Iron from melting glaciers fuels phytoplankton blooms in the Amundsen Sea (Southern Ocean): Phytoplankton characteristics and productivity

Anne-Carlijn Alderkamp a,b,*, Matthew M. Mills a, Gert L. van Dijken a, Patrick Laan c, Charles-Edouard Thuroczy c, Loes J.A. Gerrings c, Hein J.W. de Baar b,c, Christopher D. Payne d, Ronald J.W. Visser b, Anita G.J. Buma b, Kevin R. Arrigo a

a Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA
b Department of Ocean Ecosystems, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
c Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
d Department of Earth and Ocean Sciences, University of British Columbia, Vancouver BC, Canada

1. Introduction

Coastal polynyas are local areas of reduced ice cover that generally form due to offshore katabatic winds and seasonal ice melt. The reduced ice cover results in elevated irradiance in the upper mixed layer; P. antarctica blooms in the polynyas, which is favorable for phytoplankton photosynthesis and growth, making Antarctic polynyas some of the most biologically productive regions of the Southern Ocean (Arrigo et al., 1999; Arrigo and van Dijken, 2003; Arrigo et al., 2008a, b). Phytoplankton primary productivity in polynyas is important for the support of biota who occupy higher trophic levels such as krill, penguins, and whales (Arrigo et al., 2003; Ainley et al., 2006). Moreover, polynyas play a disproportionally important role in sequestering anthropogenic CO2 because of their high rates of primary production, rapid organic matter sinking fluxes (DiTullio et al., 2000), and formation of dense bottom waters (Arrigo et al., 2008a).

Phytoplankton productivity in Antarctic polynyas is generally dominated by diatoms and the haptophyte Phaeocystis antarctica.
(Prymnesiophyceae), although Cryptophytes, Chlorophyceae, and Prasinophyceae may also be abundant at certain times and regions (Arrigo et al., 1999; Wright et al., 2010; Kozloski et al., 2011). The biogeochemical characteristics of these blooms differ in important ways (Arrigo et al., 1999). Previous data suggest that *P. antarctica* draws down twice as much CO₂ per mole of PO₄ removed than do diatoms (Arrigo et al., 1999). Other evidence suggests that *P. antarctica* is not readily grazed by microzooplankton (Caron et al., 2000; Tagliabue and Arrigo, 2003; Nejstgaard et al., 2007). Therefore, *P. antarctica* is thought to form the base of a marine food web that is substantially different from that supported by diatoms.

Phytoplankton primary productivity in the Southern Ocean is often limited by the availability of iron (Fe) (Boyd et al., 2007 and references therein), although light limitation due to deep vertical mixing below the critical depth may also limit phytoplankton growth (Mitchell et al., 1991; De Baar et al., 2005). The Fe supply for phytoplankton growth in polynyas is enhanced when compared to the open ocean due to input from melting sea ice (Sedwick and DiTullio, 1997; Lannuzel et al., 2010), floating icebergs (Raiswell et al., 2008; Raiswell, 2011; Shaw et al., 2011), upwelling Circumpolar Deep Water (CDW) (Klunder et al., 2011), and melting glaciers (Raiswell et al., 2006). Despite these enhanced sources, phytoplankton growth is often still seasonally Fe-limited following blooms in polynyas such as the Ross Sea (Sedwick and DiTullio, 1997; Sedwick et al., 2000; Arrigo et al., 2003; Tagliabue and Arrigo, 2005) and the Weddell Sea (Buma et al., 1991).

Satellite data revealed that the polynyas with highest productivity per surface area of Antarctica are found in the Amundsen Sea (Arrigo and van Dijken, 2003). The Amundsen Sea contains two polynyas, the Pine Island Polynya with a mean area of 17,632 km² in the east and Amundsen Polynya with a mean area of 27,333 km² in the west. The Amundsen Sea is located in the western Antarctic, where rates of ice sheet thinning are the highest in all of Antarctica (Pritchard et al., 2009) and are a potential Fe source for phytoplankton blooms (Raiswell et al., 2006, 2008). Several fast-flowing glaciers that are thinning rapidly drain into the Amundsen Sea, most notably the Pine Island Glacier (PIG), the Smith Glacier, and the Thwaites Glacier (Pritchard et al., 2009). The thinning of the ice sheets is mainly attributed to the regional bathymetry and oceanography. As the Antarctic Circumpolar Current (ACC) flows close to the continent, Circumpolar Deep Water (CDW) intrudes southward through deep troughs onto the Antarctic continental shelf as modified CDW (MCDW) (Jacobs et al., 1996, 2011; Jenkins et al., 1997; Hellmer et al., 1998; Walker et al., 2007; Nitsche et al., 2007). This relatively warm (~1.2°C) and salty MCDW is able to enter the cavity beneath the floating terminus of the PIG and drive basal melting (Jenkins et al., 2010; Jacobs et al., 2011). The resulting seawater dilution by the glacial melt initiates a circulation pattern whereby fresher and cooler meltwater MCDW flows up the underside of the floating ice sheets and returns to the open sea higher in the water column (Hellmer et al., 1998).

During the 2009 DynaLiFe program, an international collaboration that was part of the International Polar Year, we found that meltwater MCDW from the PIG and other glaciers draining into the Amundsen Sea polynyas is the major source of Fe for the phytoplankton blooms in these polynyas (Gerringa et al., 2012). Here, we describe the characteristics of the phytoplankton bloom that was fueled by this Fe input, including phytoplankton community composition, photo-physiological characteristics, and primary productivity of this highly productive area.

2. Methods

2.1. Sampling

Seawater samples were collected during the NBP 09-01 cruise on the RVIB Nathaniel B. Palmer in the Amundsen Sea area during the austral summer, 12 January–17 February 2009 (Figs. 1 and 2). We entered a band of multi- and first-year ice to the north of Pine Island Polynya (PIP) on 12 January and followed a depression in the continental shelf through the sea ice (Sta 2, 3, 5, 7, 10) into the PIP. We transected the PIP on 15 and 16 January (Sta 11, 12, 13, 14) and subsequently sampled the PIB (Sta 36, 37, 46, 47, 86, 88, 89, 90, 94, 99) and stations in proximity to the PIG tongue (Sta 16,
17, 81, 93 on the western end, 23, 55, 92 on the eastern end). On
31 January, we sampled another transect through the PIP (Sta 102,
104, 105, 106, 107, 108, and 129 on 6 February). From 1 to 14
February, we sampled the Amundsen Polynya (AP) (113, 114, 118,
148) and stations in proximity to the Dotson (Sta 119), Crosson
(Sta 126), and Getz (Sta 153) ice shelves. From 8–15 February, we
sampled stations in the sea ice zone (Sta 127, 131, 133, 135, 138,
140, 142, 158).
Continuous vertical profiles of temperature, salinity, irradiance,
fluence, and suspended particle abundance were obtained from the
water column using a SeaBird 911+CTD, a Chelsea fluorometer,
phototically active radiation (PAR) sensor (Biospherical), and a 25-cm WetLab transmissometer,
respectively, on a cast preceding collection of water samples.
Water was sampled during daylight hours from discrete depths in
the upper 300 m of the water column with 12 L GoFLO bottles
obtained from the water column using a SeaBird 911
140, 142, 158).

Samples were collected for dissolved Fe (DFe), total dissolvable
Fe (TDFe) (Gerringa et al., 2012), nutrients, pigment composition,
particulate organic carbon (POC), particulate organic nitrogen
(PON), photosynthesis versus irradiance (P–E) relationships, phytoplankton absorption, and fluorescence analysis.

2.1.3. Photosynthesis vs. irradiance (P–E)

Fig. 2. Temperature versus salinity characteristics of surface waters (10 m) of the stations in different geographical regions of the sea ice, Pine Island Polynya (PIP), Pine Island Bay (PIB), Amundsen Polynya (AP), and glacier sites. Stations of interest are marked.

\[P^* = \frac{P_m}{1 - \exp \left(-\frac{E}{P_m} \right)} - P_m^* \]
(1)

where \(P_m^* \) is the maximum rate of CO₂ fixation and \(\alpha^* \) is the initial slope of the \(P–E \) curve (\(g \ g^{-1} \ Chl \ a \ h^{-1} \ [\mu mol \ quanta \ m^{-2} \ s^{-1}]^{-1} \)). The photoacclimation parameter, \(E_\alpha \), was calculated as \(P_m^*/\alpha^* \), CO₂ incorporation was also fitted to the model of Platt et al. (1980), which contains the photoinhibition parameter \(B^*_\alpha \) (\(g \ g^{-1} \ Chl \ a \ h^{-1} \ [\mu mol \ quanta \ m^{-2} \ s^{-1}]^{-1} \)). However, \(B^*_\alpha \) was not significant in any of the \(P–E \) curves and, therefore, this model was disregarded. Due to methodological difficulties, \(P–E \) relationships were only determined at Sta. 104 and later.

2.1.4. Phytoplankton absorption

Aliquots of the seawater sample (15 mL) were filtered onto GF/
Fs for the measurement of particulate absorption spectra (\(a_p \),
300–800 nm) on a Perkin-Elmer Lambda 35 spectrophotometer
equipped with an integrating sphere (Langsphere) using the filter
pad method and optical corrections in Mitchell and Kiefer (1988)
and the coefficients of Branda and Stramski (1990). Detrital
absorption (\(a_{det} \), 300–800 nm) was assayed after methanol extraction
according to the method of Kishino et al. (1985). Chl a-specific phytoplankton absorption (\(a_{\text{pha}} \)) at each wavelength (\(\lambda \)) was calculated as

\[a_{\text{pha}}(\lambda) = \frac{a_p(\lambda) - a_{det}(\lambda)}{[\text{Chl}a]} \]
(2)

where [Chl a] is the Chl a concentration of the sample.
Spectrally weighted mean Chl a-specific absorption coefficients
\(a^* \), \(m^2 \ \text{mg Chl} \ a^{-1} \), were calculated using the equation

\[a^* = \frac{\sum_{\lambda=400}^{700} a_{\text{pha}}(\lambda) E(\lambda)}{\sum_{\lambda=400}^{700} E(\lambda)} \]
(3)

where \(E(\lambda) \) (\(\mu mol \ quanta \ m^{-2} \ s^{-1} \)) is the spectral irradiance of the photosynthesron.

The quantum yield of photosynthesis (\(\Phi_m \)) was calculated as

\[\Phi_m = \frac{\alpha^*}{43.2 a^*} \]
(4)

after first confirming that \(\Phi_m \) was maximal at the lowest light level used in each of the assays (Johnson and Barber, 2003).
2.1.5. Pigment analysis

To determine the Chl \(a \) concentration of each sample, 10–500 ml of seawater was filtered onto 25 mm GF/F filters (Whatman), extracted overnight in 5 ml of 90% acetone, and analyzed on a Turner Model 10AU Fluorometer before and after acidification (Holm-Hansen et al., 1965).

For HPLC analysis of phytoplankton pigments, 50–1000 ml of seawater was filtered onto 25 mm GF/F filters, snap-frozen in liquid nitrogen, and stored at \(-80^\circ\)C until analysis after 6 months of collection. The filters for pigment analysis were then freeze-dried (48 h) and extracted in 90% acetone (48 h). Pigments were separated on a HPLC system (Waters 2690 separation module, 996 photodiode array detector) using a C18 5 \(\mu \)m Delta-Pak reverse-phase column (Kraay et al., 1992; Van Leeuwe et al., 2006). Quantification was done using standard dilutions of Chl \(a \), chlorophyll \(b \) (Chl \(b \)), chlorophyll \(c_3 \) (Chl \(c_3 \)), 19\'-butanoyloxyfucoxanthin (19\'-But), fucoxanthin (Fuc), 19\' hexanoyloxyfucoxanthin (19\'-Hex), diadinoxanthin (DD), diatoxanthin (DT), and \(\beta \)-carotene (\(\beta \)-Car). The Chl \(a \) breakdown/intermediate product, chlorophyllide \(a \), was analyzed and detected in low concentrations (< 10% of Chl \(a \)) in seven stations only and are therefore not presented.

2.1.6. Fluorescence measurements

The maximum photochemical efficiency of photosystem II \((F_v/F_m) \) was determined using a pulse-amplituded modulated (PAM) fluorometer (Water PAM, Heinz Walz, GmBH) at 2 \(^\circ\)C. Prior to analysis, the PAM was blanked with GF/F-filtered seawater from the same station (Cullen and Davis, 2003). After sampling from the GoFlo bottles, samples were acclimated in the dark at 2 \(^\circ\)C for 30 min to fully oxidize the photosynthetic reaction centers. The minimum fluorescence \((F_o) \) and maximum fluorescence \((F_m) \) were measured on triplicate 4 ml subsamples. \(F_o \) was determined using the measuring (non-photochemistry-inducing) PSII \((\text{II reaction centers. The maximum dark-acclimated efficiency of} \) reaction was analyzed on a Turner Model 10AU Fluorometer before and after acidification (Holm-Hansen et al., 1965).

To calculate the total daily PAR in the upper mixed layer \((E_{\text{UML}}) \) as the shallower depth at which the density \((\sigma_T) \) exceeded the surface density by 0.02 kg m\(^{-3}\) (Ciesielski et al., 2008). The choice of 0.02 as value for \(\Delta \sigma_T \) is somewhat arbitrary, as some studies have used greater values (Long et al., 2011). In this study choosing a greater value for \(\Delta \sigma_T \) would only have affected the \(E_{\text{UML}} \) in some glacier stations close to ice shelves, meltwater MCDW and vigorous vertical mixing was observed (Gerringa et al., 2012).

\[
E_{\text{UML}} = \frac{E_{\text{surf}} (1-e^{-K_{z_{\text{UML}}}})}{K_{z_{\text{UML}}}}.
\]

where \(E_{\text{surf}} \) is the total daily surface PAR averaged over five days and \(T \) is the mean transmittance through the sea surface (0.85 for open water, 0.20 for gray ice and nilas, and 0.05 for snow covered and multiyear ice; Allison et al., 1993).

2.2. Data analysis

2.2.1. Diffuse attenuation coefficient

The attenuation of downwelling PAR in the water column \((K_d) \) was determined by fitting the equation:

\[
E_z = E_0 e^{-K_{d}z}
\]

to each PAR profile, where \(E_z \) is the irradiance at depth \(z \) and \(E_0 \) is the irradiance just below the sea surface.

2.2.2. Euphotic zone

\(K_d \) was used to calculate the depth of the euphotic zone, \(z_{\text{EUL}} \), defined as the depth at which the downwelling PAR falls to 1% of the value just below the sea surface (Kirk, 1994):

\[
z_{\text{EUL}} = \frac{\ln(0.01)}{K_{d}[\text{PAR}]}
\]

2.2.3. Critical depth

The critical depth \((z_c) \) is the depth above which vertically integrated rates of phytoplankton photosynthesis and community respiration are equal. To determine \(z_c \), a reformulation of the original (Sverdrup, 1953) equation suggested by Nelson and Smith (1991) for

\[
z_c = \sum \frac{E_0}{3.78K_d}
\]

2.2.4. Upper mixed layer depth

We defined the depth of the upper mixed layer \((z_{\text{UML}}) \) as the shallowest depth at which the density \((\sigma_T) \) exceeded the surface density by 0.02 kg m\(^{-3}\) (Ciesielski et al., 2008). The choice of 0.02 as value for \(\Delta \sigma_T \) is somewhat arbitrary, as some studies have used greater values (Long et al., 2011). In this study choosing a greater value for \(\Delta \sigma_T \) would only have affected the \(z_{\text{UML}} \) in some glacier stations close to ice shelves, meltwater MCDW and vigorous vertical mixing was observed (Gerringa et al., 2012).

2.2.5. Mean daily PAR in the upper mixed layer

To calculate the total daily PAR in the upper mixed layer \((E_{\text{UML}} \text{ mol quanta m}^{-2} \text{ day}^{-1}) \), we used the equation of (Riley, 1957):

\[
E_{\text{UML}} = \frac{E_{\text{surf}} (1-e^{-K_{z_{\text{UML}}}})}{K_{z_{\text{UML}}}}
\]

where \(E_{\text{surf}} \) is the total daily surface PAR averaged over five days and \(T \) is the mean transmittance through the sea surface (0.85 for open water, 0.20 for gray ice and nilas, and 0.05 for snow covered and multiyear ice; Allison et al., 1993).

2.2.6. Phytoplankton community composition based on CHEMTAX analysis

The CHEMTAX analysis package, version 1.95 (Mackey et al., 1996; Wright et al., 1996) was used to assess phytoplankton class abundance. The initial database contained specific pigment signatures for six phytoplankton classes that generally dominate Antarctic waters (Wright et al., 2010), including Chlorophytes, Prasinophytes, Cryptophytes, diatoms (with a separate category for Pseudonitzschia), and two classes of P. antarctica. The pigment signature of P. antarctica is variable (Zapata et al., 2004) and changes in response to Fe-limitation (Van Leeuwe and Stefels, 2007; DiTullio et al., 2007; Alderkamp et al., 2012). Based on published ratios of Fuc, 19'-Hex, and 19'-Fuc, separate classes of nutrient-replete and Fe-limited P. antarctica were distinguished (Table 1; Wright et al., 2010; Alderkamp et al., 2012). After analysis, Prasinophytes and Chlorophytes were pooled as green algae and presented together with Cryptophytes because of their low abundance, whereas Pseudonitzschia and other diatoms were

<table>
<thead>
<tr>
<th>Pigment:Chl a ratios used in CHEMTAX analysis of pigment data: (a) (initial ratios (modified from Wright et al. (2010)), (b) (optimized ratios after analysis).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chl (c_3)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
pooled and presented as diatoms because of their functional similarity.

2.2.7. New production

New production (NP) was estimated using the calculated NO\textsubscript{3} deficit (\(\Delta[DNO_3]\)), similar to that used previously in the Ross Sea (Sweeney et al., 2000; Arrigo et al., 2000; Smith and Asper, 2000; Smith et al., 2006):

\[
\Delta[DNO_3] = \int_0^z [NO_3]_{MCDW} dz - \int_0^z [NO_3]_{sal} dz
\]

where \([NO_3]_{sal}\) is the salinity-corrected NO\textsubscript{3} concentration at depth \(z\) and \([NO_3]_{MCDW}\) is the mean NO\textsubscript{3} concentration of 30.31 \(\mu\text{M}\) at a salinity of 34.16 of the meltwater MCDW upwelling water from under the PIG. To calculate cumulative new production since December 1, production calculated in \(N\) units was converted to \(C\) units using the mean molar \(C/N\) ratio of particulate matter measured in the study region. All integrations were from 0–100 m. Below this depth, winter water (WW) was observed in the PIP (Gerringa et al., 2012). The mean NO\textsubscript{3} concentrations in this WW layer were lower than the concentrations in the MCDW upwelling from under the PIG, and low levels of fluorescence were detected, indicating that phytoplankton may have taken up some NO\textsubscript{3}. The potential remineralization of NO\textsubscript{3} via nitrification was ignored, since this process is extremely slow at the low temperatures of the Antarctic shelf waters (Karl et al., 1996). This estimation ignores lateral advection of water masses, which is discussed in Section 4.

2.2.8. Export production

Depth-integrated PON was compared to the depth-integrated NO\textsubscript{3} deficit, and the difference was considered to be an estimate of export production from the beginning of the bloom to the date of sampling. This method ignores the fraction of NO\textsubscript{3} that would have entered the dissolved organic nitrogen (DON) pool, which is small in Antarctic waters (Smith and Asper, 2000). Similar to the NP calculations, effects of lateral advection were ignored.

2.2.9. Water column phytoplankton productivity

This property was estimated from the Chl \(a\) concentrations and light availability in the water column using the measured \(P-E\) parameters. At depth intervals of 1 m, Chl \(a\) concentrations were estimated from continuous vertical fluorescence profiles that were calibrated to the measured Chl \(a\) concentrations at similar depths (Chl \(a\) [\(\mu\text{g} \text{ L}^{-1}\]) = 0.52\(\times\)fluorescence [arb units] \(R^2 = 0.80\). The daily light

![Fig. 3. Section plots of water properties of the stations on a transect from the southwestern end of the PIG (Sta 16) to the northwest, transecting the PIB and the PIP (Sta 104–108). (A) Temperature, (B) Nitrate + nitrite concentration, (C) Density (\(\sigma_T\)), (D) Salinity, (E) Dissolved iron (DFe) concentration, and (F) Chl \(a\) concentration.](image-url)
cycle was binned in 10 min intervals and the mean over the previous five days was used to estimate the sinusoidal light cycle at 1 m depth intervals at each station based on the measured K_d of that station. These light levels were then used to calculate the phytoplankton productivity at each depth using $P-E$ parameters of the phytoplankton at 10 m depth of the station. Since no $P-E$ curves were available for the PIB, mean $P-E$ parameters of the PIP and AP were used to estimate productivity there.

2.2.10. Statistical analysis

Data were checked to see if they were normally distributed. If they were, one-way ANOVA tests were used to compare the mean of hydrographic variables and biological parameters from different regions. If distributions were not normal, the non-parametric Mann-Whitney U test was used. Differences were considered significant at $p < 0.05$.

3. Results

3.1. General characteristics of the study region

The hydrography in the study area was driven by MCDW flowing onto the continental shelf, characterized by temperatures of $1.2 \degree C$ and salinities > 34.6, which was detected in the central PIP at depths below 300 m. Above this stratum, a winter water (WW) layer with a temperature of $-1.79 \degree C$ to $-1.68 \degree C$ and a salinity of 34.01 was observed between 50 and 200 m. At the western end of the tongue of the PIG, meltwater MCDW outflow and upwelling from under the glacier was observed throughout the upper 300 m of the water column (Fig. 3A and D, Gerringa et al., 2012). This meltwater MCDW in surface waters was fresher (salinity ~ 34.0) and colder (temperature $< -0.5 \degree C$) than the MCDW flowing onto the shelf, indicating basal melting of the glacier tongue. Upwelling/outflow of meltwater MCDW was also observed at the eastern end of the PIG (Sta. 23 and 92) and close to the Crosson (Sta. 126) and Dotson (Sta. 119) ice shelves (Fig. 2). However, meltwater MCDW was not detected close to the Getz Ice Shelf (Sta. 153), where the water was fresher (salinity ~ 34.4) and warmer (temperature $-0.3 \degree C$). Therefore, this station was classified as an Amundsen polynya (AP) station.

We encountered a dense phytoplankton bloom in surface waters of the PIP, PIB, and AP that had started around 10 December in both polynyas, as revealed by satellite ocean color data (Arrigo et al., 2012). The transect into the PIP on 15 January took place near the peak in Chl a and primary production (Arrigo et al., 2012), which lasted for approximately two weeks. The second transect through the PIP on 30 and 31 January took place just before Chl a began to decline. In the AP, Chl a peaked earlier than in the PIP (beginning of January) and the phytoplankton bloom was already in decline when we sampled the AP on 2, 3, 14, and 15 February.

3.2. Regional variability in phytoplankton characteristics

Here we describe the characteristics of the phytoplankton blooms in five different regions of the Amundsen Sea (Figs. 1 and 2), including (1) glacier sites less than 5 km from the PIG and the Crosson and Dotson ice shelves, (2) the PIB adjacent to the PIG, (3) the PIP, (4) the AP, and (5) the sea ice stations (stations with $>50\%$ ice cover). In addition, a vertical section through the phytoplankton bloom extending from the western end of the PIG to the northwest into the PIB and PIP is used to characterize horizontal and vertical gradients in hydrography and phytoplankton characteristics from the PIG northward to the open ocean.

3.2.1. Glacier sites

The water column at each of the glacier sites near the PIG, Crosson, and Dotson ice shelves was characterized by little to no stratification in the upper 300 m. Outflowing meltwater MCDW at a mean salinity of 33.92 and mean temperature of $-1.01 \degree C$ to $-0.64 \degree C$ was observed in surface waters of these sites (Fig. 2, Table 2). At most stations, the z_{UML} was deep relative to other regions, exceeding 70 m (Table 2, Fig. 4C), and resulted in a relatively low E_{UML} in some stations. However, due to the low K_d at most glacier sites, the z_e was deeper than z_{UML} at all glacier stations and the mean E_{UML} of glacier sites was 8.0 mol quanta m$^{-2}$ d$^{-1}$, similar to values in the PIB, AP, and ice stations (Table 2).

Phytoplankton biomass was very low throughout the water column at the glacier sites, with surface Chl a concentrations usually below 1 μg L$^{-1}$ (Table 3, Fig. 4F). The concentrations of macronutrients were similar to those in the CDW, with mean NO$_3$ concentrations of 30.31 μmol L$^{-1}$. DFe was high throughout the water column (Gerringa et al., 2012), with mean surface concentrations of 0.62 nmol L$^{-1}$, exceeding those in our other study regions. The high nutrient and low Chl a concentrations indicate little accumulation of phytoplankton in these waters since the beginning of the season. At stations with a deep z_{UML}, low E_{UML} may have hampered phytoplankton growth, although z_{UML} was shallower than z_e in all stations, indicative of light conditions favorable for phytoplankton net growth. More likely, outflow and upwelling of meltwater MCDW flowing from beneath the glacier termini may have diluted surface waters with deeper water having high DFe and NO$_3$ concentrations and low phytoplankton biomass.

3.2.2. Pine Island Bay

The surface waters of the PIB were characterized by relatively high salinity compared to the PIP and AP (mean 33.99, Table 2, Fig. 3D), similar to that of surface waters of the glacier stations and indicative of MCDW with little modification by sea-ice melt. Waters in the upper 20 m of the PIB were warmer than both deeper waters (Fig. 3A) and surface waters at glacier sites (Fig. 2, Table 2), indicative of solar warming. Thermal stratification resulted in a relatively deep z_{UML} (mean 22.3 m, Table 2, Fig. 4C), which, in combination with an intermediate K_d resulted in a value for E_{UML} that was similar to our other study regions (Table 2). The z_{UML} was shallower than the z_e in all PIB stations.

Surface phytoplankton biomass was relatively high and constant over the PIB (2.9–5.1 μg L$^{-1}$ Chl a, Fig. 4F) and evenly

Table 2

<table>
<thead>
<tr>
<th>Region</th>
<th>n</th>
<th>z_{UML} (m)</th>
<th>K_d</th>
<th>$z_{2/3}$</th>
<th>z_e (m)</th>
<th>E_{UML} (mol quanta m$^{-2}$ d$^{-1}$)</th>
<th>$T_{surface}$ (°C)</th>
<th>$S_{surface}$</th>
<th>σ_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacier</td>
<td>9</td>
<td>75.4 (38.1)</td>
<td>0.113 (0.04)</td>
<td>45.4 (14.5)</td>
<td>166.6 (73.4)</td>
<td>8.2 (4.4)</td>
<td>$-1.01 (0.34)$</td>
<td>33.92 (0.09)</td>
<td>27.28 (0.06)</td>
</tr>
<tr>
<td>Pine Island Bay</td>
<td>10</td>
<td>22.3 (5.8)</td>
<td>0.29 (0.09)</td>
<td>68.4 (2.4)</td>
<td>10.6 (5.4)</td>
<td>33.99 (0.05)</td>
<td>$0.31 (0.35)$</td>
<td>33.99 (0.05)</td>
<td>27.27 (0.05)</td>
</tr>
<tr>
<td>Pine Island Polynya</td>
<td>13</td>
<td>15.2 (6.7)</td>
<td>0.36 (0.10)</td>
<td>13.9 (4.3)</td>
<td>56.5 (17.6)</td>
<td>33.67 (0.25)</td>
<td>0.09 (0.5)</td>
<td>33.48 (0.22)</td>
<td>26.89 (0.18)</td>
</tr>
<tr>
<td>Amundsen Polynya</td>
<td>5</td>
<td>36.2 (26.6)</td>
<td>0.24 (0.07)</td>
<td>20.9 (7.5)</td>
<td>7.6 (4.6)</td>
<td>33.48 (0.22)</td>
<td>$-0.34 (0.15)$</td>
<td>33.48 (0.22)</td>
<td>26.89 (0.18)</td>
</tr>
<tr>
<td>Sea ice</td>
<td>15</td>
<td>15.7 (6.1)</td>
<td>0.18 (0.09)</td>
<td>33.9 (18.5)</td>
<td>166.8 (54.6)</td>
<td>10.3 (4.5)</td>
<td>$-1.51 (0.29)$</td>
<td>33.29 (0.25)</td>
<td>26.78 (0.21)</td>
</tr>
</tbody>
</table>
distributed through the UML (Fig. 3F). The mean surface (10 m) concentrations of NO₃ and PO₄ were moderate throughout the PIB (9.96 μmol L⁻¹ and 0.85 μmol L⁻¹, respectively, Table 3, Fig. 3B), as were concentrations of DFe (0.13 nmol L⁻¹, Table 3, Fig. 4B).

P. antarctica dominated the phytoplankton bloom in the PIB, comprising up to 92% of the phytoplankton community in surface waters (Table 4, Fig. 6A), as determined by CHEMTAX analysis on the pigment composition. The phytoplankton community composition in the PIB showed little or no vertical structure, with *P. antarctica* dominating the entire upper 100 m of the water column (Fig. 5A). The contribution of diatoms to the phytoplankton community was < 10%, except at Sta. 94 located in the southwest of the PIB, where they contributed 19%. Concentrations of Chl *b* (indicative of Prasinophytes and Chlorophytes) and AIX (present in Cryptophytes) were below detection limits in the PIB. Based on the effects of low Fe concentrations on the *P. antarctica* pigment composition, we distinguished two separate *P. antarctica* groups, one with a low-Fe and one with a high-Fe pigment signature. On average, 52% of the surface *P. antarctica* population exhibited the high-Fe pigment signature (Table 4, Fig. 6D), which increased at greater depths (Fig. 5D). The mean *Fv/Fm* of phytoplankton was relatively high (0.46) with little variation either between stations in the PIB (Fig. 6F) or over the top 50 m of the water column (Fig. 5F).

Fig. 4. Characteristics of surface water properties (10 m) of the Amundsen Sea with the > 50% sea ice concentration at the time of sampling nearby stations shaded in gray. Ice shelves are light blue whereas land is gray. (A) Temperature, (B) Nitrate + nitrite concentration, (C) Depth of the upper mixed layer (zuₚ), (D) Salinity, (E) Dissolved iron (DFe) concentration, and (F) Chl a concentration. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
double that of the PIB (Table 4). The highest contribution of the surface phytoplankton community was 16%, which was a biomass (Fig. 6A, Table 4). The mean contribution of diatoms to diatoms to the surface phytoplankton community of the PIP was complete drawdown of NO₃ was observed at the mid-polynya stations high as 61.38 mol L⁻¹. A slight decrease in salinity at these stations indicated the influence of sea ice melt water.

3.2.3. Pine Island Polynya

The mean salinity of surface waters in the PIP was slightly lower than that of the PIB (Table 2), particularly at stations further north, likely the result of sea ice melt (Fig. 4D). Surface temperatures were relatively high in the PIP, especially in the upper 10 m of the water column (Fig. 3A). The PIP was both salinity- and thermally-stratified, which resulted in a relatively shallow E_UML (mean 15.2 m). Like in the PIB, z_UML was shallower than z_c at all stations. The positive effect of this shallow z_UML on the E_UML was, however, offset by the high values of K_p (Table 2), resulting in an E_UML of 13.1 mol quanta m⁻² d⁻¹, similar to that of the PIB.

Phytoplankton biomass was high in surface waters (10 m) of the PIP, with mean Chl a concentrations of 9.49 g C m⁻³ and POC as high as 61.38 μmol L⁻¹ (Table 3). Mean surface Chl a was twice that of the PIB. We observed little temporal change in surface phytoplankton biomass in the PIP, with Chl a concentrations exceeding 10 μg L⁻¹ on both 15 January (Sta. 12 and 13) and on 30–31 January (Sta. 105, 106, and 107; Fig. 3F). These high Chl a concentrations were restricted to the upper 10 m of the water column (Fig. 3F).

The surface (10 m) concentration of DFe was generally low at stations north of Sta. 104 (< 0.06 nM) and higher to the south (> 0.11 nM) (Fig. 4E). Surface concentrations of NO₃ and PO₄ were somewhat variable between stations, with mean concentrations of 6.88 and 0.75 μmol L⁻¹, respectively (Table 3). Almost complete drawdown of NO₃ was observed at the mid-polyyna stations 107 and 108 (0.21 and 0.32 μM respectively, Figs. 3B and 4B). These stations also had a relatively shallow z_UML (< 10 m, Fig. 4C). A slight decrease in salinity at these stations indicated the influence of sea ice melt water.

The phytoplankton community in the surface waters of the PIP was dominated by P. antarctica, comprising on average 83% of Chl a biomass (Fig. 6A, Table 4). The mean contribution of diatoms to the surface phytoplankton community was 16%, which was double that of the PIB (Table 4). The highest contribution of diatoms to the surface phytoplankton community of the PIP was 46% at Sta. 14 in the south of the PIP. At some stations, the diatom contribution to the phytoplankton community in deep (100 m) waters was high (e.g. 69% at Sta. 105, Fig. 5B). The low Fe pigment signature of P. antarctica comprised an average of 90% of the P. antarctica community in surface waters (Table 4, Fig. 6E). The distribution of the high Fe and low Fe pigment signature was constant over the top 50 m of the water column, whereas the contribution of the low Fe pigment signature was somewhat lower at 100 m (Fig. 5E). Pigments of green algae or cryptophytes were not detected in the PIP.

The F_r/F_m of the phytoplankton was relatively low and exhibited little variation between stations within the PIP (mean 0.41; Fig. 6F). The one exception was Sta. 14 where the phytoplankton F_r/F_m was 0.55. The phytoplankton F_r/F_m in surface waters was lower than that below the z_UML (Fig. 5F).

Phytoplankton community composition and F_r/F_m in surface waters (10 m) of the glacier sites, Pine Island Bay, Pine Island Polynya, Amundsen Polynya, and sea ice stations. Means are significantly different at the p < 0.05 level unless connected by the same letter.

<table>
<thead>
<tr>
<th>n</th>
<th>Diatoms (fraction of Chl a)</th>
<th>Phaeocystis antarctica (fraction of Chl a)</th>
<th>Green algae (fraction of Chl a)</th>
<th>Cryptophytes (fraction of Chl a)</th>
<th>Fe-limited P. antarctica (fraction of P. antarctica)</th>
<th>F_r/F_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacier</td>
<td>3</td>
<td>0.56 (0.22)</td>
<td>0.44 (0.24)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.67 (0.37)</td>
</tr>
<tr>
<td>Pine Island Bay</td>
<td>10</td>
<td>0.08 (0.05)</td>
<td>0.05 (0.05)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.48 (0.16)</td>
</tr>
<tr>
<td>Pine Island Polynya</td>
<td>13</td>
<td>0.16 (0.13)</td>
<td>0.83 (0.14)</td>
<td>0.01 (0.11)</td>
<td>0.00 (0.00)</td>
<td>0.90 (0.11)</td>
</tr>
<tr>
<td>Amundsen Polynya</td>
<td>5</td>
<td>0.32 (0.13)</td>
<td>0.67 (0.13)</td>
<td>0.00 (0.00)</td>
<td>0.00 (0.00)</td>
<td>0.91 (0.18)</td>
</tr>
<tr>
<td>Sea ice</td>
<td>9</td>
<td>0.44 (0.25)</td>
<td>0.48 (0.28)</td>
<td>0.06 (0.08)</td>
<td>0.01 (0.02)</td>
<td>0.60 (0.04)</td>
</tr>
</tbody>
</table>

3.2.4. Amundsen Polynya

We sampled only five stations in the AP between 1–12 February. The variability in most hydrographic parameters between these stations was relatively high. Low surface temperatures and low salinity indicated sea ice melt water influence in surface waters throughout the AP (Table 1, Fig. 3A and D). The mean z_UML was deeper than in other regions, mostly due to the uncharacteristically deep z_UML of 83 m at Sta. 114, which was well below the z_c. At other stations, the z_UML was > 19 m (Table 2, Fig. 3C), and shallower than the z_c. This deep z_UML combined with the lower solar angle later in the season, resulted in relatively low E_UML, although the difference in E_UML between the AP and the PIB and PIP was not statistically significant due to the large variability between stations.

The mean surface Chl a concentration in the AP was similar to that of PIB and thus lower than in the PIP (Table 3). Surface (10 m)
concentrations of DFe were relatively low (Fig. 4E, Table 2), whereas the mean concentrations of NO₃ and PO₄ were similar to those of PIB, although the variability between stations was much greater in the AP.

The phytoplankton community in the AP was dominated by *P. antarctica* at three stations (Sta. 113, 118, and 153) and a mix between diatoms and *P. antarctica* in the two other stations (Sta. 114 and 148, Fig. 6A, B). The *P. antarctica* community at all depths was dominated by the low-Fe pigment signature (Fig. 6E). The mean F_v/F_m of surface phytoplankton in the AP was 0.47, similar to that of PIB (Table 4), but higher than in the PIP, and exhibited considerable variation between stations (Fig. 6F).

The mean F_m in the AP was high at 3.45 g C g⁻¹ Chl a h⁻¹ and similar to that of the PIP (Table 5). However, the mean z^a was 0.086 g C g⁻¹ Chl a h⁻¹ (µmol quanta m⁻² s⁻¹)⁻¹, almost twice as high as in the PIP. These parameters resulted in a mean E_b of 57 µmol quanta m⁻² s⁻¹, which was lower than the PIP, although the difference was not statistically significant due to the low number of stations that were sampled. The mean QY of phytoplankton in the AP was 0.168 mol C mol quanta⁻¹ and thus higher than that of the PIP.

3.2.5. Sea ice stations

A band of sea ice bordered the north of the Pine Island and Amundsen polynyas (Fig. 1). In addition, an area with both sea ice and icebergs extended to the north of the Thwaites Glacier tongue in between the PIP and the AP. The temperature and salinity of surface waters at sea ice stations were lower than elsewhere (Table 2, Figs. 2, 4A and B), indicating a clear influence of sea ice melt water. This additional melt water induced stable water columns with a mean z_{UML} of 15.7 m, although three stations on the northern end of the ice showed slightly deeper z_{UML} of > 20 m (Fig. 4C). The z_{UML} was always shallower than the z_{c}, E_{UML} in the sea ice zone was similar to other regions (Table 2), with the positive effects of low K_d offsetting the negative effects of ice cover.

Biomass in the water column in the sea ice region was highly variable, but generally low (< 3.5 µg Chl a L⁻¹) in waters at the northern end of the ice and high at the southern end, near the edge of the polynya (> 5.0 µg Chl a L⁻¹, Fig. 4F). In general, the surface (10 m) concentrations of DFe were moderately low (mean 0.13 nmol L⁻¹), whereas surface concentrations of NO₃ and PO₄ were relatively high (mean 18.80 and 1.27 µmol L⁻¹, respectively) (Fig. 4B, Table 3). In one sea ice station (Sta. 111), NO₃ was drawn down to only 0.73 µmol L⁻¹ (0.75 µmol L⁻¹ after salinity correction).

The phytoplankton community in surface waters of sea ice stations was primarily a mix of *P. antarctica* and diatoms (Table 4, Fig. 6A and B), although green algae and cryptophytes were also present in some ice stations, occasionally making up > 20% of the community (Sta. 5 and 131, Fig. 6C). In general, the contribution of diatoms was higher at the northern end of the region, whereas...
P. antarctica dominated the polynya edges. The exception was station 158, the most western station at the northern ice edge, that was dominated by P. antarctica (Fig. 6A and B). We sampled this station on 14 February when the ice on the western end of the AP was disappearing. This may have allowed northward advection of surface waters from the polynya containing P. antarctica. The Fv/Fm of surface phytoplankton was highly variable in the ice stations, varying between 0.37 and 0.63, the highest value we recorded (Fig. 6F).

Both the Pm (3.13 g C g⁻¹ Chl a h⁻¹) and Zₐ (0.042 g C g⁻¹ Chl a h⁻¹ [µmol quanta m⁻² s⁻¹]⁻¹) showed more variability in the ice stations than in the polynya stations and did not differ significantly from values in either polynya. Similarly, the Eₐ values resembled those in the polynyas (mean 78 µmol quanta m⁻² s⁻¹). The QY was relatively uniform in all stations, with a mean of 0.067 mol C mol quanta⁻¹ (Table 5).

3.3. Depth integrated Chl a and primary production

Phytoplankton standing crop in the upper 200 m of the water column was generally low in the upwelling waters associated with glacier stations and increased northward until reaching a biomass maximum (~700 mg Chl a m⁻²) in the polynyas (Table 6, Fig. 7A). Despite the higher surface Chl a concentrations in the PIP, depth-integrated Chl a was similar to that in PIB and the AP (Table 6, Fig. 7A), since the deeper ZUBML in the PIB and AP resulted in higher Chl a values at depth, thereby offsetting the higher surface Chl a concentrations in the PIP. Depth-integrated...
Table 5

<table>
<thead>
<tr>
<th>n</th>
<th>(P_{n}^{2} (g C g^{-1} \text{Chl} a h^{-1}))</th>
<th>(\pi^{2} (g C g^{-1} \text{Chl} a h^{-1} \text{[mol quanta m}^{-2} \text{s}^{-1}]^{-1}))</th>
<th>(E_{a} (\mu mol \text{quanta m}^{-2} \text{s}^{-1}))</th>
<th>(P_{n}^{2} (g C g^{-1} \text{Chl} a h^{-1}))</th>
<th>(Q_{Y} (\text{mol C mol quanta}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacier</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Pine Island Bay</td>
<td>0</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Pine Island Polynya</td>
<td>6</td>
<td>3.23 (0.50)</td>
<td>0.042 (0.004)</td>
<td>78 (14)</td>
<td>0.03 (0.11)</td>
</tr>
<tr>
<td>Amundsen Polynya</td>
<td>5</td>
<td>1.45 (0.67)</td>
<td>0.086 (0.055)</td>
<td>56 (23)</td>
<td>-0.13 (0.13)</td>
</tr>
<tr>
<td>Sea ice</td>
<td>9</td>
<td>1.13 (0.87)</td>
<td>0.042 (0.012)</td>
<td>78 (21)</td>
<td>-0.25 (0.46)</td>
</tr>
</tbody>
</table>

Table 6

<table>
<thead>
<tr>
<th>n</th>
<th>(\Sigma \text{Chl} a (mg m}^{-2})</th>
<th>(\text{NO}_{3} \text{ uptake (mol m}^{-2})</th>
<th>(\text{N-export (mol m}^{-2})</th>
<th>(\text{New production since December 1st (g C m}^{-2} \text{d}^{-1})</th>
<th>(n)</th>
<th>(\text{Water column productivity (g C m}^{-2} \text{d}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glacier</td>
<td>9</td>
<td>75 (106)</td>
<td>0.13 (0.20)</td>
<td>0.09 (0.15)</td>
<td>0.22 (0.28)</td>
<td>0</td>
</tr>
<tr>
<td>Pine Island Bay</td>
<td>7</td>
<td>412 (202)</td>
<td>1.24 (0.13)</td>
<td>0.90 (0.10)</td>
<td>1.44 (0.24)</td>
<td>10</td>
</tr>
<tr>
<td>Pine Island Polynya</td>
<td>10</td>
<td>560 (207)</td>
<td>1.17 (0.19)</td>
<td>0.74 (0.11)</td>
<td>1.26 (0.22)</td>
<td>6</td>
</tr>
<tr>
<td>Amundsen Polynya</td>
<td>4</td>
<td>328 (253)</td>
<td>1.23 (0.22)</td>
<td>1.07 (0.29)</td>
<td>0.99 (0.10)</td>
<td>5</td>
</tr>
<tr>
<td>Sea ice</td>
<td>12</td>
<td>164 (147)</td>
<td>0.52 (0.31)</td>
<td>0.36 (0.23)</td>
<td>0.47 (0.28)</td>
<td>9</td>
</tr>
</tbody>
</table>

\(\text{d} \) Mean PE parameters from the PIP and AP stations were used to compute the water column productivity in the PIB.

Chl \(a \) in the sea ice zone was lower than in the polynyas, with the highest biomass located at the southern and western ice edge.

Depth-integrated water column primary production, calculated from measured phytoplankton biomass, light distribution, and \(P-E \) relationships (Fig. 7D, Table 6) was higher in the PIP (mean 4.18 g C m\(^{-2} \text{d}^{-1} \)) than in the PIB and AP (mean 2.58 and 2.44 g C m\(^{-2} \text{d}^{-1} \), respectively), due mainly to the high phytoplankton biomass at the surface where ample light was available for photosynthesis. Primary production in the sea ice zone was much more variable than in the polynyas, with rates as high as 4.9 g C m\(^{-2} \text{d}^{-1} \) (Sta. 111) and 2.2 g C m\(^{-2} \text{d}^{-1} \) (Sta. 127), but generally <1.9 g C m\(^{-2} \text{d}^{-1} \).

New production since 1 December (Table 6, Fig. 7C) was very low in most glacier stations, although small \(\text{NO}_{3} \) deficits were apparent in Sta. 17 and 81. In the PIB and PIP the \(\text{NO}_{3} \) deficits were large, resulting in new production rates of 1.44 and 1.26 g C m\(^{-2} \text{d}^{-1} \) since Dec 1, respectively. The \(\text{NO}_{3} \) deficit in the AP was similar to that in the PIB and PIP, which resulted in lower rates of new production, since the AP was sampled later in the season. The similarity in new production between the PIB and PIP contrasts the higher mean water column productivity in the PIB based on \(^{14} \text{C} \)-uptake. This difference may be explained by the different dates of opening of the two polynyas. As shown in Fig. 7F, the PIB was mostly ice-free on 1 December, whereas approximately half of the PIP was still covered with ice, thereby reducing light availability and productivity in the PIP early in the season. During the growing season, higher mean water column productivity rates in the PIP likely made up for the reduction in productivity early in the season.

\(\text{NO}_{3} \) uptake and new production were highly variable in the sea ice zone, exhibiting lower rates than in the polynyas (mean 0.52 mol m\(^{-2} \) and 0.47 g C m\(^{-2} \text{d}^{-1} \), respectively). New production was lowest at stations that were sampled early in the season northeast of the sea ice edge (Sta. 2, 3, and 7). The highest values were measured at the southern ice edge, in stations bordering the PIP (Sta. 11) and AP (Sta. 111, 127; Fig. 7B), resulting in new production rates of 0.88, 0.85 and 0.91 g C m\(^{-2} \text{d}^{-1} \), respectively. \(\text{NO}_{3} \) drawdown at these stations was similar to that in the polynyas.

Estimates of N-export followed the trends in \(\text{NO}_{3} \) deficits (Table 6, Fig. 7E), being very low at the glacier stations (mean 0.09 mol N m\(^{-2} \) and highest in PIB and the AP (mean 0.90 and 1.07 mol N m\(^{-2} \), respectively). It should be noted, however, that the AP was sampled almost two weeks later than the PIB. Surprisingly, N-export in the PIB was lower (mean 0.74 mol N m\(^{-2} \)) than in both PIB and the AP. N-export at the sea ice stations was variable (mean 0.36 mol N m\(^{-2} \)), with the highest values found at stations that were adjacent to the AP and sampled later in the season (Sta. 111 and 127).

4. Discussion

4.1. Impact of glacial Fe input on phytoplankton blooms in the Amundsen Sea

A massive phytoplankton bloom dominated by \(\text{P. antarctica} \) was responsible for high primary productivity in the Amundsen Sea, most notably in the PIB. The mean surface concentrations of Chl \(a \) we observed in the PIP were similar to those observed during exceptionally large phytoplankton blooms in other productive polynya systems such as the Ross Sea (Smith et al., 2006) and approximately two-fold higher than mean surface Chl \(a \) concentrations for the Ross Sea (Smith et al., 2010). The high phytoplankton biomass and productivity resulted in near depletion of \(\text{NO}_{3} \) in surface waters in the PIP and in some sea ice stations, which has only been reported in exceptionally large phytoplankton blooms in the WAP region (Ducklow et al., 2007) and only very rarely in the Ross Sea (Fitzwater et al., 2000). Moreover, the high phytoplankton biomass in surface waters, especially in the PIP, resulted in high levels of water column productivity, exceeding 3 g C m\(^{-2} \text{d}^{-1} \). These values exceeded those measured during peaks in phytoplankton blooms in the WAP of 1.8 g C m\(^{-2} \text{d}^{-1} \) (Vernet et al., 2008) and the Ross Sea 2.1 g C m\(^{-2} \text{d}^{-1} \) (Arrigo et al., 2000, 2000b).

Gerringa et al. (2012) showed that Fe released from the PIG is the main source of DFe for the phytoplankton bloom in both PIB and the PIP. The high concentrations of DFe in meltwater MCDW
from the PIG showed an exponential decline with distance from the PIG, resembling a dilution process from a single source. This distribution was used for lateral DFe flux calculations in surface waters, revealing that the lateral DFe flux from the PIG could satisfy the total calculated Fe demand of the *P. antarctica* bloom at a distance of 150 km, at the southern end of the PIP. Similarly, high concentrations of DFe were observed in waters close to the Dotson and Crosson ice shelves in the AP (Gerringa et al., 2012). The exponential DFe decrease with distance from the glacier was higher in surface waters with phytoplankton than at depth where no phytoplankton was present, reflecting Fe uptake during the developing phytoplankton bloom.

The decrease in DFe in surface waters between PIG and the PIP was mirrored by changes in the relative abundance of *P. antarctica* that were acclimated to high Fe, as determined by their pigment signature. *P. antarctica* with the high Fe pigment signature dominated the phytoplankton community in PIB, which was characterized by its higher DFe concentrations in surface waters. Conversely, *P. antarctica* with a low-Fe pigment signature dominated the PIP where DFe concentrations were lower. Moreover, high-Fe acclimated *P. antarctica* in PIB exhibited markedly elevated values for F_v/F_m that often exceeded 0.5 and approximated those of nutrient-replete *P. antarctica* cultures (Van Leeuwe and Stefels, 2007, Kropuenske et al., 2009, Alderkamp et al., 2012).

Fig. 7. Depth-integrated properties of the Amundsen Sea with the > 50% sea ice concentration shaded in gray. Ice shelves are light blue whereas land is gray. (A) Depth-integrated Chl *a*, (B) NO$_3$ uptake in the upper 100 m, (C) new production in the upper 100 m, (D) water column productivity, (E) N-export out of the upper 100 m, and (F) and ice cover on 1 December 2008. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
In contrast, values of \(F_{v}/F_{m}\) for low-Fe acclimated \(P.\) \(antarctica\) growing in the PIP were lower, consistent with previous observations by Wright et al. (2010). There were no temporal trends in high Fe and low Fe \(P.\) \(antarctica\) signature, nor in phytoplankton \(F_{v}/F_{m}\), in either the PIB or the PIP over the course of our study. This lack of temporal change confirms phytoplankton responded to a constant flux of DFe from the PIG into the PIB and PIP (Gerringa et al., 2012), rather than depletion of the winter stock over the course of the growing season. Unfortunately the more complex hydrography in the AP and areas of sea ice cover make it difficult to discern whether similar relationships between DFe and \(P.\) \(antarctica\) pigment signature existed there.

Interestingly, despite the fact that the PIP was characterized by low DFe concentrations, reduced \(F_{v}/F_{m}\), and dominance by low-Fe acclimated \(P.\) \(antarctica\), the addition of exogenous Fe to these waters during bioassay experiments had no impact on phytoplankton biomass (Mills et al., 2012), suggesting that low Fe concentrations are not limiting phytoplankton growth in the PIP. Therefore, while physiological acclimation of \(P.\) \(antarctica\) to low Fe conditions was apparent in the PIP, DFe concentrations were not low enough to limit the growth of \(P.\) \(antarctica\). Recently, culture studies under Fe-limitation revealed that \(P.\) \(antarctica\) is capable of maintaining high rates of \(P_{n}\) (Alderkamp et al., 2012) that were similar to values measured here in the PIP and higher than those reported for \(P.\) \(antarctica\)-dominated blooms in the Ross Sea (Van Hilst and Smith, 2002; Shields and Smith, 2009). Thus, the photosynthetic architecture of \(P.\) \(antarctica\) seems capable of maintaining high photosynthetic rates under low DFe concentrations. Consequently, while the low-Fe pigment signature of \(P.\) \(antarctica\) is indicative of acclimation to low Fe concentrations (DiTullio et al., 2007; Van Leeuwe and Stefels, 2007; Alderkamp et al., 2012; Mills et al., 2012), it is not indicative of reduced \(P.\) \(antarctica\) growth rates in waters with low Fe concentration and should not be considered a reliable proxy for Fe-limitation of phytoplankton productivity.

The in situ observations of high phytoplankton biomass and productivity corroborate those made by satellite (Arrigo and Van Dijken, 2003; Arrigo et al., 2012). The satellite observations and productivity algorithms showed primary productivity of the 2008–09 season in the Pine Island Polynya exceeded the 13-year annual mean by 38%, whereas the Amundsen Polynya was 16% lower. Several years within the 1997–2010 period showed a similarly high or higher annual productivity, thus, whereas 2008–09 was a productive year, it was not exceptionally high. The high phytoplankton biomass and water column productivity rates we observed in the Amundsen Sea confirmed the high net productivity, however, new production rates based on NO\(_3\) removal in the PIB, PIP, and AP were only approximately half of what was reported in a high productivity year for the Ross Sea, and similar to the mean new production over four years (Arrigo et al., 2000; Smith et al., 2006, 2011). One explanation for the relatively low depth-integrated NO\(_3\)-removal associated with the high phytoplankton biomass in the Amundsen Sea may be that the highest Chl a and lowest NO\(_3\) concentrations were largely restricted to the top 10 m of the water column. In contrast, high Chl a concentrations and substantial NO\(_3\) removal were reported down to 40 m depth in the Ross Sea (Arrigo et al., 2000; Fitzwater et al., 2000; Smith et al., 2006), resulting in higher new production integrated over the water column. In addition, the bloom in the Ross Sea usually starts in early November (Arrigo and Van Dijken, 2003; Smith et al., 2006, 2011) and thus much earlier than the blooms in the PIP and AP that start in early December (Arrigo and Van Dijken, 2003; Arrigo et al., 2012). The demise of the blooms in the regions is timed similarly in late February (Arrigo and Van Dijken, 2003), resulting in a shorter bloom duration in the Amundsen Sea when compared to the Ross Sea. However, even on a daily basis starting from 1 November, the daily new production in the Ross Sea in high bloom years was substantially higher than what we measured in the PIB, PIP, and AP (Smith et al., 2006, 2011). Our
estimate of new production assumes no input of new NO$_3$ in the upper water column. Clearly, there was outflow of MCDW with a mean NO$_3$ concentration of 28.34 μmol L$^{-1}$ to the upper water column in several glacier sites, which may have lead to underestimation of biological NO$_3$-removal and new production, especially in the PIB that saw inflow of MCDW from under the PIG.

Remarkably, new production in the PIB was slightly higher than in the PIP, despite reports of northward advection of surface waters from the PIB into the PIP (Hellmer et al., 1998). This advection would bring waters containing a phytoplankton bloom that had already drawn down NO$_3$ from the PIB into the PIP, resulting in an overestimation of NO$_3$ uptake in the PIP. However, the slightly lower NO$_3$ uptake measured in the PIP suggests that the amount of water advecting from the PIB to the PIP is relatively small.

The N-export we estimated in the polynyas resembled the mean over four seasons that was measured in the Ross Sea, and was substantially lower than what was measured in a high bloom year (Smith et al., 2006, 2011), both expressed on a daily basis with an earlier starting date in the Ross Sea, and expressed on an annual basis. The fraction of NO$_3$ uptake that was exported ranged from 32% to 68% in polynya waters of the Amundsen Sea, which was within the range of ratios reported for annual fraction of NO$_3$ uptake in the Ross Sea (Smith et al., 2011). The Ross Sea showed a high degree of interannual variation, both in productivity and export, and also in the coupling between these, when estimated from NO$_3$ or silicate drawdown or derived form sediment traps (Smith et al., 2011). Future studies will provide information on interannual variation in productivity and export in waters of the Amundsen Sea.

4.4. Spatial distributions of *P. antarctica* and diatoms in the Amundsen Sea

Phytoplankton blooms were dominated by *P. antarctica* in the PIB and PIP, whereas pre-(December) and post-bloom (March) polynya communities were reported to be dominated by diatoms or a mix of diatoms and *P. antarctica* in earlier seasons (Fragoso and Smith, 2012). During our study, diatoms and a mix of *P. antarctica* and diatoms were associated with waters that had substantial sea ice cover. A similar pattern of *P. antarctica* dominating polynya blooms and diatoms dominating the marginal ice zone was described previously in the Ross Sea (Arrigo et al., 1999; Smith et al., 2010). Several hypotheses have been put forward to explain this pattern, including (1) increased seeding of the MIZ phytoplankton bloom by diatoms released from melting sea ice (Smith and Nelson, 1986; Leventer, 2003; Arrigo et al., 2000; Mangoni et al., 2009), (2) diatoms outcompeting *P. antarctica* at high Fe concentrations near the MIZ (Sedwick et al., 1997), (3) a superior ability for diatoms to access ligand-bound Fe in areas of sea ice melt, a mechanism put forward in the modeling study of Tagliabue and Arrigo (2005), and (4) *P. antarctica* out-competing diatoms under light conditions with variable light levels mimicking rapid vertical mixing in the upper water column (Arrigo et al., 2003, 2010, Kropuenske et al., 2009, Mills et al., 2010).

Seeding of the water column by sea ice diatoms did not appear to affect phytoplankton community composition in the Amundsen Sea during our study, since *P. antarctica* dominated blooms in both PIB, which exhibited little evidence of sea ice melt, and the PIP, where input of sea ice melt water was substantial. Furthermore, because both diatoms and *P. antarctica* have been observed growing in pack ice (Arrigo et al., 2003; Tison et al., 2010), melting sea ice could have inoculated the upper water column with either taxa. Similarly, spatial differences in Fe concentration are unlikely to have affected the competitive outcome between *P. antarctica* and diatoms, since *P. antarctica* dominated both PIB, where Fe input from the PIG was high, and the PIP, which had much lower rates of Fe input and DFe concentrations in surface waters (Gerringa et al., 2012). In the same way, concentrations and characteristics of Fe-binding dissolved organic ligands differed from the PIB to the PIP (Thur´oczy et al., 2012). The outflowing MCDW from under the PIG contained ligands with a relatively low conditional stability constant (K'). The K' of ligands in the PIB was similar to that of the MCDW, however, in the PIP ligands with a markedly higher K' were measured. Moreover, the concentration of excess ligands that were not bound by DFe increased with distance from the PIG, suggesting that organic material produced during the *P. antarctica* bloom was changing the ligand composition (Thur´oczy et al., 2012). Furthermore, addition of different organic model Fe-binding ligands did not affect the relative abundance of diatoms and *P. antarctica* in bioassay experiments (Mills et al., 2012).

The differences in light conditions associated with spatial differences in upper ocean stratification seem to best explain the distribution of *P. antarctica* and diatoms in the Amundsen Sea, since *P. antarctica* dominated surface waters with a more variable light environment and diatoms dominating regions with less fluctuations in light. In both the PIB and PIP, the z_{UML} was mostly below z_{EUL}, thus, vertical mixing below the euphotic zone created highly variable light levels. Even in the PIP, where the z_{UML} was shallower than in the PIB and in the *P. antarctica* dominated Ross Sea Polynya (Arrigo et al., 1999, Fragoso and Smith, 2012), mixing was below the z_{EUL} due to the high K' resulting from the high phytoplankton biomass. Although we do not know the z_{UML} early in the season during bloom development, z_{UML} was at or below z_{EUL} during the first transect of PIP on 15 January just before the peak of the phytoplankton biomass, as well as during the second transect on 31 January, just before the phytoplankton bloom started to decline. Since the wind speeds were moderate during the NBP 09-01 cruise, wind-driven vertical mixing in the UML resulted in a dynamic irradiance climate where periods of high light when phytoplankton are mixed up to the surface were interchanged with periods in the dark when they are mixed below the z_{EUL}. Culture studies have shown that *P. antarctica* is well adapted to these large fluctuations in irradiance (Kropuenske et al., 2009, Mills et al., 2010), particularly under low Fe conditions (Alderkamp et al., 2012), such as those we observed in the PIP. In contrast, the z_{UML} at sea ice stations dominated by diatoms was always above the z_{EUL}, thus providing a more stable light climate in which diatoms thrive (Kropuenske et al., 2009, Mills et al., 2010). Remarkably, the mean E_{UML} did not differ between sea ice stations and polynya stations, indicating that it was the degree of fluctuation, not the absolute light levels, that controlled *P. antarctica* and diatom distributions.

4.5. Antarctic wide effects of input of glacial DFe on phytoplankton productivity

Many ice shelves on Antarctica are thinning as a result of acceleration of glaciers along the ice sheet margins (Pritchard et al., 2009). These melting glaciers are a significant source of Fe input into coastal polynyas (Raiswell et al., 2008; Gerringa et al., 2012). Because several rapidly thinning glaciers drain into the Amundsen Sea, the phytoplankton response in this region may provide insight about other coastal polynyas in the Antarctic region that are affected by thinning ice sheets, or will be in the future as a consequence of global warming. During the DynaLiFe project, we showed that DFe released from the PIG could sustain the phytoplankton bloom in PIB and the PIP. Ligands likely prevented aggregation of the glacier-derived DFe, and thus aided in keeping the glacier-derived DFe in solution in the upper water column (Thur´oczy et al., 2012). Moreover, bioassay experiments...
with several different organic model Fe-binding ligands showed that ligand-bound DFe was largely accessible to phytoplankton (Mills et al., 2012). This high Fe input resulted in a highly productive Phaeocystis antarctica bloom that significantly reduced surface water pCO2, making the Amundsen Sea polynas a net sink for atmospheric CO2 (Tortell et al., 2012).

The high phytoplankton productivity as a result of glacial input of DFe indicates that melting glaciers have the potential to increase CO2 uptake by phytoplankton and thus act as a small negative feedback to anthropogenic CO2 emissions. Other factors influencing the annual productivity in the polynas were the time of polynya opening and the zUML. If elevated temperatures lead to earlier polynya opening dates, this may increase future productivity of Antarctic polynas by prolonging the phytoplankton growing season. Comparing the zUML in the PIB and the PIP indicated that influence of glacial melt water in the PIB did not lead to stabilization of the water column that is favorable for a phytoplankton bloom to develop. The influence of sea ice melt in the PIP, however, did affect the zUML favorably, resulting in the highest levels of surface biomass and water column productivity.

The phytoplankton blooms in the polynas were dominated by colonial Phaeocystis antarctica. The high biomass levels created a dynamic light regime with mixing below the zELU that was favorable for P. antarctica (Kropuenske et al., 2009; Mills et al., 2010), even though the UML was relatively shallow, especially in the PIP. Since the calculated Fe demands of the P. antarctica bloom in the PIP required the input of glacial DFe to sustain these high biomass levels (Gerringa et al., 2012), the high biomass that resulted in a dynamic light climate in the shallow UML may be viewed as a mechanism by which glacier melt favors P. antarctica over diatoms. The dominance of P. antarctica may further increase the CO2 drawdown when compared to diatom dominated systems, as it was shown in the Ross Sea that P. antarctica has a higher CO2 drawdown per unit P than diatoms (Arrigo et al., 2012). In addition, P. antarctica is not preferentially grazed by the zooplankton and krill (Nejstgaard et al., 2007) that form the link between phytoplankton and upper trophic levels. Thus, P. antarctica-dominated systems are generally believed to result in less carbon being funneled towards higher trophic levels than diatom dominated systems (Schoemann et al., 2005). This may have a negative effect on higher organisms, such as penguins and whales that depend on polynas for their food sources (Arrigo and Van Dijken, 2003; Ainley et al., 2006).

Acknowledgments

We thank the captain and crew of the RVIB Nathaniel B. Palmer as well as Raytheon staff for their support, and cruise leaders Stan Jacobs and Adrian Jenkins and all NBP 0901 participants for their help. Frank Nitsche is acknowledged making Fig. 1. This research was sponsored by the NSF DynaLiFe program (grant ANT-0732535 to KRA) in the framework of the US-IPY program and the Netherlands Arctic Program (NAAP grant 851.20.041 to AGJB).

References

Mackey, M.D., Mackey, D.J., Higgins, H.W., Wright, S.W., 1996. CHEMTAX
Kraay, G.W., Zapata, M., Veldhuis, M.J.W., 1992. Separation of chlorophylls-
Karl, D.M., Christian, J.E., Dore, J.E., Letelier, R.M., 1996. Microbiological oceano-
Johnson, Z., Barber, R.T., 2003. The low-light reduction in the quantum yield of

