 months (about 200 g). At proestrus, the rats were housed with a male rat for 1 night. The following day was designated as day 0 of pregnancy when spermatozoa were detected in the smear. On this day rats were equipped with a permanent jugular vein cannula according to the method of Steffens.\(^4\) Follicular development during pregnancy was induced by daily intraperitoneal injections with 10 IU of FSH (Metrodin; Organon, Oss, The Netherlands) per rat in 0.2 mL sodium chloride solution. Control pregnant rats were injected with sodium chloride solution alone (control rats). Follicular development was assessed by (1) microscopic inspection of the ovaries and (2) the inhibin A levels present in the plasma at the moment of death.\(^5\) Corpus luteum function was judged on the basis of the plasma progesterone levels at the moment of death. Rats (conscious) were infused for 1 hour with either endotoxin (\textit{Escherichia coli} 0.55:B5; Whittaker MA Bioproducts Inc, Walkersville, Md; 1.0 \(\mu\)g/kg body weight in 2 mL sodium chloride solution) or sodium chloride solution alone (control rats). Follicular development was assessed by (1) microscopic inspection of the ovaries and (2) the inhibin A levels present in the plasma at the moment of death.\(^5\) Corpus luteum function was judged on the basis of the plasma progesterone levels at the moment of death. Rats (conscious) were infused for 1 hour with either endotoxin (\textit{Escherichia coli} 0.55:B5; Whittaker MA Bioproducts Inc, Walkersville, Md; 1.0 \(\mu\)g/kg body weight in 2 mL sodium chloride solution) or sodium chloride solution alone (2 mL) through the jugular vein cannula. This protocol (ie, FSH treatment from 3 days before endotoxin infusion) was chosen to allow for follicle development to mimic the situation in follicular phase rats.

Measurement of progesterone and inhibin. Progesterone was measured by a radioimmunoassay, as described by de Jong et al.\(^5\); the sensitivity of the assay was 0.2 nmol/L, and the interassay and intra-assay variability were each <10%. Inhibin A levels were assayed by Dr F.H. de Jong of Erasmus University, Rotterdam, The Netherlands, with immunoenzymetric assays purchased from Serotec (Oxford, United Kingdom).\(^6\) Within-assay variation was 12%.

Demonstration of glomerular inflammation

Immunohistology. Cryostat sections measuring 4 \(\mu\)m were stained according to standard procedures for the presence of polymorphonuclear leukocytes and monocytes by use of monoclonal antibodies against rat polymorphonuclear leukocytes (His48; Pharmingen, San Diego, Calif) and rat monocytes (ED-I; Serotec).\(^2\) In brief, sections were fixed in acetone and incubated with the first antibody (see description in subsequent text) for 30 minutes. A peroxidase-conjugated second antibody (rabbit antimouse; Dako A/S, Glostrup, Denmark) was used and visualized with hydrogen peroxide and 3-amino-9-ethyl-carbazole (Sigma Chemical Co, St Louis, Mo). Control sections, with either primary or secondary antibody omitted from the staining procedure, were consistently negative.

Evaluation of kidney sections. Kidney sections of each individual animal were scored by light microscopic examination in a double-blind fashion and by 2 independent observers, as described before.\(^2\) Sections were quantitatively scored by counting the total number of positive cells in 100 glomeruli in 1 section.

Experimental protocol

Experiment 1: Acute glomerular inflammation. FSH treatment was initiated on day 11 of pregnancy (9 AM), and the last injection was given on day 14.

Both control rats (\(n = 10\)) and rats in which follicular development was induced (\(n = 10\)) were infused with either endotoxin or sodium chloride solution on the morning of day 14 of pregnancy (10 AM) and were killed 4 hours after the start of the infusion.

Experiment 2: Persistent glomerular inflammation. In this experiment FSH treatment was initiated on day 11 of pregnancy (9 AM), but now the treatment lasted up to and including day 17.

Both control rats (\(n = 10\)) and rats in which follicular
development was induced \((n = 10)\) were infused with either endotoxin or sodium chloride solution on the morning of day 14 of pregnancy \((10 \text{ AM})\) and were killed 3 days later \((\text{day 17, 10 AM})\).

At death, specimens of the left kidney, as well as the ovaries, were snap-frozen and prepared for immunohistologic examination and for staining with hematoxylin-eosin stain to check for follicular development, respectively. Blood was collected for assay of progesterone and inhibin A.

Statistics. Results are expressed as mean ± SEM. To evaluate the effects of endotoxin infusion and follicular development, multiple analysis of variance was used, followed by unpaired \(t\) tests to evaluate differences between individual groups. Statistical significance was reached at \(P < .05\).

Results

Plasma inhibin A and progesterone concentrations

Experiment 1. At the moment of death, 4 hours after the start of the infusion, the plasma inhibin A levels of rats in which follicular development was induced amounted to 248.8 ± 73.9 ng/L and were significantly increased compared with plasma levels of inhibin A in control rats \((28.0 ± 5.3 \text{ ng/L});\) multiple analysis of variance followed by \(t\) test; \(P < .05\). No significant differences were observed in plasma progesterone levels between rats in which follicular development was induced and control rats \((193.0 ± 26.8 \text{ nmol/L} \text{ and 289.3 ± 48.0 nmol/L}, \text{ respectively};\) multiple analysis of variance).

Experiment 2. At the moment of death, 3 days after the infusion, the plasma inhibin A levels of rats in which follicular development was induced amounted to 67.8 ± 29.4 and 19.3 ± 3.8, respectively, with plasma inhibin A levels being significantly increased in rats in which follicular development was induced compared with control rats \((t\) test, \(P < .05\)). Also in this experiment no differences in plasma progesterone levels were observed between rats in which follicular development was induced compared with control rats \((242.0 ± 15.4 \text{ nmol/L} \text{ and 216.5 ± 33.0 nmol/L}, \text{ respectively};\) multiple analysis of variance).

Glomerular inflammation. Control rats exhibited increased numbers of polymorphonuclear leukocytes and monocytes in the glomeruli both 4 hours and 3 days after endotoxin infusion compared with sodium chloride infusion \((t\) test; \(P < .05\)). Figs 1 and 2 \(\text{left panels}\) show that no effect of follicular development was observed on glomerular polymorphonuclear leukocyte numbers: The glomeruli of rats in which follicular development was induced exhibited the same number of polymorphonuclear leukocytes as control rats at both intervals studied \((t\) test; \(P < .05\)). On the other hand, a significant effect of follicular development could be observed on glomerular monocyte number: glomerular monocyte infiltration in rats in which follicular development was induced was significantly lower at both 4 hours and 3 days after endotoxin infusion compared with control rats \((t\) test, \(P < .05\)).

Comment

Both the morphologic characteristics of the ovaries \((\text{data not shown})\) and the inhibin A levels of FSH-treated rats demonstrate that the present FSH treatment effectively induced follicular development in pregnant rats without interfering with the corpus luteum function, as shown by the unchanged plasma progesterone levels. FSH treatment did not interfere with the course of pregnancy because no differences in the total fetal number or number of fetal resorptions were observed between rats treated and not treated with FSH \((\text{results not shown})\). FSH, however, effectively prevented the endotoxin-
induced influx of monocytes into the glomeruli at both 4 hours and 3 days after endotoxin treatment: In pregnant rats with developing follicles, monocyte infiltration at both intervals was comparable with that found in follicular phase rats infused with the same low dose of endotoxin. The influx of polymorphonuclear leukocytes into the glomeruli, on the other hand, was not affected by the FSH-induced follicular development, probably because of the elevated plasma progesterone levels of the animals.

The inhibitory effect of FSH on the endotoxin-induced inflammatory response is probably an indirect one. In ovariectomized rats FSH levels are also elevated because of the absence of negative feedback by ovarian hormones, yet in these animals the endotoxin-induced glomerular monocyte infiltration is not suppressed, as it is in FSH-treated pregnant rats. We therefore conclude that in pregnant rats FSH treatment probably induced the ovaries to produce some factor or factors inhibiting the inflammatory response, showing that the pregnant rat is a much more complicated experimental model than rats in any other reproductive condition, including the ovariectomized rat. Indeed, of all reproductive conditions studied, many show a pregnancy-like inflammatory reaction, while only pregnant rats develop a pre-eclampsia-like disease. This can be reduced to the presence in pregnant rats of a factor or factors produced by the conceptus and acting on the vascular wall, making the ovary a much more complicated experimental model than rats in any other reproductive condition, including the ovariectomized rat. Indeed, of all reproductive conditions studied, many show a pregnancy-like inflammatory reaction.

The current observations concerning the role of the ovaries in control of the endotoxin-induced inflammatory response, together with those cited in the previous paragraphs, raise questions at various levels. At the mechanistic level, for example, one may ask how the endotoxin-induced influx of inflammatory cells into the glomeruli, in particular, that of monocytes, is brought about; how this process is controlled in various reproductive conditions; and which factors, in particular, which ovarian factors, exert this control. This study, however, was not designed to and indeed does not answer this type of question, although suggestions can be made. At another level one may also ask why the inflammatory response to endotoxin varies so strongly with the reproductive condition of the female individual and why, in particular, the ovary is involved in the control of the inflammatory status, rendering individuals in the follicular phase of the ovulatory cycle relatively insensitive to a proinflammatory stimulus such as endotoxin but causing (pseudo)pregnant individuals to be in a more or less proinflammatory condition. We believe that, although we do not know the answers to these questions, it can be safely assumed that the fact that pregnancy is a proinflammatory condition and the follicular phase of the ovulatory cycle is not is in the interest of reproduction. This consideration may suggest an answer to the question of why the ovaries are involved in the control of the inflammatory reaction. Many key processes in mammalian reproduction appear to be associated with inflammatory phenomena (eg, ovulation but also infiltration by leukocytes of the vaginal epithelium, invasion of the uterine endometrium by immunocompetent cells, implantation of the blastocyst, and parturition). These processes occur in an accurately timed sequence, one after another, beginning with follicular development (ie, with follicular hormone production and oocyte maturation) and ending with parturition, with sometimes in between pre-eclampsia (also an inflammatory phenomenon), for which the present low-dose endotoxin-treated pregnant rat is a model. It is extremely important indeed that these processes be very accurately controlled because, in fact, they determine the genetic fate of the individual. It may be suggested here that follicular hormones (some of which may in some species also be produced by the placenta) are part of the instruments by which the maternal genes, present in the oocytes, guard their interests.

Because the follicle should not ovulate during oocyte maturation (ie, should occur only when the oocyte is ready to be fertilized), the production of some anti-inflammatory factor or factors up until ovulation makes perfect sense. Also, the increased sensitivity for proinflammatory stimuli during the luteal phase of the ovulatory cycle and during pregnancy (because of inhibition of follicular development) may be of great biologic importance and may be particularly so in human subjects because in this species the association between implantation and the uterine inflammatory response may be an evolutionary necessity to eliminate unhealthy zygotes, which human subjects abundantly produce. The other side of the coin, however, is that this inflammatory response, if not adequately controlled, may give rise to pre-eclampsia. Suppression of the sensitivity of pregnant individuals for proinflammatory stimuli (eg, by means of the present putative follicular factor or factors) may therefore be useful in the treatment of this disease of pregnancy.

This inevitably raises the question of what the nature of the inflammation-modulating factor or factors may be. Among the factors produced by FSH-stimulated ovarian follicles are the inhibins and activins, members of the transforming growth factor β family of hormones–growth
factors–cytokines and well known for their profound effects on immunologic processes. It may be suggested that the factor or factors desensitizing the individual for proinflammatory stimuli such as endotoxin are to be found in this group. In this respect it may be of interest to note that during preeclamptic pregnancies the placenta produces far larger quantities of inhibin and activin than during healthy pregnancies. This may possibly reflect an attempt of the fetus to control the maternal inflammatory response, which threatens its life.

We thank Dr F.H. de Jong, Erasmus University, Rotterdam, The Netherlands, for determination of inhibin A.

REFERENCES

