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Chapter 1

General Introduction and Thesis Outline

C
ooperation, where one incurs a cost to confer a benefit on another, is regarded

as a fundamental building block of all the life in nature and particularly hu-

man societies. However, it is hard to understand this seemingly altruistic behav-

ior from the perspective of natural selection rule where maximizing one’s benefits

stems from a survival instinct of individual organisms in nature. Evolutionary game

theory analyzes models of rational and selfish individuals acting in their own best

interests, models of competition and cooperation between game players. The com-

plex network theory, one of the big concerns for engineering and computer science

researchers, also pays its attention towards networks that depict the gaming con-

nections of populations. Combining the evolutionary game theory with the com-

plex network theory yields an interdiscipline direction which has received a rapidly

increasing amount of attention in recent years.

Moreover, individual heterogeneity and biological or social diversity are also

well-known phenomena in nature and in social society of humans. It is a main focus

whether and how biodiversity affects the emergence and transmission of strategy,

disease, information, opinion and so on. The potential difficulties brought by indi-

vidual heterogeneity in mathematical modeling, raise important challenges for ex-

isting theoretical models which have only considered simple individuals in games.

However, many more studies concerning with the individual heterogeneity or di-

versity and their possible coexistence, in the framework evolutionary game theory,

are expected in the near future. Only in this way could we gain more hints on crack-

ing a series of perplexing puzzles about cooperative phenomena in the real social

society.

In this dissertation, I apply the approaches from mathematics, statistical physics,

computer science and engineering to explore the competing dynamics in the related
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populations involved in social dilemma situations. Herein I present a collection of

evolutionary game theoretic models that help to explore questions related to the ori-

gins and maintenance of cooperative actions in nature. The basic line of this thesis

is addressing the role of individual heterogeneity in promoting cooperation. In this

thesis, I aim to contribute to our understanding about the interplay between the in-

dividual heterogeneity and human cooperation, by the aid of establishing effective

theoretical models in the framework of evolutionary game theory. First, I endow the

players with switching probabilities between strategies, and study whether and (if

the answer is yes) how different switching probabilities affect the strategy evolution

dynamics in the gaming population (Chapters 2 and 3). Second, I investigate the in-

dividual difference on the time scales in strategy updating process, hoping to shed

light on how cooperation can be influenced by the individual diversity or hetero-

geneity (Chapter 4). Third and finally, I investigate the effects of insurance on the

evolution of cooperation in two scenarios (Chapters 5 and 6).

This chapter serves as a brief introduction to the evolutionary problem of coop-

erative behaviors among selfish populations, complex networks employed as the

structure of the gaming populations, and our motivation. Finally, I will give an

overview of the aims and contents of this thesis.

1.1 Background and framework

Here, we first introduce some background information and motivation for the re-

search work in this thesis.

• The puzzle of altruism (cooperation)

In biology, altruism can be defined as an individual performing an action which

is harmful or at a cost to itself (e.g., pleasure and quality of life, time, probability

of survival or reproduction), but benefits, either directly or indirectly, another third-

party individual, without the expectation of reciprocity or compensation for that

action (Moran 1962, Hamilton 1963, Axelrod 1984, Mukherji et al. 1996, Axelrod and
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Dion 1988). In this sense, cooperation is deemed as the process where groups of

organisms work or act altogether for the common or mutual benefits of the groups.

It is commonly defined as any adaptation that has evolved, at least in part, to in-

crease the reproductive success of the actor’s social partners (Gardner et al. 2009).

For instance, territorial choruses by male lions discourage intruders and then prob-

ably benefit all the contributors in the group (Clutton-Brock 2009a). This process

contrasts with the intragroup competition where agents work against each other for

some selfish reasons. The diversity of taxa that exhibits cooperation is quite large,

ranging from zebra herds to pied babblers to African elephants. Many animal and

plant species cooperate with both members of their own species and with members

of other species.

In spite of the diversity of different contexts in which agents cooperate, researchers

from multi-disciplinary areas incline to focus their studies on situations in which the

benefits of an individual are opposed to the interests of the collective group. Under

this kind of social dilemma situations, cooperative action means a cost for the ac-

tor and benefits others. From an evolutionary perspective, cooperative behavior is

puzzling due to the fact that selfish individuals help others at their own cost or ex-

pense, and hence there is the potential or temptation for exploitation of cooperative

individuals by free riders, or defectors who profit at others’s expense. Theoretical

analysis predicts that rational individuals, who aim to maximize their payoffs or

benefits in games, should behave selfishly in such circumstances. However, cooper-

ative situations are so widespread in real-life situations such as the animal kingdom

and human societies.

How cooperation among non-relatives can persist in the face of cheating and

the cruel rule of ’survival of the fittest’ driven by natural selection, remains a puz-

zling, fascinating and broad-ranging unsolved question in evolutionary biology.

Moreover, this interdisciplinary topic has also obtained plenty of attention, interest

and research across disciplines, i.e. social sciences, behavioral sciences, psychology,

physics, computer science, engineering and so on. Explaining the cooperation evo-

lution is not only an issue of central importance to evolutionary biology but also one

of hot interdisciplinary topics so far, since it is commonplace throughout all levels

of the natural world.

Human societies are founded on cooperation, and psychologists and economists
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have explored what and how personal factors motivate agents to cooperate. It is

plausible that the individual heterogeneity cannot be neglected when studying the

cooperation of real agents in real social societies. And, the details of individual per-

sonal factors are so complicated that needs much more attention in the future study.

These empirical studies complement a large body of theoretical work from evolu-

tionary game theory by proposing some effective mechanisms. However, there still

need much more effort to establish (possibly complicated) mathematical models in-

volving the individual personal factors, also to verify the effectiveness of experi-

mental results in the related works. This is also the focus and motivation of this

thesis, to dig into the complex issues of cooperation that are overwhelming us from

the perspective of individual heterogeneity, by the aid of mathematical analysis and

agent based evolutionary simulations in computer science and engineering.

• Evolutionary game models

As mentioned, altruism refers to a costly behavior that benefits others. How-

ever, mutual cooperation is often found in nature even when selfish behavior is ap-

parently rational for individuals. Thus, social dilemmas are situations in which the

optimal decision of an individual contrasts with the optimal decision for the group.

Why and under what circumstances, presumptively selfish agents cooperate is a

question of longstanding interest to multidisciplinary research (Nash 1950b, Nash

1951, Axelrod 1980, Axelrod and Hamilton 1981, Axelrod 1984, Dawkins 1976, Axel-

rod and Dion 1988, Alexander and Irvine 1987, Colman 2006, Diggle et al. 2007, Doe-

beli et al. 2004, Bendor and Swistak 1995). Game theory is one of the key paradigms

behind many scientific disciplines from biology to behavioral sciences to economics.

Past studies used simple game theory models, such as the classic prisoner’s

dilemma models, to determine decisions made by individuals in cooperative inter-

actions. However, complicated interactions between individuals need more compli-

cated concepts such as the Nash equilibrium (Nash 1950a, Nash 1951, Nash 1950b).

The Nash equilibrium is frequently used in a type of non-cooperative game theory

that assumes an individual’s decision is affected by its knowledge of the strategies of

other individuals. This theory is novel in considering the higher cognitive capabili-
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ties of gaming individuals. The evolutionarily stable strategy (Maynard Smith and

Price 1973) is a refined version of the Nash equilibrium in that it assumes strategies

are heritable and are subject to natural selection. Established by Maynard Smith

and Price (Maynard Smith 1978, Maynard Smith 1979), evolutionary game theory

provides a competent theoretical framework to address the subtleties of coopera-

tion among selfish and unrelated individuals. Moreover, evolutionary game theory

is an interdisciplinary mathematical tool which seems to be able to embody several

relevant features of the problem and, as such, is used in much cooperation-oriented

research. By the aid of evolutionary game theory, vast theoretical or experimen-

tal mechanisms for emergence and maintenance of cooperation in social dilemma

games have been reported thus far (Clutton-Brock 2009b, dos Santos et al. 2011, El-

dakar and Wilson 2008).

The referred social dilemmas are described as the situation where individual

benefits are opposed to that of the group. In investigating the social dilemma prob-

lem, the standard framework utilized is evolutionary game theory together with

its extensions involving evolutionary context. Since in this thesis I will not re-

strict the work to one specific form of social dilemma model, here I list some of

them as follows for reference. In existing studies, the prisoner’s dilemma game

is unrivaled in popularity when it comes to studying the evolution of coopera-

tion through pairwise interactions (Axelrod 1980, André and Day 2007, Nowak and

Sigmund 1989, Andreoni and Varian 1999, Ashlock et al. 1996, Zhang, Chen, Zhang,

Wang and Chu 2010a). The game promises a defector the highest payoff if encoun-

tering a cooperator. Meanwhile, the exploited cooperator is worse than a defector

playing with another defector. In line with the principles of Darwinian’s natural

selection, defection will be the dominating strategy of the population.

Relaxing the inevitability of a social downfall resulted by the well-mixed pris-

oner’s dilemma game is the snowdrift game or hawk-dove games (Ahmed and

Elgazzar 2000). Other interesting games also constitute powerful metaphors to de-

scribe conflicting situations often encountered in natural and social sciences. For

example, trust game (Anderhub et al. 2002), volunteer’s dilemma (Archetti 2009b),

donor-recipient games (Berger 2009), stag hunt dilemmas (Pacheco et al. 2009a,

Pestelacci and Tomassini 2008, Skyrms 2004), predator–prey game (Abbott 2010)

and so on. Whenever collective action of groups of individuals is at stake, N -
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person games are appropriate. Many previous investigations of cooperation have

employed the N -person prisoner’s dilemma games in the form of public goods

game (Andreoni 1995, Archetti 2009a, Barclay 2004, Zhang, Zhang and Chu 2011)

to study the possibility of emergence of cooperation among groups of interacting

agents. Chapter 2, entitled Strategy updating for evolution in interaction networks,

employs the prisoner’s dilemma game and snowdrift game for model setting and an

effective comparison. Chapters 3 and 5 adopt the prisoner’s dilemma game, snow-

drift game and stag hunt game for a systematic study to ask whether the specific

dilemma model affects the evolution dynamics of the populations. Chapter 4 uses

the public goods game, a classical n-person paradigm for recurring game interac-

tions, to investigate the four competing strategies in such settings.

• Competing and coexistence of strategies

Cooperation and defection are the two strategies that are at the heart or core of

each social dilemma. Cooperators make contribution to the collective benefit at a

personal cost or damage, while defectors make no contribution and take advantage

of others’ contributions. Since individual heterogeneity is a common phenomenon

in nature and society, and real agents always face multiple strategy choices in the

competition with others involved in social dilemma situations. This is particulary

true in the context of human cooperation where human decision making is probably

shaped by a wealth of individual factors.

Based on these considerations, aside from these two classical strategies which

indicate obligatory participation, many different strategies (e.g., loner and pun-

ishment) have also been proposed to investigate their potential roles in resolving

the cooperation dilemma problems. Voluntary participation (Hauert et al. 2002b,

Hauert et al. 2002a) allows players to adopt a risk-aversion strategy, named as loner.

A loner refuses to join in an unpromising public enterprise and instead relies on

a small but fixed payoff. Cooperation can also be stabilized by punishment. In

theory and in experiments, punishment has turned out to be a simple but effective

mechanism to prevent cheating. There is now a rich literature on whether and how

various forms of punishment are effective in bringing about cooperation (van den
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Berg et al. 2012, Perc and Szolnoki 2010), peer punishment (Boyd et al. 2003, Hauert

et al. 2007), pool punishment (Szolnoki et al. 2011), and anti-social punishment

(Rand and Nowak 2011). Besides, our previous work proposes another role in game

playing, named as insurance against punishment, enriching the potential strategy

profiles for players (Zhang et al. 2013).

As for the cooperation problem, a major challenge for the involved researchers is

to explain how cooperation is maintained or even dominates in a selfish population,

by the aid of effective mechanisms which help the competition, invasion or domi-

nation of cooperators. However, reality suggests that a typical characteristic for the

real societies and nature is the individual heterogeneity, social diversity and coex-

istence of competing partners. Such a society, from the perspective of evolution, is

a society where the competition and cooperation coexist, and thus is a complicated

system. Even if our genes may instruct us to be selfish, we are not necessarily com-

pelled to obey them all our lives (Dawkins 1976). And importantly, the coexistence,

not only competition, of multiple competing decisions indeed can be observed in

real society and nature. Actually, agents often adopt multiple choices in decision

making due to the internal personality factors or intervention of external factors,

especially when facing the complicated cooperative dilemma situation. It may be

reasonable and meaningful to share or split some attention to the coexistence of

competing roles, when we rack our brains trying to figure out how cooperation can

defeat all the other strategies, and dominate the population finally. This is also the

starting point of my thesis.

Modeling the additional strategy options found in several real-life systems, has

also evolved into a mushrooming avenue of research. Probing into more strate-

gies not only stems from the need to provide new ways of fostering cooperation in

situations constituting social dilemma, but also help us understanding the coexis-

tence of multiple competing strategies or social diversity in nature. Inspired by this

fact, we propose a new strategy named as speculator and comprehensively examine

four kinds of strategies (cooperation, defection, loner, and speculators) in Chapter 4.

These model settings are inspired by the existing insurance behaviors in economic

systems. To fill in the gap between theoretical model and economic behaviors in

real social society, we establish the mathematical model and focus on the evolu-

tion of evolutionary dynamics in this setting. It is remarkable that proposing more
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competing strategies in the gaming populations is still widely open to research and

thus holds promises of exciting new discoveries. Moreover, it is worthy noting that

we also relax the limitation of uniform players in the field of switching probability

(Chapters 2 and 3) and time scales (Chapter 5), to study the competition or coexis-

tence of different players in the games.

•History of cooperation research

One of the first references to animal cooperation was made by Charles Darwin,

who noted it as a potential problem for his natural selection theory (Darwin 1859,

Darwin 1871). He proposed many mechanisms that could help explain why coop-

eration could be favored over selfish behaviors. Nowadays, the mechanisms intro-

duced by Darwin are still at the core stage of research for solving the puzzle of co-

operation evolution. Prominent biologists, such as E.O. Wilson, and W.D. Hamilton,

have also found the evolution of cooperation fascinating because natural selection

favors those who obtains the greatest reproductive success while cooperative behav-

ior often decreases or inhibits the reproductive success of the individual performing

the cooperative action (Clutton-Brock 2009a). Additionally, some species have been

found to perform cooperative behaviors that may even be detrimental or harmful

to their own evolutionary fitness or survival benefits. For example, when a ground

squirrel sounds an alarm call to warn other group members of a nearby coyote, it

attracts the coyote’s attention to itself and meanwhile increases its own risk of be-

ing eaten and death (Sherman 1977). Therefore, cooperation poses a fundamental

puzzle to the traditional theory of natural selection, which rests on the assumption

that individuals selfishly and vehemently compete to survive and maximize their

reproductive successes in nature.

’How did cooperative behavior evolve’ was regarded as one of the top 25 big

questions facing science over the next quarter-century, proposed for celebrating the

journal of SCIENCE’s 125 anniversary in 1995. And, Robert May began his last pres-

idential address to the Royal Society on 30 November 2005 by saying:” The most

important unanswered question in evolutionary biology, and more generally in the

social sciences, is how cooperative behavior evolved and can be maintained in hu-
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man or other animal groups and societies” (Colman 2006). In this sense, cooperation

problem has already been an issue of central importance to many disciplines, includ-

ing the active members of engineering, physics and computer science. More impor-

tantly and meaningfully, achieving a satisfactory understanding of the evolution

of cooperation in social dilemmas is fundamental for elucidating many important

problems in social sciences, such as the sustainability of social diversity, informa-

tion or strategy spreading, public resources consumption, public project provision

and so on.

Since widespread cooperation is crucial for the prosperity of society and is fre-

quently encountered in nature, many studies and new approaches aimed towards

resolving the social dilemma have been spawned. It is worthwhile to highlight

some of them here to acknowledge their contributions, and also since some of them

will be referred in the discussions of this thesis. For example, the kin selection the-

ory focuses on cooperation among individuals that are genetically related. Darwin

recognised that reciprocity may lead to or foster cooperation: when individuals in-

teract with each other repeatedly, a cooperative action may be returned later when

the games proceed. Theories of direct reciprocity thus focus on the selfish incen-

tives for cooperation in bilateral long-term interactions (Hamilton 1964, Clutton-

Brock 2002, Nowak 2006, Ohtsuki and Nowak 2007, Pacheco et al. 2008). The theo-

ries of indirect reciprocity and signalling show how cooperation in larger groups can

emerge when the cooperators can build a reputation (Nowak and Sigmund 2005,

Brandt and Sigmund 2005). Other effective mechanisms or rules see (Gross and

Blasius 2008a, Perc and Szolnoki 2010) for a comprehensive review, and references

therein.

Particularly vibrant in recent years has been the subject of evolutionary games

on complex networks. The ubiquity and importance of complex networks raised

quite naturally the question of how natural selection works on top of different kinds

of network topologies of agents. It is well known that the evolution of cooper-

ative behavior is dependant upon certain environmental conditions. And, in re-

alistic multi-player systems players do not interact with all other players. One

such condition that has been extensively studied is the use of a spatially struc-

tured population (Alonso-Sanz 2009, Amaral et al. 2000, Arapaki 2009, Barabási and

Albert 1999, Zhang et al. 2014). The key concept of spatially structured popula-



10 1. General Introduction and Thesis Outline

tions is: agents are assigned to the vertices of a network, which can be a regular

lattice or has a more complex structure. The edges denote links between players in

terms of game dynamical interactions. Then, agents are constrained to interact only

with their adjacent neighbors to play evolutionary games in which more successful

strategies spread on the system, if a social dilemma is embedded in a richer game

theoretical structure.

The preceding transitions from well-mixed populations to spatial grids and fur-

ther to complex networks, and particularly their success in promoting the evolution

of cooperation, invite further extensions of the theoretical framework. Further, a

variety of studies suggest that coevolution, including migration, is also a relevant

factor to take into account in as much as they may enhance strong altruism (Szabó

and Fáth 2007, Ohtsuki et al. 2006, Zhang, Zhang and Chu 2011). And the evolution

and coevolutiion of dynamics in multi-layer complex networks has added a new

wrinkle to this transatlantic research on cooperation.

Here is a very brief introduction about the complex network and the networked

gaming populations:

• Node: the node is the principle unit of the network. A networks consists of a

number of nodes connected by edges. In a typical setup of spatial evolutionary

games, agents are assigned to the nodes of the network.

• Neighbors: two nodes are said to be neighbors if they are connected by a link

or edge.

• Link: a link is a connection between two nodes in the networks. In the com-

mon setup of spatial evolutionary games, the edges denote links between the

corresponding players in terms of game dynamical interactions.

• Degree: the degree of a node is the number of closest neighbors to which a

node is interacted with. The average degree of the network is the mean of the

individual degrees of all the nodes in the network.

• Dynamics: depending on the context, the word dynamics is used in the lit-

erature to refer to a temporal change of either the state or the topology of a

network. In the common setup of spatial evolutionary games, it denotes the

evolutionary game dynamics occurring on the interactions, being subject to
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the specific strategy updating rules or the introduced coevolution dynamics

between networks and strategies.

The integration of the microscopic patterns of interactions among the agents

composing a large population into the evolutionary setting provides a way out for

cooperation to survive in paradigmatic scenarios. This is also an extremely hot topic

in recent years, and attracts plenty of attention of researchers especially from engi-

neering and computer science. The body of literature devoted to this topic is ex-

tensive, from game dynamics on static networks to evolving complex networks,

from regular lattice network to complex real-world networks. Along this booming

line, many more studies concerning with the individual heterogeneity or diversity

on complex network are expected in the near future. The most often employed

networks are: random regular network (Wormald 1981), lattice network (Nowak

et al. 1994), small-world networks (Watts and Strogatz 1998, Watts 1999, Newman

and Watts 1999), scale-free graphs (Barabási and Albert 1999), evolving networks

(Skyrms and Pemantle 2000) and so on. Based on this consideration, in Chapters 2

and 3 of this thesis, the random regular graph and BA scale-free networks are both

employed for investigating the competing strategies among the structured popula-

tions.

•Dynamics of evolution

A model in evolutionary game theory is made complete by postulating the game

dynamics, i.e., the rules that describe the update of strategies in the population. De-

pending on the actual problem, different kinds of dynamics can be appropriate.

The game dynamics can be continuous or discrete, deterministic or stochastic, and

within these major categories a large number of different rules can be formulated

depending on the situation under investigation. On the macroscopic level, by far

the most studied continuous evolutionary dynamics is the replicator dynamics. It

was originally introduced by Taylor and Jonker (Taylor and Jonker 1978), and it has

exceptional status in the models of biological evolution. On the phenomenological

level the replicator dynamics can be postulated directly by the reasonable assump-
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tion that the per capita growth rate ρ̇i/ρi of a given strategy type is proportional to

the fitness difference (Szabó and Fáth 2007).

ρ̇i

ρi

= fitness of type i - average fitness

The fitness is the individual’s evolutionary success, i.e., in the game theory con-

text the payoff of the game.

A large number of different population-level dynamics are discussed in the game

theory literature. These can be either derived rigorously from microscopic (i.e.,

agent-based) strategy update rules in the large population limit, or they are simply

posited as the starting point of the analysis on the aggregate (population, macro)

level. Many of these share important properties with the replicator dynamics, oth-

ers behave quite differently. An excellent review on the various game dynamics in

(Hofbauer and Sigmund 2003).

Evolutionary game dynamics generally involve how players update their strate-

gies as time evolves. The updating rules are therefore crucial and, until now, most

of them are based on replication and imitation (Nowak and Sigmund 2004, Schlag

1999). The essence of replication rules is that a strategy with better performances

has a higher replication rate. Imitation rules assume that a player can imitate her

opponents’ strategy with a probability when interacting with individuals having

obtained higher payoffs.

One much studied approach to spatial games is based on a more detailed mod-

elling of the networks of interacting players. Considering the simplest case, players

situate at the nodes of a given lattice (Hofbauer and Sigmund 2003). At each of the

(discrete) time steps t, each agent k participates in pairwise interactions with each

of the partners l from some neighborhood N(k). Each game yields a payoff P (k, l),

and player k’s total payoff is determined by P (k) := Σl 6=k∈N(k)P (k, l). Next, players

make strategy updating for larger payoffs through some imitation rule. For exam-

ple, player k compares payoff with all her neighbors l ∈ N(k) and finally adopts the

strategy of the best performer. Again, many variants are possible: in particular, the

set of k’s potential role models could be distinct from N(k), the imitation rule could

be stochastic rather than deterministic, the updating of the strategy could occur at

different times for different players, the neighborhood lattice could evolve in time,
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etc. It is worth noting that Chapter 5 in this thesis proposes multiple time scales in

strategy updating in theoretical game model, aiming to enhance our understanding

of cooperation.

Hence, to apply such update rules, players have to know in general the exact

magnitudes of the payoffs of all her opponents. In Chapters 2 and 3 of this the-

sis, we aim at decreasing the need for specific information by introducing switching

probability endowed with players, and study the corresponding evolution dynam-

ics underlying game theory.

1.2 Related approaches

1.2.1 Infinite populations

For infinite populations, the main analysis tools are the Lotka-Volterra equations.

The competitive Lotka-Volterra equations, proposed by Lotka (Lotka 1922, Lotka

1925) and Volterra (Volterra 1926), are a simple model of the population dynamics

of species competing for some common resource.

Here x represents the number of preys, and y denotes the number of predators.

The Lotka-Volterra equations often takes the following form:

dx

dt
= x(α− βy)

dy

dt
= −y(γ − δx),

where α denotes the birth rate of preys, β represents the effect predators have on the

population of preys, γ represents the death rate of predators, and δ means the the

effect preys have on the population of predators.

1.2.2 Finite populations

It is plausible that the size of populations in real societies and nature are often fi-

nite. Stochastic noise will occur when employing the finite population with the

deterministic dynamics equation, for example the above mentioned Lotka-Volterra

equations. For finite populations, stochastic models often seem more realistic than

deterministic ones. For computer simulations of multi-agent systems, this is the
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only natural approach to model the dynamics. In this case, the stochastic processes

theory is effective in the dynamic analysis of evolutionary games in finite popula-

tions. The most often used examples for stochastic evolutionary game dynamics are

Pairwise comparison process, Moran process and Wright-Fisher process (Traulsen

and Hauert 2009). Here we give a brief introduction about these mentioned process.

• Moran process

Assuming that A and B are the two available strategies in the gaming popula-

tion. we focus on a population of size N , consisting of i A players and N − i B

players. The probability of an A encounters with another A is i/(N − 1), and

the probability of A encounters with a B is (N − i)/(N − 1). For an agent B,

its probability of encountering with an A is i/(N − 1), and the probability of

encountering with another B is (N−i−1)/(N−1). Thus, the expected payoffs

of player A and B are respectively given by

Fi =
a(i− 1) + b(N − i)

N − 1

Gi =
ci + d(N − i− 1)

N − 1
.

In the above equations, Fi and Gi are the expected payoffs of player A and B

when there are i A players in the investigated population. The fitness of agent

A and B under natural selection are respectively described by

fi = 1− β + βFi

gi = 1− β + βGi,

where the constant β is called the intensity of selection since β → ∞ leads to

strong selection where the probability for selecting fitter individual is 1 and

when β ≪ 1, the update reduces to the Moran process under weak selection

(Nowak et al. 2004).

• Pairwise comparison process
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In this kind of dynamics, two agents, a focal individual and a role model, are

sampled randomly from the large population. The focal one imitates the strat-

egy of the role model with probability p, which depends on the corresponding

payoff comparison. If both individuals gain the same payoff, the focal individ-

ual randomizes between the two strategies. One common choice of a nonlin-

ear function of the payoff difference for p is the Fermi function from statistical

mechanisms, given by

p(sx ← sy) =
1

1 + exp[(Px − Py)/ω]
, (1.1)

where the magnitude of ω characterizes the uncertainty related to the strategy

update. Px and Py are the payoffs of agent x and y respectively. For finite

positive values of ω, strategies performing worse may also be adopted based

on unpredictable variations in payoffs or errors in the decision making. For

weak selection ω ≪ 1, the probability p reduces to a linear function of the

payoff difference. For strong selection ω → ∞, this process converges to the

imitation dynamics. In this case, p becomes a step function being positive for

Px < Py and negative for Px > Py .

• Wright-Fisher process

The Wright-Fisher process is also rooted in population genetics. Different from

the selection dynamics in the Moran process, where only one individual repro-

duces at a time, the Wright-Fisher process represents discrete generations. In

each generation, each member of the population with size N produce a large

number of offsprings, proportional to their fitness. From the large offspring

members, a new generation of size N will be sampled at random. In this sit-

uation, the population composition can change or update much faster. The

population could go back to a single ancestor in a single generation. This sug-

gests the fact that the Wright-Fisher process is a more general Markov process.

The main approaches we employed in the thesis are Discrete-time Markov chain,

Stochastic process theory, Pair approximation analysis, Mean-field analysis, and

Monte Carlo simulations. By the aid of them, this thesis mainly focuses on the co-
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existence of competing strategies, and the main factors in evolutionary game theory

such as strategies and time scales, in evolutionary games.

1.3 Scope of this thesis

The objective of this thesis is manifold, it contains:

• the introduction of evolutionary game theory and the cooperative behaviors

in structured populations,

• a new method based on that switching probability of competing strategies

between players in structured populations,

• introduction of the expanding strategy profile in the evolutionary game theory

and

• introduction of diversity of time scales in strategy updating process.

Individual heterogeneity is one of a most often observed phenomenon in realistic

systems. Explaining the competition and coexistence of individual diversity is an

open question. There are several ways how this feature can be built into a model.

Henceforth we present an extensive, systematic study concentrating on the potential

heterogeneity of individual behaviors. The proposed individual differences refer to

strategy decisions, time scales, transfer probabilities of strategies. Depending on the

microscopic details these features can either decrease or increase the frequency of

cooperators in the gaming population, indeed influencing the evolutionary dynamic

outcomes. Nonetheless, the investigation of evolutionary games on these topics is

still widely open to research, and will lead to the exploration of new phenomena

and thus raise a number of interesting questions.

It is worth recalling that some basic information (e.g., payoffs at least), are re-

quired in the strategy updating rules or dynamics. For example, players will imitate

the strategy of those neighboring players (including themselves) who has scored

the highest payoff. However, from the viewpoint of real societies, the traditional

assumption is often unrealistic. Even in simple interactions between two individu-

als A and B, it is not easy to obtain full information of partners’ decision making,

as individuals usually acquire rather limited or even wrong information about the
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gaming partners or other reference objects. Simply stated, the information acqui-

sition ability and results vary among different real social agents. In Chapter 2 we

tackle the problem of payoffs dependency issue in strategy updating, we introduce

a new strategy changing updating rule, an intriguing feature of which is the absence

of related payoff information. More specially, we propose the switching probabil-

ity between competing strategies and employ them for strategy updating, and this

novel approach can be successfully used in various specific gaming models. The

results presented in this chapter have been published in (Zhang, Zhang, Cao and

Weissing 2015)

Chapter 3 further extends the proposed switching probabilities to a more gen-

eral case. Herein strategy switch happens among all the individuals, not only the

restrictive case for the competing strategists (cooperator and defector). Therefore,

we introduce and analyze an alternative way of establishing the strategy renewal

for interacting players. The work may be helpful in reflecting the real phenomenon

in social systems.

The time scales of gaming and strategy updating are also a crucial concept and

feature responsible for the cooperative phenomena. Chapter 4 of this thesis focuses

on the multiple time scales in strategy updating. The corresponding work gives

mathematical evidence that heterogeneity in time scales enriches the evolutionary

dynamics and under simplifying conditions, the possible outcomes can be effec-

tively predicted under suitable situations.

The above three chapters focus on updating rules. We show that details in up-

dating rules, for example the number of neighbours for updating and the multiple

time scales in updating, have significant effects on the evolution of strategies.

In the traditional settings of classical (rational) game theory, players have two

options to choose from which are called cooperation and defection. For instance,

people face frequently the situation of prisoner’s dilemmas in real life when they

have to choose between to be selfish or altruistic, to keep the ethical norms or not, to

work hard or lazy, etc. However, multiple strategy choices resulted in the complex

decision making process are also notable reality in human society that can not be

overlooked. Examples in previous studies include punisher, loner, and so on. Intro-

ducing more strategies combining the individual characteristics, will meaningfully

help our understanding about how altruistic behavior occurs in many naturally oc-
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curring dilemma situations. In Chapter 5 of this thesis, we introduce the insurance

for cooperators into threshold publics goods games. We analyzed the conditions

with different initial states and parameters. We find some scenarios where contribu-

tion to the public pool is promoted. The results presented in this chapter have been

published in (Zhang, Zhang and Cao 2015)

In Chapter 6 of this thesis, we will discuss the possibilities and conditions un-

der which cooperative behavior can subsist in multi-agent models, with multiple

strategies (cooperation, defection, loner and speculation) capable of representing a

remarkably rich variety of decision choices in games. Our aim is to study the com-

petition and coexistence of competing strategies in this productive framework.

1.4 Outline and contributions

This section briefly states the outline of the thesis and the topics of the chapters. The

chapters are organized as follows:

Chapter 1 briefly introduces the background of cooperative dilemma problems

and the gained research results, including the hot topic of cooperation study in

complex-structured populations these years. It is the preliminary for the thesis

work.

Chapter 2 provides a new approach to investigate strategy updating process in

the framework of evolutionary games. In this work for two-strategy evolutionary

games in structured populations, we remove the requirement for explicit informa-

tion about exact payoffs, by encoding the payoffs into the willingness of any player

to switch from her current strategy to the competing one. Moreover, the robustness

of the proposed methods is verified in different types of game models such as the

prisoner’s dilemma game, snowdrift game and stag hunt game.

• Theoretical computations and numerical simulations indicate that the evolu-

tionary dynamics are intrinsically regulated by contact relationships specified

by the network topologies of the populations. More precisely, when each

player plays simultaneously against more than one neighbor, strategies can

easily coexist even when one strategy dominates the other in each base game.

The results further reveal that the frequencies of the coexisting strategies can

be calculated analytically.
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• This work provides a new analysis tool in analyzing the competing dynamics

of different strategies. And the results help us to find a viable escape hatch out

of evolutionary stalemate.

Chapter 3 extends the individual player’s switching probabilities between play-

ers, relaxing the restriction that strategy switch occurs between competing strate-

gies. The critical ingredient that enables us discover new mechanisms for coexis-

tence of strategies based on players’ contact patterns, is exactly each player’s prob-

ability of switching strategies that we have just described.

In previous studies, one of most-often used assumption is that natural selection

acts on individuals at the same time scale, i.e. players renovate their strategies with

the same frequency. Everyday phenomenon reminds us of the variation in learning

rates within populations. Thus, evolutionary game theory may not necessarily be

restricted to uniform time scales associated with the game interaction and strategy

adaption evolution. In Chapter 4 we focus our attention on a more realistic model

where the population update strategies at non-uniform time scales. The basic mes-

sage from results is that heterogeneity in time scales of individuals’ updating will

drastically enrich collective evolutionary dynamics.

• We remove the assumption of uniform time scales by dividing the popula-

tion into fast and slow groups according to the players’ updating frequencies.

We aim to investigate how different strategy compositions of one group influ-

ence the evolutionary outcome of the other’s fixation probabilities. Analytical

analysis and numerical calculations are established to study the evolution dy-

namics of strategies in some typical classes of two-player games (Prisoner’s

dilemma game, snowdrift game and stag-hunt game here).

• Results show that heterogeneity in strategy-update time scales dramatically

affects the dynamics of strategies. We provide a proximation formula of the

fixation probability of mutant types in finite populations and study the evo-

lution outcomes under weak selection. This work shows that heterogeneity in

time scales enriches the evolutionary dynamics and under simplifying condi-

tions, the more complicated possible outcomes can be effectively predicted

in the premise that the population composition and payoff parameters are

known.
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Our previous work found scenarios where speculation either leads to the re-

duction of the basin of attraction of the cooperative equilibrium or even the loss of

stability of this equilibrium, if the insurance costs are lower than the expected fines

on defectors. In Chapter 5 we extend the common binary-strategy combination of

cooperation and defection by adding a third strategy, called insured cooperation,

which corresponds to buying an insurance covering the potential loss resulted from

the unsuccessful public goods game. We analyze the dynamics in such a three strat-

egy system and find that insurance enhances the cooperation.

As an extension of our study proposing speculation strategy (Zhang et al. 2013),

in Chapter 6 we restrict our attention to the the analysis of replicator dynamics com-

peted by four competing strategies: C (cooperators), D (defectors), S (speculators)

and L (loners, i.e. nonparticipants). Our main interest is to probe into effective

mechanisms for cooperation to get supported, when players face multiple decisions

or choices. Moreover, we hope to gain more insight into the competition and coex-

istence of multiple strategies in nature, by the aid of this model settings.

• Results show that the evolutionary dynamic outcomes of the gaming popu-

lation are closely related to the model parameters. Initialized from a three-

strategy state, the system will evolve into the observed domination of some

strategy or a rock-paper-scissors type of cycle, suggesting that the additional

strategic options can radically alter the evolution of cooperation. And, larger

multiplication factor and punishment on defectors can facilitate cooperation

to be a dominant strategy in the absence of speculation. Results suggest that

the option to abstain from the joint enterprise offers an escape from the so-

cial trap, leading to the decline of exploiters and allows the reemergence of

cooperators.

• Moreover, public goods cooperation can also be fostered to be an equilibrium

under moderate values of punishment and cost of insurance in the absence of

loner. Further, cooperation fails to dominate the population in the competition

with speculation and loner strategy, even though in the absence of defection.

And, when the initial state consists of the four strategies, at least one strategy

will go extinction within the evolution.

Finally, Chapter 7 presents a concluding summary of the research and a collec-
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tion of ideas for future work and investigation.





Chapter 2

Crucial Role of Strategy Updating for

Evolution in Interaction Networks

Here, we start the main blocks of this thesis. In the beginning, I want to ask some

questions: what is the essential attribute of competing among different strategies?

Do you think the statement ”we are born selfish” (Dawkins 1976) is right or wrong?

On the other hand, is the statement ”evolution is constructive because of coopera-

tion, and that we might add natural cooperation as a third fundamental principle

of evolution beside mutation and natural selection”(Nowak 2006) right or wrong?

In this chapter, what I want to show is that it is really difficult to out-compete an-

other strategy. In other words, it is easy to get coexistence for different strategies.

Cooperation is important for different individuals, but defective behaviours are also

of importance to be investigated because every strategy is difficult to be eliminated

by other strategies (Zhang, Chen, Zhang, Wang and Chu 2010b, Zhang, Zhang and

Chu 2010).

In this chapter, we start from a simple model with structured populations. We

use complex networks for describing the structures of investigated populations.

Network models are useful tools for studying the dynamics of social interactions

in a structured population. After a round of interactions with the players in their lo-

cal neighbourhood, players update their strategy based on the comparison of their

own payoff with the payoff of one of their neighbours. Here we show that the as-

sumptions made on strategy updating are of crucial importance for the strategy

dynamics. In the first step, we demonstrate that seemingly small deviations from

the standard assumptions on updating have major implications for the evolution-

ary outcome of two cooperation games: cooperation can more easily persist in a

Prisoner’s Dilemma game, while it can go more easily extinct in a Snowdrift game.

To explain these outcomes, we develop a general model for the updating of states
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in a network that allows us to derive conditions for the steady-state coexistence of

states (or strategies). The analysis reveals that coexistence crucially depends on the

number of agents consulted for updating. We conclude that updating rules are as

important for evolution on a network as network structure and the nature of the

interaction.

2.1 Introduction

N
etwork theory has provided important insights into the dynamics of interac-

tions in a structured population. In this framework, population structure is

represented by a network, the nodes of which represent the individual agents while

the links correspond to the possible interactions (Albert and Barabási 2002, Newman

2003, Boccaletti et al. 2006, Lieberman et al. 2005). The agents can be molecules,

individual organisms, or groups of individuals, and the interactions can also be

highly diverse, ranging from chemical reactions among molecules to the exchange

of goods or knowledge among groups (Nowak and May 1992, Santos et al. 2008, Bas-

tolla et al. 2009, Ohtsuki et al. 2006). To fix ideas, we will here focus on the evo-

lution of social interactions among individuals. In this context, network models

typically assume that each agent is endowed with a certain strategy (correspond-

ing to the agent’s “state”) that determines the agent’s behaviour in interactions

with their neighbours in the network and the resulting payoffs. After the interac-

tion phase, agents can update their strategies by comparing their own accumulated

payoffs with the payoff of one of their neighbours (Szabó and Fáth 2007, Perc and

Szolnoki 2010, Gross and Blasius 2008a).

Network models have revealed that network structure plays an important role

for the evolutionary dynamics of behaviour in a social interaction. Take, for exam-

ple, the Prisoner’s Dilemma game (PDG) (Weibull 1995, McNamara and Weissing

2010), where mutual cooperation is favoured to mutual defection by both players.

Yet, cooperation is outcompeted by defection in a well-mixed population, since de-

fection is a dominant strategy. When interactions take place on a network, however,

cooperation can get established, but this strongly depends on the network structure;

cooperation gets easily off the ground in heterogeneous networks (e.g., scale-free

networks), while it will not easily evolve in homogeneous networks (e.g. random-
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regular networks) (Santos and Pacheco 2005, Santos et al. 2006). In a Snowdrift game

(SDG), another prototype example for the evolution of cooperation, the coexistence

of cooperation and defection is expected in a well-mixed population, while network

models predict the fixation of either cooperation or defection under a wide range

of conditions (Axelrod 1984, Roca et al. 2009, Doebeli and Hauert 2005, Hauert and

Doebeli 2004, Ramazi and Cao 2014).

Until now, the discussion on evolutionary games on networks has mainly fo-

cused on network structure and the nature of the game (Claussen and Traulsen 2008,

Melbinger et al. 2010, Ohtsuki, Nowak and Pacheco 2007, Pacheco et al. 2006, Roca

et al. 2006a, Riehl and Cao 2014, Zhang, Zhang, Chu and Perc 2011, Riehl and

Cao 2015). Here we will scrutinize the role of strategy updating.

Instead of investigating the influences of cognitive processes or incomplete infor-

mation on strategy dynamics in large populations, we introduce individual player’s

switching probabilities between competing strategies to investigate how strategies

are being taken in structured populations. In the simplest scenario where two play-

ers interact with each other, say a cooperator and a defector, it is safe to assume that

the cooperator has a larger probability to switch its strategy than that of the defector

because of the advantage of defection over cooperation. In a real society, the proba-

bility that a defector turns into a cooperator is small but not zero. It is difficult to get

the precise values of the two probabilities; however, it is relatively easier to know

which is greater than the other. When a player interacts with more than one players,

the problem of how she adjusts her strategy becomes complicated. In this study, we

provide a framework to investigate the evolution of how players in large structured

populations choose from two competing strategies after repeatedly playing games

with their neighbors. The critical ingredient that enables us discover new mecha-

nisms for coexistence of strategies based on players’ contact patterns is exactly the

introduction of each player’s probability of switching strategies that we have just

described.

2.2 Basic model

For simplicity, we consider games with two pure strategies, like the PDG or the

SDG. At each point in time, an agent employs one of the two strategies. The payoff
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obtained by an agent using strategy i in an interaction with an agent using strategy

j is given by mij , where M = (mij) is the 2 × 2 payoff matrix characterizing the

game. For example, the payoff matrices of a PDG and an SDG are given by

M
P DG

=

(

b − c −c

b 0

)

, M
SDG

=

(

b− c
2 b− c

b 0

)

, (2.1)

where b and c (b > c) indicate the benefits and costs of cooperation, respectively.

Typically, strategy updating is modelled as follows (Szabó and Fáth 2007, Perc

and Szolnoki 2010, Gross and Blasius 2008a): an agent having used strategy A and

accumulated payoff π
A

in the previous interactions randomly selects another agent

from her neighbourhood; if that agent happens to have used the alternative strategy

B and accumulated payoff π
B

, then the focal agent will switch from A to B with a

probability u
A→B

that reflects the payoff difference π
B
− π

A
. This probability may,

for example, be given by the Fermi function

u
A→B

=
(

1 + e−β(π
B
−π

A
)
)−1

. (2.2)

In the above equation, β controls the intensity of selection.

2.3 Evolutionary dynamic results

The red curves in Figure 1 show the evolution of cooperation in the PDG and the

SDG for b = 1 and a spectrum of c-values for this updating rule. The results confirm

that cooperation in a PDG can evolve in a scale-free network (for c < 0.1) but not in

a random-regular network, and that cooperation in the SDG will spread to fixation

more easily in a scale-free network (for c < 0.2) than in a random-regular network

(for c < 0.6). The other curves in Figure 2.1 illustrate what happens if the strategy

updating is not based on the consultation of one other agent, but on the consultation

of two or more other agents. In these cases, a focal agent compares her payoff with

that of m other agents and switches from A to B whenever any of these comparisons

would result in such a switch in the standard updating scenario (m = 1) considered

above.

Figure 2.1 clearly shows that such a change in strategy updating has a major

effect on the evolutionary outcome. Now cooperation in the PDG can also get off
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the ground in a random-regular network (m = 2: c < 0.2; m = 4: c < 0.9; m = 10: all

c). Most strikingly, for larger values of m, fixation for either cooperation or defection

gives rise to the stable coexistence of these strategies. Moreover, for large values of

m, the evolutionary outcome is relatively independent of the type of interaction

(i.e. PDG versus SDG) and the structure of the network (i.e. random-regular versus

scale-free).

We also considered still another updating rule: agents interact sequentially with

their neighbours (in random sequence) and update their strategy as above, but now

updating takes place after each individual interaction. In other words, the switching

probability is given by Eq. (2.2), but now the payoffs of the A- and the B-players are

not accumulated over several interactions, but given by π
A

= m
AB

and π
B

= m
BA

.

In other words, the two switching probabilities (u
A→B

and u
B→A

) only depend on

the payoff matrix of a specific game. In addition, we can investigate the evolution-

ary dynamics of strategies in a more general scenario where the values of the two

switching probabilities are given without a payoff matrix although we know that the

switching probabilities are essentially determined by the payoff matrix. Many sim-

ulations for a large variety of payoff matrices M have revealed that - when m = 1,

irrespective of the structure of the network - the evolutionary outcome is only de-

pendent on the sign of m12 −m21: if m12 > m21, strategy 1 will spread to fixation;

if m12 < m21, strategy 2 will spread to fixation; and both strategies will coexist at

equal frequencies if m12 = m21. Hence, coexistence is very unlikely. But again, we

arrive at the conclusion that the evolutionary outcome is more strongly affected by

the updating rule than by the nature of the interaction (which is crucially dependent

on the payoff parameters m12 and m21) or the structure of the network. Next, we

describe in detail this general model and the results from computer simulations and

analytical approaches.
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Figure 2.1: Equilibrium fraction of cooperators in the Prisoner’s Dilemma game (PDG) and

the Snowdrift game (SDG) as a function of the costs c of cooperation for four values of m,

the number of agents consulted for strategy updating. Left panels: PDG; right panels: SDG;

upper panels: random-regular network with degree 10; lower panel: Barabási-Albert scale-

free network with average degree 10. The benefit of cooperation was kept constant at b = 1.

In our simulations on scale-free networks, if a player’s degree was smaller than m, she chose

all of her neighours for consultation.
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Figure 2.2: (a) A single updating when two different individuals encounter each other. Strat-

egy A (blue) has a probability uA→B to switch to B (red), while B switches to A with prob-

ability uB→A. (b) Diagrams illustrating an updating event in a network scenario where each

player chooses m of her neighbours randomly for updating. Each arrow specifies a proba-

bilistic switching because it is formed by different strategies. Dot lines indicate neighbours

which are not selected at the current time step.

To explain the results mentioned above, we now take a more mathematical ap-

proach that is applicable beyond the context of evolutionary games. This approach

is based on the two transition probabilities u
A→B

and u
B→A

, which are viewed as

given model parameters that do not necessarily reflect a fitness comparison. As

above, u
A→B

denotes the probability that an agent using strategy A will switch to

the alternative strategy B when this agent happens to consult a B-player. Fig. 2.2(a)

shows the setup for the case m = 1 where a single updating takes place between two

players with different strategies. Fig. 2.2(b) represents a network scenario in which

the focal player chooses m neighbours for updating. In this specific case, m = 4 and

three of the four chosen neighbours maintain different strategies. If p
Ω

denotes the

probability that a neighbour of agent i uses strategy A, we can now calculate the

probabilities U i
A→B

and U i
B→A

with which, after consulting m neighbours, agent i



30 2. Crucial Role of Strategy Updating for Evolution in Interaction Networks

would switch from A to B or from B to A, respectively:















1− U i
A→B

=
(

1− u
A→B

(1 − pΩi
)
)m

1− U i
B→A

=
(

1− u
B→A

pΩi

)m
.

(2.3)

For example, u
B→A

pΩi
is the probability that agent i, when having played B, is

consulting an A-playing neighbour that induces agent i to switch to A; 1− u
B→A

pΩi

is the probability that any given neighbour does not induce agent i to switch when

having played B, and
(

1− u
B→A

pΩi

)m
is the probability that none of m consulted

neighbours will induce player i to switch to A. By definition, the latter probability

corresponds to 1− U i
B→A

.

We can now derive a recurrence equation for the probability pi(t) that a given

agent i will employ strategy A at time t:

pi(t + 1) = pi(t)[1 − U i
A→B(t)] + [1− pi(t)]U

i
B→A(t). (2.4)

2.3.1. THEOREM. Under the dynamics of (2.4), it holds that














A will persist if u
B→A

>
1−(1−u

A→B
)m

m
;

B will persist if u
A→B

>
1−(1−u

B→A
)m

m
.

(2.5)

Proof : The first term on the right-hand side of Eq. (2.4) corresponds to the joint

probability of having played A in the previous time step and not having switched

to B, while the second term corresponds to the probability of having played B at

time t but having switched to A. An equilibrium pi(t + 1) = pi(t) = p̂i of (2.4) is

characterized by

p̂i · Û i
A→B

= (1− p̂i) · Û i
B→A

. (2.6)

For a homogeneous network, such as a random-regular network, it is plausible

to assume that the probability to use strategy A will converge to the same value

p̂i = p̂Ωi
= p̂i for all i. Inserting Eq. (2.3) in Eq. (2.6) yields an implicit equation for p̂:

p̂i · [1− (1− u
A→B

(1− p̂))
m

]

= (1− p̂) · [1− (1− u
B→A

p̂)m] . (2.7)
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When u
B→A

→ u∗
B→A

, the probability that a player i adopts strategy A is p̂i,

where 0 < p̂i ≪ 1. Assume that after a long time evolution, p̂i ≈ p̂ ≈ p̂Ωi
, then after

substituting this into Eq. (2.6), and neglecting the high-order terms in p̂i, we get

mp̂u∗
B→A

= p̂− p̂(1− u
A→B

)m. (2.8)

For fixed values of u
A→B

and m, we have

u∗
B→A

=
1− (1 − u

A→B
)m

m
. (2.9)

Similarly, strategy B will persist for a given value of u
B→A

whenever u
A→B

is

larger than a threshold value u∗
A→B

, which can be obtained from Eq. (2.6) by taking

the limit p̂→ 1. The result is:















A will persist if u
B→A

>
1−(1−u

A→B
)m

m
;

B will persist if u
A→B

>
1−(1−u

B→A
)m

m
.

�

For m = 1, this immediately implies that equilibrium coexistence of both strate-

gies (i.e. 0 < p̂ < 1) is possible if, and only if, u
A→B

= u
B→A

. This explains our

earlier results that strategy updating after each individual interaction will only lead

to the coexistence of the two strategies if m12 = m21. It also implies that in a homo-

geneous network strategy coexistence requires that, at equilibrium, both strategies

have the same payoffs: π
A
(p̂) = π

B
(p̂).

Figure 2.3 illustrates that for m > 1 the coexistence of A and B is easy to achieve.

For two values of u
A→B

, this figure shows the equilibrium frequency p̂ of strategy A

for a spectrum of values u
B→A

and the outcome of simulations that are in excellent

agreement with the equilibrium value predicted by Eq. (2.6). For a given value

of u
A→B

, strategy A will persist in the population whenever u
B→A

is larger than

a certain threshold value u∗
B→A

. This minimum value for p̂ > 0 can be calculated by

taking the limit p̂→ 0 in Eq. (2.6).
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Figure 2.3: Equilibrium frequency of strategy A in a random-regular network of degree 10 for

four values of m, the number of agents consulted for strategy updating. For (a) uA→B = 0.25

and (b) uA→B = 0.75, the analytical predictions based on Eq. (2.6) (solid lines) and the out-

come of simulations (symbols) are shown for a spectrum of values of u
B→A

. Both panels

clearly indicate that a larger value of m favours the equilibrium coexistence of both strate-

gies. In our simulations time is discretized in time steps and in each step players choose to

be an A or a B-player with the probability determined when finishing the previous step. We

start from a configuration in which each player adopts strategy A with a probability chosen

uniformly from the range [0, 1]. In each round, player i updates her strategy and is cor-

respondingly associated with a probability that she is an A-player in the next round. Each

simulation result corresponds to a result of averaging over 103 generations after a transient

period of 104 rounds in 100 independent realizations with the population size 104.

Coexistence of A and B will occur if both conditions of Eq. (2.5) are satisfied.

Figure 2.4 illustrates that simulations in random-regular networks are in excellent

agreement with this prediction and that the coexistence region becomes very large

already for moderate values of m (e.g. m = 4).

Our analytical results do not directly apply to heterogeneous networks, since the

equilibrium value p̂i of the probability to use strategy A will depend on the degree

of player i. As a rule, p̂i will more likely be between 0 and 1 when the degree of

player i is higher. Qualitatively, however, our basic insight that a larger value of

m favours polymorphism for a broad range of values of u
A→B

and u
B→A

also ap-

plies to heterogeneous networks. This is illustrated by Figure 2.5 that indicates for
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a Barabási-Albert scale-free network that the conditions for the coexistence of com-

peting strategies are even less stringent than in a random-regular network. Here,

the critical values of u
B→A

for a given u
A→B

in scale-free networks are smaller than

that in random-regular networks.

To show the validity of the approach here discussed, we have also performed

more computer simulations on different networks for the sake of comparison. To

model the evolutionary dynamics on the described topologies we incorporate a

model in which, at each time step, each node has a probability of strategy A. In

our simulations time is discretized in time steps and each simulation starts with a

random probability Pi ranging in [0, 1]. The simulation runs until a stationary state

for the average frequency of strategy A (fA) of the whole population. Notably, the

network topology employed on top of which the evolutionary game is evolved is

regular ring, thus enabling an efficient comparison of different average degrees k̄.

Our results on ring networks with different u
B→A

, where individuals share ho-

mogeneous interaction degree. From Fig. 2.6-2.8, we can be see that the simulation

results are in accordance with the theoretical analysis, where larger average degrees

are beneficial for the maintenance and diversity of the two strategies. For example,

when k = 100, fA can be close to 0.5 at high u
A→B

no matter the value of u
B→A

.

This result also transfer a clue that interactions play a relatively high impact on the

coexistence of different strategies.

Until now, we have shown that the essential factor is the interaction number

for each player. However, we still believe that the two probabilities which indicate

the shifting rates to each other are also important for describing a specific game.

For example, if we consider a Prisoner’s Dilemma game (PDG), the probability of

defection to cooperation should be much smaller than the opposite. Whereas, in a

Snowdrift game (SDG), the two probabilities should have smaller difference than

that in a PDG. In other words, the two probabilities should not be independent of

each other. Motivated by the above considerations, we now study a very simple

situation where u
B→A

= 1− u
A→B

.
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Figure 2.4: Equilibrium coexistence of strategies A and B as a function of the updating prob-

abilities u
A→B

and u
B→A

for four values of m, the number of agents consulted for strategy

updating: (a) m = 1; (b) m = 2; (c) m = 4; (d) m = 10. Red: fixation of strategy A; blue:

fixation of strategy B; yellow lines: boundaries of coexistence region based on Eq. (2.7); all

other colours: frequency of A (0 < p̂ < 1) resulting from Eq. (2.6).
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Figure 2.5: Equilibrium frequency of strategy A in a Barabási-Albert scale-free network with

average degree 10 for four values of m, the number of agents consulted for strategy updat-

ing. For (a) uA→B = 0.25 and (b) uA→B = 0.75, the outcome of simulations is shown for a

spectrum of values of u
B→A

. As in case of a random-regular network (Fig. 2.3), a larger value

of m favours the equilibrium coexistence of both strategies.
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Figure 2.6: Phase diagram for the interaction model in Ring networks for different

values of u
B→A

and average degree k when values of u
A→B

= 0.1. The networks are

made up of N = 104 nodes. MC results are averages over 100 realizations. Solid

lines corresponds to the theoretical prediction and symbols to MC results.
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Figure 2.7: Phase diagram for the interaction model in Ring networks for different

values of u
B→A

and average degree k when values of u
A→B

= 0.5. The networks are

made up of N = 104 nodes. MC results are averages over 100 realizations. Solid

lines corresponds to the theoretical prediction and symbols to MC results.
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Figure 2.8: Phase diagram for the interaction model in Ring networks for different

values of u
B→A

and average degree k when values of u
A→B

= 0.9. The networks are

made up of N = 104 nodes. MC results are averages over 100 realizations. Solid

lines corresponds to the theoretical prediction and symbols to MC results.
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Here, a big u
B→A

(larger than 0.5) means that strategy A has an advantage over

strategy B, and vice versa. Thus, we get

2p − p(1 − u
B→A

p)m + p(u
B→A

+ (1 − u
B→A

)p)m + (1 − u
B→A

p)m
− 1 = 0 (2.10)

Figure 2.9 presents the results on regular random networks and BA scale-free

networks respectively. In BA scale-free networks, we still suppose that each player

uses all of her neighbours for updating. Still, simulation results are in great agree-

ment with that obtained through theoretical analysis. The results also confirm that it

is easier for achieving coexistence of different strategies when players choose more

neighbours for updating. Different than the results shown in Fig. 2.2, the fractions of

A-players are much larger than 0.5 even when the value of m is large (e.g. m = 10).

The reason is that the two probabilities are correlated. This plays a positive feedback

effect on the dynamics of strategies.
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Figure 2.9: Frequency of A-players for the interaction model in random regular (RR) net-

works (left panel) and BA scale-free (SF) networks (right panel), with uB→A + uA→B = 1.

In RR networks, each player chooses m neighbours for updating while in SF networks, one

chooses all of her neighbours for updating. The settings are the same as in Fig 2.2. Solid lines

correspond to the theoretical prediction and symbols are for simulation results.
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2.4 Conclusion remarks

In conclusion, we have shown that evolution on an interaction network can be as

strongly affected by the strategy updating procedure as by the network structure

and the payoff matrix. In this paper for two-strategy evolutionary games in struc-

tured populations, we follow a different approach, bypassing the requirement for

explicit knowledge of the exact payoffs, by encoding the payoffs into the willing-

ness of any player to switch from her current strategy to the competing one.

Theoretical computations and numerical simulations show that the evolution-

ary dynamics are intrinsically regulated by contact relationships specified by the

network topologies of the populations. We demonstrate that updating rules are of

crucial importance for the steady state distribution of states. On the basis of general

arguments, we show that the coexistence of different states strongly depends on the

number m of agents that determine the updating of a given agent: if m = 1, as typ-

ically assumed, coexistence is difficult to achieve, while coexistence occurs under

mild conditions when m > 1. By means of two cooperation games, we show that

this general insight has important implications for the strategy dynamics of games

on a network. In comparison to earlier models, cooperation can more easily persist

in a Prisoner’s Dilemma game, while it can go more easily extinct in a Snowdrift

game. This implies that strategy updating deserves more attention in empirical and

theoretical studies.

The main conclusion of this chapter is that updating rules are crucial for the

evolution of competing strategies and every strategy is difficult to be eliminated by

other strategies. In other words, it is difficult to say which strategy is better than the

others because even a strategy earns lower payoff, it can spread in the population in

some scenarios.



Chapter 3

An Extended Model for Strategy Updating in

Interaction Networks

In chapter 2, we introduced a model with switching probabilities. In this chapter,

we will extend this model to make it more general. First, let us look again at the

model in Chapter 2. The main idea is that every player can switch when she meets

another player with different strategy. It is quite realistic because it is the case that

players are adopting for looking for better strategies. When an individual finds that

another one is playing a game with a different strategy but with a higher payoff,

she may shift her own strategy. However, if we go further, the assumption that

individuals can switch if and only if they meet players with different strategies is not

realistic because that if a player knows the information of the game, they may choose

a better strategy without the information. Here, we want to extend the model in

Chapter 2 by relaxing the limitation that only different strategies can lead switching.

Players can switch even they meet the same strategies. Although it is an extension

of Chapter 2, you will find that the two chapters are of different essences.

Still, we will explain this work in a typical way in the framework of evolutionary

game theory. Models for evolutionary games have traditionally assumed that play-

ers imitate their successful neighbours by comparison of payoffs. In this chapter for

two-strategy evolutionary games in structured populations, we follow a different

approach, bypassing the requirement for explicit knowledge of the exact payoffs, by

encoding the payoffs into the willingness of any player to switch from her current

strategy to the competing one. Theoretical computations and numerical simulations

show that the evolutionary dynamics are intrinsically regulated by contact relation-

ships specified by the network topologies of the populations. In particular, when

each player plays simultaneously against more than one neighbor, strategies can

easily coexist even when one strategy dominates the other in each base game. The
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results further reveal that the frequencies of the coexisting strategies can be calcu-

lated analytically. This provides new insight into why and how different strategies

coexist in large populations.

3.1 Introduction

D
espite its ubiquity in nature and human societies, the survival of cooperative

behavior among selfish individuals when defection is the most advantageous

strategy is not fully understood (Griffin et al. 2004, Axelrod 1984, West et al. 2007,

Nowak 2006). The study of complex networks has provided new grounds to the

understanding of evolutionary dynamics (Albert and Barabási 2002, Newman 2003,

Boccaletti et al. 2006, Zhang, Zhang, Chu and Chen 2010). The integration of the

microscopic patterns of interactions among players becomes a central topic to study

population dynamics in paradigmatic scenarios. Effects of network topologies, or

equivalently population structures, on the evolutionary processes have been dis-

cussed intensively (Nowak and May 1992, Santos et al. 2008, Bastolla et al. 2009), and

with the development of complex network theory, these effects are gradually unrav-

eled (Szabó and Fáth 2007, Gross and Blasius 2008b, Perc and Szolnoki 2010, Lieber-

man et al. 2005, G. and Ye 2009, Melbinger et al. 2010). In particular, complex net-

work theory has paved the way for exploring many real-world large-scale networks,

and describing and understanding various processes that evolve in typical such net-

works (Santos and Pacheco 2005, Hauert 2006, Roca et al. 2009, Ohtsuki, Nowak and

Pacheco 2007, Pacheco et al. 2006).

Evolutionary game dynamics generally involve how players update their strate-

gies as time evolves. The updating rules are therefore crucial and, until now, most

of them are based on replication and imitation (Nowak and Sigmund 2004, Schlag

1999). The essence of replication rules is that a strategy with better performances

has a higher replication rate. Imitation rules assume that a player can imitate her

opponents’ strategy with some probability when interacting with individuals hav-

ing achieved higher payoffs. Hence, to apply such update rules, players have to

know in general the exact magnitudes of the payoffs of all her opponents. However,

inferring payoffs may not be as easy as it is often assumed: individuals’ bounded ra-

tionality implies limited cognition and decision-making capabilities (Helbing 1996,
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Blume 2003); in addition, computations might be cognitively expensive and thus un-

favorable. Until now, it remains a hotly debated topic on how cognitive processes

with limited information take place in game playing.

In this chapter, instead of investigating the influences of cognitive processes or

incomplete information on strategy dynamics in large populations, we introduce

individual player’s switching probabilities between competing strategies to investi-

gate how strategies are being taken in structured populations. In the simplest sce-

nario where two players interact with each other, say a cooperator and a defector, it

is safe to assume that the cooperator has a larger probability to switch its strategy

than that of the defector because of the advantage of defection over cooperation. In

a real society, the probability that a defector turns into a cooperator is small but not

zero. It is difficult to get the precise values of the two probabilities; however, it is

relatively easier to know which is greater than the other. When a player interacts

with more than one players, the problem of how she adjusts her strategy becomes

complicated. In this study, we provide a framework to investigate the evolution of

how players in large structured populations choose from two competing strategies

after repeatedly playing games with their neighbors. The critical ingredient that en-

ables us discover new mechanisms for coexistence of strategies based on players’

contact patterns is exactly the introduction of each player’s probability of switching

strategies that we have just described.

3.2 Set-up of basic model

Consider a network of N (N ≫ 1) players, labeled by 1, . . . , N , each of whom has

two candidate strategies A and B to play against one another. They actually play

with mixed strategies. We thus use pi to denote the probability that player i chooses

strategy A, and obviously she plays strategy B with probability 1− pi.

Different from classical game descriptions, we encode the payoffs associated

with a game between two players into the willingness of a player to shift her current

strategy to the other one after interacting with her opponent; more specifically, we

denote by u
B→A|A the willingness that a B-player shifts her strategy from B to A

right after she encounters an A-player, and correspondingly u
A→B|B the willingness

that an A-player adopts strategy B after playing with a B-player. Similarly, u
A→B|A
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denotes the probability that an agent using strategy A will switch to the alternative

strategy B when this agent happens to consult an A-player. u
B→A|B denotes the

probability that an agent using strategy B will switch to the alternative strategy A

when this agent happens to consult a B-player.

The network topology determines completely who meets whom, and we use

the N -by-N adjacency matrix (aij)N×N to describe the players’ interaction pattern,

where aij = 1 if and only if players i and j may play against each other in the net-

work and aij = 0 otherwise. Hence, the adjacency matrix of a network is symmetric,

e.g. aij = aji.

Following standard setups for evolutionary games in structured populations,

players interact as time evolves and Pi changes with time. It is the goal of this paper

to study in this N -player network, whether the competing strategies A and B may

coexist in the long run; in addition, if, to the contrary of intuition, the answer to this

question is yes, how they coexist. Towards this end, we first look into the discrete-

time model for the evolution of the probability that any player i plays with strategy

A

Pi(t + 1) = Pi(t)[1− U i
A→B(t)] + [1− Pi(t)]U

i
B→A(t), (3.1)

where U i
A→B(t) is the tendency that player i’s strategy switch to B if she is an A-

player before the current game round and similarly U i
B→A(t) is the tendency that

player i’s strategy switch to A if she is a B-player before the current game round.

The above equation assumes that the update rule is a Markov process with no mem-

ory. Then for all i = 1, . . . , N , U i
A→B(t) and U i

B→A(t) are crucial factors. The above

assumptions are general enough to incorporate a great variety of possible game sce-

narios. This equation is similar with Eq. (2.4) in chapter 2. The main idea in the

two equations are same. That is each player may shift her strategy when she meets

other players. However, we know that how to calculate the switching probabilities

plays an essential role in the two equations. We will find that the two equations are

essentially different because they show different evolutionary dynamics.

The generalized version, at the steady state reads as

Pi = Pi[1 − U
i
A→B ] + [1 − Pi]U

i
B→A, (3.2)



3.3. Evolutionary dynamic results 43

3.3 Evolutionary dynamic results

In what follows, we concentrate on a specific model on how the games in each round

take place. We consider the situation where each player chooses m of her near-

est neighbors randomly for updating after each game round. Fig. 3.1(a) shows the

setup for a single updating event between two players with identical or different

strategies. We extend our previous work by considering that players can change

her strategy even when she encounters a neighbor with same strategy with her at

the current time step. Fig. 3.1(b) represents a network scenario in which the focal

player choose more neighbours for updating. In this specific case, she chooses four

neighbours including three of them maintain different strategies. In general, we get

the switching probabilities for a specific player i are

U i
A→B = 1−

m
∑

k=0

(

m

k

)

P k
Ωi

(1 − PΩi
)m−k(1− U

A→B |A)k(1− U
A→B|B)m−k, (3.3)

U i
B→A

= 1−
m
∑

k=0

(

m

k

)

P k
Ωi

(1− PΩi
)m−k(1− U

B→A|A)k(1− U
B→A|B)m−k. (3.4)

Here, PΩi
(t) is the density of A-players in i’s neighbourhood at time t.

(

m

k

)

repre-

sents a binomial coefficient when k ≤ m and is defined as zero when k > m. From

the above equations, we get

U i
A→B = 1− [PΩi

(1− U
A→B|A) + (1− PΩi

)(1− U
A→B|B)]m

= 1− [1− U
A→B|B + PΩi

(U
A→B |B − U

A→B |A)]m, (3.5)

U i
B→A = 1− [PΩi

(1− U
B→A|A) + (1− PΩi

)(1− U
B→A|B)]m

= 1− [1− U
B→A|B + PΩi

(U
B→A|B − U

B→A|A)]m. (3.6)

We assume that after a long enough evolution, the system converges to an equilib-

rium state where we have

p̂i = p̂i(1− U i
A→B) + (1− p̂i)U i

B→A. (3.7)
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It always has the solutions p̂i = 0 or 1, ∀i = 1, ..., N , which indicates that only one

strategy survives in the whole population. Here, we assume that neighbours with

identical or different strategies can both induce a player to switch her strategy. This

means that if p̂i = 1 for every i, we have U i
A→B = 0 because there is no B-players in

the population. Similarly, when p̂i = 0 for every i, one gets U i
B→A = 0.A u A � B / B Bu B 	 A / A

( a ) AA u A � B / A u A � B / AB u B � A / B Bu B $ A / B A
A A AAB B BB( b )

Figure 3.1: (a) A single updating when two different individuals encounter each

other, the two agents can have identical or different strategies. (b) Diagrams il-

lustrating an probabilistic updating event in a network scenario where each player

chooses some of her neighbours randomly for updating. In this specific case, the

focal player has eight neighbours but she only chooses four of them as updating

references. Valid lines indicate the selected neighbours, and three of them are of

arrows. Each arrow specifies a probabilistic switching even if it is formed by same

strategies. Dot lines indicate neighbours which are not selected at the current time

step.

Let p̂ denote the frequency of A-players in the population at an equilibrium state,

namely p̂ = 1
N

∑N
i=1 p̂i. We assume that at an equilibrium state, the population is

homogenous in probabilities of playing strategy A. It means that 0 < p̂ ≈ p̂i ≈
p̂Ωi
≪ 1. We get

UA→B = 1− [1− U
A→B|B + PΩi

(U
A→B |B − U

A→B |A)]m

= 1− (1− U
A→B |B)m −mp(1− U

A→B |B)m−1(U
A→B|B − U

A→B|A) + O(p)

(3.8)
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UB→A = 1− [1− U
B→A|B + PΩi

(U
B→A|B − U

B→A|A)]m

= 1− (1− U
B→A|B)m −mp(1− U

B→A|B)m−1(U
B→A|B − U

B→A|A) + O(p)

(3.9)

After inserting Eqs. (3.8) and (3.9) into Eq. (3.7), we obtain

p̂[1− (1 − U
A→B

(1− p̂)m)] = (1 − p̂)[1− (1− U
B→A

p̂)m]. (3.10)

Thus,

UB→A − pUB→A = pUA→B. (3.11)

That is

1− (1 − U∗
B→A|B)m −mp(1− U∗

B→A|B)m−1(U∗
B→A|B − U∗

B→A|A)

− p + p(1− U∗
B→A|B)m

= p− p(1− UA→B|B)m (3.12)

From the above equations, we find that it is difficult to get the analytical solutions.

However, we can get the following theorem.

3.3.1. THEOREM. Under the dynamics of (3.1), a player can switch her strategy if and only

if she meets a player with the different strategy, it holds that














A will persist if u
B→A|A

>
1−(1−u

A→B |B)m

m
;

B will persist if u
A→B|B

>
1−(1−u

B→A|A)m

m
.

(3.13)

Proof : If a player only switch when she meets players with the different strategy, it

is the case of uA→B|A = uB→A|B = 0.

When u
B→A|A

→ u∗
B→A|A

, the probability that a player i adopts strategy A is p∗i ,

where 0 < p∗i ≪ 1. Assume that after a long time evolution, p∗i ≈ p∗ ≈ p∗
Ωi

and then

after substituting into Eq. (3.5), and neglecting the high-order terms in p∗i , we get

mp∗u∗
B→A|A

= p∗ − p∗(1− u
A→B|B

)m. (3.14)
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For fixed values of u
A→B|B

and m, we have

u∗
B→A|A =

1− (1− u
A→B |B)m

m
. (3.15)

Symmetrically,

u∗
A→B |B =

1− (1− u
B→A|A)m

m
. (3.16)

�

These results are as the same as our conclusions in Theorem (2.3.1) of chapter

2. One can easily conclude that for a fixed u
A→B|B

, the larger m is, the easier it is

for the two strategies to coexist. In a specific scenario, when players use all of their

neighbours for updating in a homogenous interaction network in which m equals to

the largest eigenvalue of the adjacency matrix, the above results confirm a relation

between the coexistence of the two competing strategies and the spatial structure of

the population.

From the above results, we find that it is easy for the coexistence of the two com-

peting strategies, in the presence of small difference between u
A→B|B

and u
B→A|A

.

Given the value of u
A→B|B

, we know that when u
B→A|A

= u
A→B|B

, the frequency of

A-players is 0.5. How about the changing of this frequency when u
B→A|A

becomes

smaller? For a given u
A→B|B

, it is of utmost importance to look for the critical value

u∗
B→A|A

below which p̂ is always zero and above which p̂ is always positive. This is

because the existence of u∗
B→A|A

clearly indicates that even a strategy is in a disad-

vantaged position in competing with the other, it can still survive in the population.

This is expected to provide new insights into why cooperation can survive in nature

even defection usually earns higher payoffs. In what follows, we calculate u∗
B→A|A.

3.4 Evolutionary dynamics in different game models

Until now, we have shown that one essential factor is the interaction number for

each player. However, we still believe that the two probabilities which indicate

the shifting rates to each other are also important for describing a specific game.

For example, if we consider a Prisoner’s Dilemma game (PDG), the probability of

defection to cooperation should be much smaller than the opposite. Whereas, in a

Snowdrift game (SDG), the two probabilities should have smaller difference than
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that in a PDG. In other words, the two probabilities should not be independent of

each other. Motivated by the above considerations, we now study the results in the

game models: PDG, SDG, and the Stag-Hunt game (SHG).

Employing A to represent strategy C and B is D, the switching probability ma-

trix reads

C D

C

D

(

u
C→D|C u

C→D|D

u
D→C |C u

D→D|D

)

Replaced by

C D

C

D

(

u1 u2

u3 u4

)

For the PDG, the payoff matrix reads

C D

C

D

(

b− c −c

b 0

)

,

In PDGS, we know that playing as a defector can earn higher payoff regardless of

the others’ strategies. So, here u1 > u3,u1 > u4, u2 > u3 and u2 > u4.

For the SDG, the payoff matrix reads

C D

C

D

(

b− c
2 b− c

b 0

)

.

We know that in SDGs, you would better to have the different strategy from your

opponent. So, here we have u1 > u2, u1 > u3, u4 > u2 and u4 > u3.

For the SHG, the payoff matrix reads

C D

C

D

(

b 0

b− c b− c
2

)

.

In SHGs, a player can get higher payoff when she choose the same strategy with

her opponent. So, here, the relations between the four switching probabilities are

u2 > u1, u2 > u4, u3 > u1 and u3 > u4
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The payoff matrix is

C D

C

D

(

a11 a12

a21 a22

)

.

We use























u1 = 1/(1 + e−β(a21−a11))

u2 = 1/(1 + e−β(a22−a12))

u3 = 1/(1 + e−β(a11−a21))

u4 = 1/(1 + e−β(a12−a22))

, (3.17)

respectively, where β is selection intensity. It should be noted that the above con-

figuration of switching probabilities is not the only one. In different scenarios, we

should use different methods.

In this case, we get

pi(t + 1) = pi(t)[1− U i
C→D(t)] + [1− pi(t)]U

i
D→C(t); (3.18)

U i
C→D

= 1−
m
∑

k=0

(

m

k

)

pk
Ωi

(1− pΩi
)m−k(1− u1)

k(1 − u2)
m−k; (3.19)

U i
D→C

= 1−
m
∑

k=0

(

m

k

)

pk
Ωi

(1− pΩi
)m−k(1− u3)

k(1 − u4)
m−k. (3.20)

In the following, some results by numerical method are shown. First, let us look

at Figure 3.2 which is the results for PDG. As expected, the fraction of cooperation

at steady state is negatively related with the cost c of of cooperation. The selection

intensity β also play an important role. The general conclusion is that larger values

of c and larger values of β inhibit the cooperation. The most important results of

our model is that larger values of m promote the two strategies to get coexistence.
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Figure 3.2: Numerical solutions of the frequency of C-players for the contact-based

model in the PDG. Larger m can better facilitate the coexistence of the two strate-

gies. In RR networks, each player chooses m neighbours for updating while in SF

networks, one chooses all of her neighbours for updating. Moreover, larger β can

promote the dominance of D.

Figure 3.2 illustrates the results for SDG. From Fig. 3.2, one can get the same con-

clusion that larger values of m support the coexistence of different strategies. In this

chapter, we focus on the effects of the number of agents consulted for strategy up-

dating and we can safely conclude that larger values of m promote the coexistence

of the competing strategies in PDG, SDG and SHG.
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Figure 3.3: Numerical solutions of the frequency of C-players for the contact-based

model in the SDG. Larger m can better facilitate the coexistence of the two strategies.

m is the number of neighbours selected for updating.
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Figure 3.4: Numerical solutions of the frequency of C-players for the contact-based

model in the SHG. The settings are the same as in Fig 3.2. Solid lines correspond to

the theoretical prediction and symbols are for simulation results.

However, what is the essential difference between the two models in chapters

2 and 3? To answer this question, we should consider how to get the switching

probabilities in the two models. In chapter 2, we need two switching probabilities,

u
A→B

and u
B→A

. The two switching probabilities describe a scenario where each

player can change her strategy if and only if she meets another one with a different

strategy. If we suppose the payoff matrix M should be known by each player, the

difference of M12 and M21 play a key role on the switching probabilities. In other

words, players do not need to know the whole figure of the game they are playing

with others. They only know the difference between the payoffs according the two

competing strategies. In chapter 3, when we implement our model, we need to find

a method to derive the four probabilities from the payoff matrix. Our way is natural

realistic. In the begging, we should consider a potential assumption that a player

should know the whole payoff matrix of the game. That is why a player wants to

switch even when she meet another same strategy. For instance, if a player is a

cooperative player and she is playing a PDG with another one, she wants to be a

defector when she knows her opponent is a cooperator. That is rational because that

she wants to earn higher payoff. The potential assumption is that the whole matrix

is known for everyone. That is the essential difference between the two chapters. In

Chapter 2, players do not need the whole landscape of the game. They only need

the payoff difference between the two different strategies. To be specific, they only

need the information of the difference of M12 and M21 of the matrix M . However, in
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Chapter 3, players need to know the whole payoff matrix because they can change

their strategies for a higher payoff. They should know that whether they can get a

higher payoff if they switch. In a nutshell, in Chapter 2, a player switches because

she does not want earn lower payoff than her opponent while in Chapter 3, a player

switches because she wants to earn a higher payoff than before. It is not easy to say

which one is more realistic but the most important conclusion is that the number of

agents consulted for strategy updating plays a key role on coexistence of competing

strategies.

In the above results, the shifting rates are given by the given payoff matrix, now

let us consider the effects of shifting rates without considering the payoff matrix. In

fact, we do not know the exact values of the four switching probabilities, however

we know the relative differences among them. To be specific, in a PDG, the proba-

bility that a cooperator switch to a defector should be larger than the opposite. Here,

we can make some simple assumptions of the four switching probabilities and see

what will happen.

One can easily conclude that for fixed values of the four probabilities, the larger

m is, the easier it is for the two strategies to coexist. The differences of cooperation

levels in the three typical game models depend on the specific implementations.
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Figure 3.5: Numerical solutions of the frequency of C-players for the contact-based model in

the PDG. u1 > u3, u4, u2 > u3, u4. Larger m can better facilitate the coexistence of the two

strategies. The horizontal axis means u1 = u2, while the vertical axis means u3 = u4. In RR

networks, each player chooses m neighbours for updating while in SF networks, one chooses

all of her neighbours for updating. Moreover, larger β can promote the dominance of D.
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Figure 3.6: Numerical solutions of the frequency of C-players for the contact-based

model in the SDG. u1 > u2, u3, u4 > u2, u3. Here, the horizontal axis means u1, while

the vertical axis means u4. u2 = u3 = 0. Solid lines correspond to the theoretical

results where u
C→D|C = u

D→C |D. Larger m can better facilitate the coexistence of the

two strategies. m is the number of neighbours selected for updating.
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Figure 3.7: Numerical solutions of the frequency of C-players for the contact-based

model in the SHG. u2 > u1, u4, u3 > u1, u4. Here, the horizontal axis means u2,

while the vertical axis means u3. u1 = u4 = 0. The settings are the same as in Fig 3.2.

Solid lines correspond to the theoretical prediction and symbols are for simulation

results.

3.5 Conclusion remarks

In a nutshell, in this chapter we have shifted our attention from the general strategy

updating rules, where players need to know their neighbors’ exact payoff informa-

tion, to novel contact-based strategy dynamics. We have used the players’ switching

probabilities as a key step to establish the frequencies of strategies in the long run

through both theoretical analysis and numerical computations.

We use two different ways to generate the switching probabilities. In the begin-

ning, we derive switching probabilities from payoff matrices, and then we provide

some assumptions on the switching probabilities for specific game models. Our re-

sults confirm that the evolutionary outcome is intrinsically related to the number

of neighbours randomly selected for updating and the relationship of the switch-

ing probabilities between competing strategies. When each player chooses only one
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neighbour for updating, the simple comparison between the two switching proba-

bilities decides the complete dominance of a single winning strategy. In sharp com-

parison, when each player chooses more neighbours simultaneously in each round,

the two strategies can easily coexist with predictable frequency proportions.

Our results have disclosed new explanations in idealized models about the sur-

vival of dominated strategies in structured populations and may motivate new threads

in studying strategy evolutions in animal groups, social communities and large-

scale complex networks in general.

Moreover, we should emphasize that the two models in chapters 2 and 3 are

essentially different. The motivation of the two contact-based models is that the

incomplete information in games. Models for evolutionary games always assume

that players can get all information from their neighbours. That means you know

the payoff matrix and the payoffs and strategies of your neighbours. If the players

can not get complete information, how do they update? There are two scenarios: if

a players meets another player with a different strategy (chapter 2), she may imitate

her or if she knows the strategy of a opponent, she may change her own strategy

(chapter 3). The two models need different information and in fact they depend on

different parts of the payoff matrix when we want to derive switching probabilities

from payoff matrices.





Chapter 4

Strategy Updating with Multiple Time Scales

in Evolutionary Games

This chapter investigate the roles of diversity of time scales in the evolution of pub-

lic goods games. When applying evolutionary game theory to the analysis of evolu-

tionary dynamics of large populations, a standard assumption is that natural selec-

tion acts on individuals in the same time scale, e.g. players use the same frequency

to update their strategies. In this study, we remove this restricting assumption by

dividing the population into fast and slow groups according to the players’ strat-

egy updating frequencies, and investigate how different strategy compositions of

one group influence the evolutionary outcome of the other’s fixation probabilities.

Analytical analysis and numerical calculations are performed to study the evolu-

tionary dynamics of strategies in typical classes of two-player games (Prisoner’s

Dilemma game, Snowdrift game and Stag-hunt game). We show that heterogeneity

in strategy-update time scales leads to dramatic changes in the dynamics of strate-

gies. We give an approximation formula for the fixation probability of mutant types

in finite populations and study the outcome of evolution under weak selection. We

find that heterogeneity in time scales enriches the evolutionary dynamics and under

simplifying conditions, the more complicated possible outcomes can be surprisingly

effectively predicted when knowing the population composition and payoff param-

eters.

4.1 Introduction

H
ow cooperation among non-relatives can persist in the face of cheating remains

a fundamental, profound and broad-ranging unsolved question in evolution-



58 4. Strategy Updating with Multiple Time Scales in Evolutionary Games

ary biology (Hardin 1968, Axelrod 1984, Heckathorn 1996). Evolutionary game the-

ory is the mathematical framework that has provided the deepest insight into this

issue (Grim 1995, Gintis 2000, Doebeli and Hauert 2005). Several approaches have

been used in the analysis of strategy evolution and one popular approach is the in-

tegration of the microscopic patterns of interactions among individuals into the evo-

lutionary setting (West et al. 2007, Nowak 2006). Furthermore, coevolution of inter-

action patterns and cooperative behavior has also been identified as a key factor that

may enhance or hinder altruism (Henry et al. 2011, Perc and Szolnoki 2010, Gross

and Blasius 2008b). In spite of exciting progresses that have been reported in the

past, there are still situations of great practical relevance that remain less explored,

and one of them is the role played by time scales when individuals interact and

update their strategies.

Time scales may be associated to different temporal dynamics in evolutionary

games. The most important two are how often the players interact and how frequent

they update their strategies (Sánchez and Cuesta 2005, Iñiguez et al. 2011, Chowd-

hury et al. 2003, Roca et al. 2006b, Rong et al. 2010, Wu et al. 2009). In fact, the major-

ity of the literature does not distinguish the two that much and tend to discuss them

at the same time by assuming that each round of interaction is always followed by a

round of updating, in which individuals can change their current strategy according

to different rules.

In this study, motivated by the fact that individuals may have different capabil-

ities to update their strategy frequently (Bastolla et al. 2005, Claussen and Traulsen

2008, Frank and Sarkar 2010, Lehman and Tilman 2000, Perc and Szolnoki 2008),

we focus on the heterogeneity in how often an individual updates its strategy after

repeatedly interacting with the peers. Our goal is thus to understand better how

updating frequency may affect strategic competition and thereby promote or inhibit

altruistic behaviors. As a first cut, we assume the overall population can be divided

into two groups, and the individuals in one update faster than those in the other.

When the updating dynamics of the fast and slow groups can be completely de-

coupled, we give closed-form approximations for the fixation probabilities of the

groups and such predictions are validated by simulations for Prisoner’s dilemma,

snowdrift and stag-hunt games. Further analysis are carried out for populations

under weak selection as well. All the theoretical computation and simulation re-
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sults reveal that heterogeneity in strategy-update time scales indeed leads to much

richer evolutionary outcomes. The different strategy composition of one group al-

ways influences the evolution of the other group; the extent to which the influence

is exerted depends on the game payoffs and the relative sizes of the groups.

The main body of this chapter is organized as follows. Section 4.2 introduces the

basic game model and analyzes the evolutionary dynamics of the strategies under

different updating time scales. Section 4.3 discusses the implications of the analyt-

ical results for the three typical types of two-player games. Section 4.4 investigates

the model under weak selection. Finally, we make concluding remarks.

4.2 Evolutionary dynamics with different strategy-update

frequences

4.2.1 Setup of the evolutionary dynamics

Consider a finite well-mixed population of N individuals that are playing a two-

player game, where each player can make an option from two strategies, A (e.g.

cooperation) and B (e.g. defection). An A-player interacting with another A-player

receives the payoff a, and otherwise when interacting with a B-player, obtains b.

Similarly, a B-player receives c when playing with an A-player and d with another

B-players. The payoffs are summarized in the following payoff matrix

(

A B

A a b

B c d

)

. (4.1)

The game is played round after round, and we use πA(t) and πB(t), t = 0, 1, 2, . . .,

to denote the average payoffs of A and B players in round t respectively. Now and

then at the end of a game round, an individual is chosen randomly to update its

strategy. To be more concrete, when just finishing round t, the chosen updating in-

dividual chooses randomly another individual from the population to compare their

strategies; if the strategies are the same, the updating individual keeps its strategy

and otherwise if the strategies are different, say the updating individual plays A
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and its chosen comparing individual plays B, the updating individual switches its

strategy according to the probability given by the Fermi function

p(t) =
1

1 + e−ω(πB(t)−πA(t))
, (4.2)

where the constant ω is called the intensity of selection since ω → ∞ leads to strong

selection where the probability for selecting fitter individual is 1 and when ω ≪ 1,

the update reduces to the Moran process under weak selection (Nowak et al. 2004).

Obviously, one only needs to swap the positions of πA and πB on the righthand

side of (2) to compute p(t) if at t the updating individual plays B and its comparing

individual plays A.

It is the aim of this chapter to study how the players’ strategy-updating frequen-

cies affect the evolutionary dynamics of the overall population. Towards this end,

we assume that the whole population consists of two sub-populations and an up-

dating individual only chooses a comparing individual from its own group: one is

called the fast group since every round one individual is chosen randomly from this

group to update, and the other is called the slow group since a member from this

group is chosen to update every s ≥ 1 rounds. Therefore, when s = 1, the overall

population is homogeneous in the strategy-update frequencies and when s → ∞
the update processes of the fast and slow groups are completely decoupled. We call

s the time scale of the strategy updating actions and thus when s > 1, the overall

population is heterogeneous in the time scales of individuals’ updates. To keep the

analysis tractable and emphasize the most relevant features of the results, we focus

on investigating analytically the case when s → ∞; in the supplementary material

of this paper, we show through simulations that when s takes other values, the main

conclusions of the chapter still hold. Here, s→∞means that the two groups are de-

coupled in strategy updating, however players have influences on payoffs of other

in the other group.

4.2.2 Analytical analysis for fixation probabilities

We first compute explicitly the average payoffs πA and πB . Consider the situation

when in the current round there are M fast individuals, or equivalently N−M slow
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ones, in the population. Let j be the number of A-players in the fast group, and i be

that in the slow group. Then

{

πA = j+i−1
N−1 a + N−j−i

N−1 b,

πB = j+i
N−1c + N−j−i−1

N−1 d.
(4.3)

So for the fast players, in the next round, the number of A-players will change

according to the following probabilities

{

T +
j (t) = j

M
M−j

M
1

1+e−ω(πA−πB) ,

T−
j (t) = j

M
M−j

M
1

1+eω(πA−πB) ,
(4.4)

where T +
j denotes the probability to increase by one and T−

j to decrease by one.

One can check that the sum of T +
j and T−

j is always j
M

M−j
M

, which is exactly the

probability that the updating individual and its comparing individual have different

strategies. The ratio

χj =
T−

j

T +
j

= e−ω(πA−πB) (4.5)

determines the fixation probability φj (Nowak et al. 2004) which in this problem setup

is the probability that all the fast players use A strategy in the end; more precisely

φj =

∑j−1
k=1(

∏k
m=1 χm)

∑M−1
k=1 (

∏k
m=1 χm)

. (4.6)

It follows from Eq. (4.3) that

πA − πB =
2u(j + i)

N − 1
+

2v

N − 1
, (4.7)

where

{

u = a−b−c+d
2

v = −a+bN−dN+d
2 .

(4.8)
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Combining Eqs. (4.5)-(4.7), we obtain

φj =

∑j−1
k=1 e

−ω
N−1 [k(k+2i+1)u+2kv]

∑M−1
k=1 e

−ω
N−1 [k(k+2i+1)u+2kv]

. (4.9)

By applying the computational technique in (Traulsen et al. 2006), it can be shown

that when u 6= 0, the fixation probability is approximated by the following theorem.

4.2.1. THEOREM. Under the above process, it holds that

φj =
Erf(ξj)− Erf(ξ0)

Erf(ξM )− Erf(ξ0)
, (4.10)

where Erf(x)= 2√
π

∫ x

0
e−y2

dy is the Gauss error function (Jeffrey 1979)

ξj =

√

ω

u(N − 1)
[(j + i)u + v] , (4.11)

and that when u = 0, the fixation probability is approximated by

φj =
e

−2ωvj
N−1 − 1

e
−2ωvM

N−1 − 1
. (4.12)

Proof :

πA − πB =
1

N − 1
[(i + j − 1)a + (N − j − i)b− (i + j)c− (N − i− j − 1)d]

=
1

N − 1
[(i + j)(a− b − c + d)− a + Nb−Nd + d]

=
(i + j)

N − 1
(a− b− c + d) +

1

N − 1
(−a + bN − dN + d) (4.13)

We employ u = a−b−c+d
2 and ν = −a+bN−dN+d

2 , thus

πA − πB =
2u(i + j)

N − 1
+

2ν

N − 1
. (4.14)

Because

φj =

∑j−1
k=1(

∏k
m=1 χm)

∑M−1
k=1 (

∏k
m=1 χm)

=

∑j−1
k=1 e−

ω
N−1 [k(k+2i+1)µ+2kν]

∑M−1
k=1 e−

ω
N−1 [k(k+2i+1)µ+2kν]

(4.15)
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and xm = e−ω(πA−πB), we get

φj ≈
∫ j

0
e−

ω
N−1µ(m+i)2−2βmνdm

∫m

0 e−
ω

N−1µ(m+i)2−2βmdm
. (4.16)

By employing β = ω
N−1 ,

∫ j

0

e−
ω

N−1µ(m+i)2−2βmνdm =

∫ j

0

e−βµ(m+i)2−2βmνdm. (4.17)

If µ 6= 0, let t =
√

βµ(m + i), then

1√
βµ

∫

√
βµ(k+i)

√
βµi

e
−t2−2

√

β
µ

νt+2βνi
dt (4.18)

=
e

β
µ ν2 + 2βνi√

βµ

∫

√
βµ(k+i)

√
βµi

e
−(t+

√

β
µ

v)2
dt. (4.19)

By employing y = t +
√

β
µ
v,

∫ j

0

e−
ω

N−1µ(m+i)2−2βmνdm (4.20)

=
e

β
µ ν2 + 2βνi√

βµ

∫

√
βµ[(k+i)µ+ν]

√
βµ(µi+ν)

e−y2

dt (4.21)

=
e

β
µ ν2 + 2βνi√

βµ

(

∫

√
βµ[(k+i)µ+ν]

0

e−y2

dy −
∫

√
βµ(iµ+ν)

0

e−y2

dy

)

. (4.22)

By employing β = ω
N−1 ,

∫ j

0

e−
ω

N−1µ(m+i)2−2βmνdm (4.23)

= Erf

(
√

ω

µ(N − 1)
(k + i)µ + ν

)

− Erf

(
√

ω

µ(N − 1)
iµ + ν

)

. (4.24)

Here,

Erf(x) =
2√
π

∫ x

0

e−y2

dy. (4.25)
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Similarly, we get

∫ k

0

e−
ω

N−1µ(m+i)2−2βmνdm (4.26)

= Erf(εk)− Erf(ε0), (4.27)

where

εn =

√

ω

µ(N − 1)
[(n + i)µ + ν]. (4.28)

Hence,

φj =
Erf(εj)− Erf(ε0)

Erf(εm)− Erf(ε0)
. (4.29)

When µ = 0,

∫ k

0

e−
ω

N−1µ(m+i)2−2βmνdm (4.30)

=

∫ k

0

e−2βmνdm (4.31)

= − 1

2βν
(e−2βmν − 1). (4.32)

That is

φj ≈
e−

2ωνj
N−1 − 1

e−
2ωνm
N−1 − 1

. (4.33)

�

Note that the approximations Eqs. (4.10) and (4.12) are applicable to any intensity

of selection ω and any j ∈ {1, . . . , M − 1}.
Now we turn our attention to the slow players. Because of the assumption that

s → ∞, when a slow player is chosen to update, the strategic choices of the fast

players have already evolved into one of the two absorbing all-A or all-B states.

Therefore, following similar steps of deriving the fixation probabilities for fast play-

ers, we obtain the fixation probabilities for the slow players, namely when u 6= 0,

φj =
Erf(ξj)− Erf(ξ0)

Erf(ξN−M̄ )− Erf(ξ0)
, (4.34)
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where M̄ = 0 if the fast group evolves into the all-B state and M̄ = M otherwise,

Erf(x) is again the Gauss error function and

ξj =

√

ω

u(N − 1)

[

(j + M̄)u + v
]

; (4.35)

when u = 0,

φj =
e

−2ωvj
N−1 − 1

e
−2ωv(N−M)

N−1 − 1
. (4.36)

In view of the fixation probabilities for the fast group (4.10) and (4.12) and for the

slow group (4.34) and (4.36), we can actually write down the fixation probabilities

for the overall population of N individuals of both fast and slow players. Let n

denote the size of the current group of interest, j and i the numbers of A-players

in the current group and the other group respectively, and ξj , u and v the same

as in Eqs. (4.10) and (4.8) respectively. Then the unified expression for the fixation

probabilities is that when u 6= 0,

φj =
Erf(ξj)− Erf(ξ0)

Erf(ξn)− Erf(ξ0)
, (4.37)

and when u = 0,

φj =
e

−2ωvj
N−1 − 1

e
−2ωvn

N−1 − 1
. (4.38)

Note that i takes its value from {0, 1, . . . , N −M} when the current group is the

fast group while i is either 0 or M when the slow group is of interest.

With the calculated fixation probabilities at hand, we are ready to investigate

the evolutionary outcomes for three different types of games in which strategy B

dominates, A and B coexist, or coordination of A and B is preferred.

4.3 Simulation for typical two-player games

From the analytical analysis in the previous section, it is clear that because of the

effect of the time scale, the fixation probabilities depend on not only the initial num-

ber of A-players, but also the relative sizes of the fast and slow groups. In this
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section, to further demonstrate this point and more importantly, to gain insight into

how population-level cooperation is influenced, we carry out simulation studies on

three typical types of two-player games that are classified according to the struc-

tures of the payoff matrix specified in Eq. (1), namely dominance of B (c > a and

d > b), coexistence of A and B (a < c and b > d) and a coordination game (a > c and

b < d). In all the simulations, we take N = 80 and M = 40.

4.3.1 Game with dominating B

Consider the game in which strategy B always dominates, so a B-player always

obtains a higher payoff than an A-player no matter what the fraction of B-players

is in the population. Thus, it must be true that c > a and d > b. A well-known

example is the Prisoner’s Dilemma game (PDG) with c > a > d > b, in which a

defector is always promised with the highest fitness when facing a cooperator, an

exploited cooperator is worse off than a defector playing with another defector, and

thus defection is the unique Nash equilibrium (Schelling 1980). In our simulations,

we take a = 3, b = 1, c = 5, d = 2, and then A corresponds to cooperation and B

defection in a PDG.

We show the results in Fig. 4.1(a) for ω = 0.25 and Fig. 4.1(b) for ω = 0.05, which

are in perfect agreement with the analytical prediction. It is clear that when the

number of A-players in the slow group varies, the fixation probability of A-players

in the fast group changes correspondingly, although the changes are not significant.

So heterogeneity in time scales affects the outcome of the simulated PDG, but not

significantly.

4.3.2 Game with coexisting A and B

Consider the game in which B is the best reply to A (c > a), and at the same time

A is the best reply to B (b > d). A typical example is the Hawk-Dove game or the

Snowdrift game (SDG). For infinite populations, the replicator dynamics predict the

stable coexistence of A and B. For simplicity, we take the payoffs in the SDG to be

a = 3, b = 2, c = 5, d = 1, and then A is to cooperate and B to defect.

Compared with the simulation results for PDG, a substantially different phe-

nomenon takes place for SDG in the evolutionary outcomes that shows the strong
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influence of time scales. Fig. 4.2 shows that more B-players in the slow group lead

to much bigger fixation probabilities of A strategy in the fast group. The reason is

rooted in the fact that the more B-players in the slow group, the higher payoffs of

A-players in the fast group, and hence higher chance for having more A-players.

Again this matches the analytical prediction.

4.3.3 Coordination game

Finally, let us discuss coordination games in which a > c and b < d, and then A is the

best reply to A and at the same time B is the best reply to B. The replicator equation

of such systems exhibit bistability: if the fraction of A-players is sufficiently high

in the beginning, A-players will reach fixation; otherwise, B-players will dominate.

The stronger the intensity of selection, the less likely it is that a single A-player

can take over a B population. Here, we focus on the Stag-Hunt game (SHG) as an

example of a coordination game. We take a = 5, b = 1, c = 3, d = 2 here, where A

presents cooperation and B denotes defection.

The evolutionary outcomes are shown in Fig. 4.3. Again one sees perfect match-

ing between theoretical prediction and simulation. It can be observed that time

scale heterogeneity clearly changes the evolutionary outcomes. For instance, more

A-players in the slow group lead to large increment of A’s fixation probability. The

reason is that the more A-players in the slow group, the higher payoffs of A-players

in the fast group, and thus more intensely the strategy A is promoted. The observa-

tion that increasing the composition of one strategy in the slow group benefits the

evolution of the same strategy in the fast group merits special attention since it is

the opposite of the results in SDG.

Although our analytical results in the previous section and the simulation re-

sults in this section only study the idealized case when s → ∞, in the supplemen-

tary materials we demonstrate that when s takes its values of 1, 2, 5, 10, 50 and 100,

similar conclusions on how the strategy composition of the slow group affects the

evolutionary outcome of the fast group are still applicable. This underscores the

importance of the insight gained from our analytical prediction and in fact, now

one can always predict with confidence whether a strategy in the fast group will be

promoted or inhibited when facing a slow group of different strategy compositions.

One may question, however, whether the conclusions are still applicable for popu-
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lations under weak selection (payoff trivially influences the fitness of individuals)

when w ≪ 1, since then the approximation in our previous calculation becomes

less effective. To address this concern, in the next section, we study the case when

ω ≪ 1.

4.4 Fixation probability under weak selection

4.4.1 Strategy evolution for fast players

Here, we use the fixation probability of neutral mutants (1/M ) as a benchmark to

verify whether the selection favors A replacing B in the subpopulation of fast play-

ers. If φ1 > 1/M , it means the selection favors A replacing B.

4.4.1. THEOREM. If a−b−c+d
3 [α +3(1−α)β]+ (b− d) > 0 holds, the selection in subpop-

ulation of fast players favors A replacing B.

Proof : For ω ≪ 1, our model reduces to the Moran process under weak selection.

Then, we address the weak selection approximation as follows. When ω ≪ 1, we

get

χj =
T−

j

T +
j

≈ 1− ω(πA − πB) (4.39)

which after being substituted to Eq. (4.6) leads to

φ1 ≈
1

1 +
∑M−1

k=1 [1− ω( u
N−1k2 + ( u

N−1 + 2v
N−1 + 2ui

N−1 )k)]

=
1

M
+

ω(M − 1)

6M(N − 1)
[N(a− b− c + d)(3(1 − α)β

+ α) + 3(b− d)N − 2a− b− c + 4d], (4.40)

where α = M/N , β = i/(N−M), u = a−b−c+d
2 and v = −a+b+N−d+N

2 . If a−b−c+d
3 [α+

3(1− α)β] + (b − d) > 0, we get φ1 > 1/M . �

Note that when α = 1, namely the population is homogeneous in their time

scales, the above results agree with those for a variety of Moran processes under

weak selection (Ohtsuki, Bordalo and Nowak 2007).
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4.4.2 Strategy evolution for slow players

After the fast players have evolved into their absorbing states, the slow players start

their evolution processes. We have to carry out our computation for two separate

absorbing states of fast players, all-A and all-B, seperately.

Scenario I: fast players converge to all-A

4.4.2. THEOREM. If (a − b − c + d)(2α + 1) + 3(b − d) > 0 holds, the selection in

subpopulation of slow players favors A replacing B when the fast subpopulation converges

to all-A state.

Proof : Let j be the number of A-players among slow players. Then the payoffs of

strategy A and B for slow players are

{

πA = M+j−1
N−1 a + N−M−j

N−1 b,

πB = M+j
N−1 c + N−M−j−1

N−1 d.
(4.41)

So the probability to have j + 1 or j − 1 A-players in the slow players in the next

game round when having j A-players in the current round are

{

T +
j = j

N−M
N−M−j

M
1

1+e−ω(πA−πB) ,

T−
j = j

N−M
N−M−j

M
1

1+e+ω(πA−πB) .
(4.42)

Similarly,

φj ≈

1 +
∑j

k=1
[1 − ω( u

N−1
k2 + ( u

N−1
+ 2v

N−1
+ 2u

N−1
M)k)]

1 +
∑N−M−1

k=1
[1 − ω( u

N−1
k2 + ( u

N−1
+ 2v

N−1
+ 2u

N−1
M)k)]

=
j

N − M
+

ω(N − M − 1)

6(N − M)(N − 1)
[N(a − b − c + d)

(2α + 1) + (a − b − c + d)j + 3(b − d)N − 3a + 3d], (4.43)

where α, u and v are the same as in Eq. (4.19).

Under weak selection, if strategy A performs better than neutral selection (i.e.

φ1 > 1/(N −M)), the following condition should be satisfied

(a− b− c + d)(2α + 1) + 3(b− d) > 0. (4.44)
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Thus, natural selection favors a single mutant A to eventually replace a population

of B-players. �

Scenario II: fast players converge to all-B

4.4.3. THEOREM. If (a−b−c+d)(1−α)+3(b−d) > 0 holds, the selection in subpopulation

of slow players favors A replacing B when the fast subpopulation converges to all-A state.

Proof : In this case, the payoffs for playing A or B in slow players are

{

πA = j−1
N−1a + N−M−j

N−1 b,

πB = j
N−1c + N−M−j−1

N−1 d.
(4.45)

The fixation probability under weak selection reads

Φj ≈
1 +

∑j−1
k=1[1− ω( u

N−1k2 + ( u
N−1 + 2v

N−1)k)]

1 +
∑N−M−1

k=1 [1− ω( u
N−1k2 + ( u

N−1 + 2v
N−1 )k)]

=
j

N −M
+

ω(N −M − 1)

6(N −M)(N − 1)
[N(a− b− c + d)

(1 − α) + (a− b − c + d)j + 3(b− d)N − 3a + 3d]. (4.46)

Here, α, u and v are the same as in Eq. (4.19).

Under weak selection, strategy A performs better than neutral selection, if

(a− b− c + d)(1− α) + 3(b− d) > 0. (4.47)

In this case, natural selection favors a single mutant A to eventually replace a popu-

lation of B-players. �

So no matter whether the fast players converge to the absorbing state of all-A or

all-B, the evolutionary outcome of the slow players is always affected by the relative

sizes of fast and slow players which is further scaled by the payoffs.

Until now, we have shown that when the two subpopulations are decoupled, the

timescales in updating play a important role for the evolution of strategies. To verify

our theoretical results, we did computer simulations when the two subpopulations

are partly decoupled. Here we show the results when the initial numbers of A-

players are 1 (green lines), 20 (red lines), 39 (blue lines) and the values of s are 1,
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(a) w=0.25

All B−Players in Slow Group
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All A−Players in Slow Group
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(b) w=0.05
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All A−Players in Slow Group

Figure 4.1: Fixation probabilities for the game of dominance of strategy B with differ-

ent selection intensity: (a) ω = 0.25, and (b) ω = 0.05. The payoff parameter values

of Prisoner’s Dilemma game are: a = 3, b = 1, c = 5, d = 2. The following settings

are the same in Figs. 4.2 and 4.3. Computer simulation results (symbols) coincide

perfectly with the approximation results (solid lines). The approximation results are

from equation (4.10). Each simulation result corresponds to the average frequency

of fixation of A-players from 100 independent realizations. Here, the results show

that diversity of time scales on updating has only limited effects on the fixation of

probabilities.

2, 5, 10, 50, 100. Each datum corresponds to the fraction of fixation of strategy A in

100 independent realizations. We find that the results are very similar for different

values of s, so we do not show legends in the following figures. Our simulation

results confirmed that our main conclusions in the main text are valid. The values

of s do not have significant influences on the fixation probabilities. The fixation

probabilities in any real situations are in the range of the two lines corresponding to

all A-players and all B-players. Simulation results:

4.5 Conclusion

The origin of cooperation has been one of the hot spots in evolutionary biology for

decades with natural selection in its kernel. In fact, selection frequencies may vibrate

in a population. Our theoretical model is largely different from previous studies by

introducing individual heterogeneity in their strategy-update time scales. Herein,
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(a) w=0.25

All B−Players in Slow Group
Half are A−Players in Slow Group
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Figure 4.2: Evolutionary outcomes for games with stable coexistence of A and B. (a)

ω = 0.25, and (b) ω = 0.05. The payoff parameter values of Snowdrift game are:

a = 3, b = 2, c = 5, d = 1. Here, the results show that diversity of time scales on

updating has significant effects on the fixation of probabilities. Specifically, more

opposite strategies in the other group promote a strategy to get fixation in its own

group.
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(b) w=0.05
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Figure 4.3: Evolutionary outcomes for coordination games. (a) ω = 0.25, and (b)

ω = 0.05. The payoff parameter values of Stag-hunt game are: a = 5, b = 1, c = 3,

d = 2. Here, the results show that diversity of time scales on updating has significant

effects on the fixation of probabilities. But, unlike the results shown in Fig. 4.2, more

opposite strategies in the other group inhibit a strategy to get fixation in its own

group.

by introducing a crucial parameter s as the ratio between time scales of fast and low

players, we are enabled to provide closed-form approximation for the evolutionary
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Figure 4.4: Simulation results of games with dominance of B.
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Figure 4.5: Simulation results of games with coexistence of A and B .

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Initial number of A−players in the fast group

F
ix

at
io

n 
pr

ob
ab

ili
ty

 o
f S

tr
at

eg
y 

A w=0.25

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1
w=0.05

Initial number of A−players in the fast group

Figure 4.6: Simulation results of coordination games.

outcome of fast and slow groups when s → ∞. One crucial step is that under the

simplifying condition, the fast players always enter their absorbing states before the

slow players start to update. This condition can be easily removed when one is only

interested in simulation study and in fact our simulation results have indicated that

the conclusion in the paper still holds when the fast and slow strategy-updating
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dynamics are coupled.

We have derived a sequence of approximation formulas that determine the fix-

ation probabilities under a range of initial conditions. The difference in time scales

leads to much richer evolutionary dynamics for typical two-player games, which

underlines the importance and generality of our findings. We find that time scale

diversity has different influences on different game models. Specifically, in the Pris-

oner’s dilemma game where only defection is the dominant strategy, the fixation

probabilities of strategies in one group change only slightly when the composition

of strategies of the other group changes. In the snowdrift game which allows for

stable coexistence of cooperators and defectors in well-mixed populations, the cor-

responding changes are much more significant. In the stag-hunt game in which each

strategy is the best reply to itself, the corresponding changes are again significant,

but the promoted strategy is the opposite of that in the snowdrift game. In addition

to the approximation results, we study the evolutionary dynamics with different

time scales under weak selection.

The result reported lends itself to multiple extensions. Up to now we have lim-

ited our study to the situation where only two types of players are considered, while

multiple types are often more common in practical settings. Thus, investigating

what happens in the presence of increasing diversity or even dynamically varying

strategy-update frequencies is an intriguing topic to be studied in the future. Our

model certainly does not explain all aspects of time scales in the context of evolution-

ary game theory and alternative definitions of time scales deserve further attention

to look for plausible explanations for the individual heterogeneity and ultimately

the persistence of cooperation.



Chapter 5

Effects of Insurance in Threshold Public

Goods Games

In the previous mentioned chapters, we have introduced models with switching

probabilities and diversity of time scales in strategy updating process. Our main

motivation is to investigate the individual coexistence is common in nature. Impor-

tantly, the adopted models are general, and not only apply with specific scenarios.

Then, in this chapter and the next chapter, we will introduce some results related to

specific situations related with coexistence of individual diversity.

The occurrence and maintenance of cooperative behaviors in public goods sys-

tems have attracted great research attention across multiple disciplines. A threshold

public goods game requires a minimum amount of contributions to be collected

from a group of individuals for provision to occur. Here we extend the common

binary-strategy combination of cooperation and defection by adding a third strat-

egy, called insured cooperation, which corresponds to buying an insurance covering

the potential loss resulted from the unsuccessful public goods game. Particularly,

only the contributing agents can opt to be insured, which is an effort decreasing

the amount of the potential loss occurring. Theoretical computations suggest that

when agents face the potential aggregate risk in threshold public goods games, more

contributions occur with increasing compensation from insurance. Moreover, per-

mitting the adoption of insurance significantly enhances individual contributions

and facilitates provision, especially when the required threshold is high. This work

also relates the strategy competition outcomes to different allocation rules once the

resulted contributions exceed the threshold point in populations nested within a

dilemma.
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5.1 Introduction

The origin and stability of cooperation is a hot subject in social and behavioural sci-

ences (Axelrod 1984, Axelrod and Dion 1988). A complicated conundrum exists as

defectors have an advantage over cooperators, whenever cooperation is costly and

consequently, defection pays off. Therefore social dilemmas are situations in which

the optimal decision of an individual contrasts with the optimal decision for the

group (Hamilton 1963, Nowak et al. 1996, Sigmund and Nowak 1999). In the inves-

tigation of this plight the most prevailing framework is game theory together with

its extensions involving evolutionary context (Fehr and Fischbacher 2003, Sigmund

et al. 2010a, Conradt 2011, Nowak and Sigmund 2002, Zhang, Chen, Zhang, Wang

and Chu 2010a).

Throughout evolution, crucial human activities like hunting for food, conserv-

ing common forestry or fisheries resources, and warfare, constitute public goods.

In situations like these, each group member gains benefits from the goods, includ-

ing those who pay no cost of providing the goods. This arouses the question of

why characters regularly participate in costly cooperative activities like warfare

and risky hunting. Perhaps one of the most frequently used multiple-agent-two-

strategy models to describe the confusion of how cooperation arises is the public

goods game (PGG) (Brandt et al. 2006, Semmann et al. 2003, Hauert et al. 2002b, San-

tos et al. 2008, Szolnoki and Perc 2010a). It focuses on the gains arising in multi-

person interactive decision situations when probably a part of the population de-

cide to cooperate (Croson and Marks 1998, Marks and Croson 1999, Marks and

Croson 1998, Cadsby and Maynes 1999).

Quite a few solutions or mechanisms have been put forward to explain the per-

plexing problem of cooperation evolution. The kin selection theory focuses on coop-

eration among individuals that are genetically related, whereas theory of direct reci-

procity emphasizes the selfish incentives for cooperation in bilateral long-term in-

teractions (Nowak 2006, Ohtsuki and Nowak 2007, Pacheco et al. 2008). The theories

of indirect reciprocity and signalling indicate how cooperation in larger groups can

emerge when cooperators can build a reputation (Nowak and Sigmund 2005, Brandt

and Sigmund 2005). Besides, punishment also plays a crucial role in the resolution

of cooperative dilemma (Clutton-Brock and Parker 1995, Gurerk et al. 2006, Hauert
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et al. 2007, Sigmund 2007, Gächter et al. 2008). The integration of the microscopic

patterns of interactions among the individuals composing a large population into

the evolutionary setting, affords a way out for cooperators to survive in paradig-

matic scenarios. A common framework is that each node in a graph carries one

player and, edges determine who plays with whom (Barabási and Albert 1999,

Nowak and May 1992, Zhang, Zhang, Xie and Wang 2011, Zhang, Zhang, Xie and

Wang 2010).

Although the public goods game is deemed as one of the most common games

in the study of the cooperation evolution, there are still some social dilemmas for

which a different game would be a more appropriate model. In many cases of a

collective action, the achieving of the group goal depends on the amount of com-

mon goods contributions. It is a common observation that many public goods con-

tributed by collective actions are provided if contributions reach or exceed the re-

quired threshold of contributions; otherwise, no goods is provided (Milinski et al.

2008, Wang et al. 2009, Wu et al. 2013). Thus, a threshold public goods game requires

a minimum amount of contributions to be raised from a group of individuals for

provision to occur (Cadsby et al. 2007, Cadsby et al. 2008, Croson and Marks 2000).

Researchers have examined how several factors, including incomplete information

and identifiability of individual contributions, inhibit or foster successful public

goods provision (Souza et al. 2009, Szolnoki and Perc 2010b, Archetti and Scheuring

2011, Chen, Szolnoki, Perc and Wang 2012, Santos and Pacheco 2011, Chen, Szolnoki

and Perc 2012, Pacheco et al. 2009b, Boza and Számadó 2010).

Our previous work (Zhang et al. 2013) has introduced insurance against pun-

ishment and studied the roles of speculation adopted by defectors in public goods

systems. Along this line, our aim here is to devise a scenario of evolutionary com-

petition between three competing strategies, and study the roles of insurance for

cooperators in the promotion of public cooperation. We are interested in the capac-

ity of agents to contribute and produce the public goods when they are confronted

with ambiguous risks or losses, meanwhile, facing the choice of being insured. In

this threshold public goods model, agents can buy an insurance that sequentially

covers the potential loss. We consider these aspects in an insurance deal, since the

premium should not only be high enough to compensate the insurer for bearing the

individual’s risk, it should at the same time be low enough so that an individual is
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willing to insure her risk for this premium. Besides, if the threshold is not reached,

contributions are not returned to the providers.

We add the insured cooperation as the third strategy to extend the individual

strategy profiles originally consisting of cooperation and defection. These sets of

hypotheses are generated from the motivation of our designing insurance in thresh-

old public goods game. In the first place, everyday experience tells us that agents

differ in personal features, such as the often-observed different economic status, or

consciousness and demand for insurance in real world. When facing some poten-

tial loss, players may show heterogeneity in risk preferences. There is one more

paramount point, cooperators will lose all their contributions when the group con-

tribution falls short of the threshold. Intuitively, it is reasonable that the purchasers

of insurance are cooperators since they are the altruistic contributors of the public

goods activities and bear the risk of losing all their contributions. Therefore it is fair

that they are provided the option of transferring their future loss to some insurance

policy. In doing so, they could get some (part or full) compensation for their altru-

istic behaviors. In other words, the proposed insurance mechanism is provided as

a means for encouraging those contributors and an effort deceasing the size of any

loss occurring. Conversely, defectors can rest easy with no contribution for the gen-

eration of common goods. In this sense, it is meaningful to provide insurance choice

only for contributors to avoid or decrease the unfavorable loss in this game setting.

Finally, it is plausible that the insurance provider may be a profit management, and

it will prefer cooperators over defectors as the object of insurance. The reason is

that success accomplishment of public goods will help the insurance company save

more benefits, otherwise it has to cover the loss for the insurers. Especially, the suc-

cess provision of public goods is closely related to the number of cooperators. In this

new framework, the two-strategy public goods game can be convincingly reframed

as a cooperative dilemma among cooperators, insured cooperators and free riders.

The rest of the chapter proceeds as follows. In section 2 we describe the threshold

public goods games with three strategies in the static context. Next, we present and

discuss the main dynamic outcomes of the system, whereas conclusive remarks are

given in the final section.
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5.2 The model

In a typical threshold public good game (TPGG), each player in a group receives an

endowment and individually decides how much of it to be contributed to a public

goods system. If the group contribution exceeds a certain threshold, then the public

goods is successfully provided and each player receives an equal reward, irrespec-

tive of her strategy. If the threshold is not reached, contributions are not returned to

the players. Rational players intend to selfishly free ride on others’ contributions, as

contributors always benefit others at a cost to their benefits. Therefore, this rationale

leads to social dilemmas and the predictable abandonment of the public goods.

To illustrate, suppose that in a finite population of size N (N > 1), individu-

als are provided with identical endowment c, and each must privately decide how

much (between all and none here) of her endowment to contribute. After multi-

plying the accumulated contributions by r, each individual receives an identical

benefit, if the required threshold T ∗ is reached by the group as a whole. Note that

rc < T ∗ < rcN so that it is impossible for the threshold to be reached based solely

upon the contribution of one player, but it is possible for it to be attained based upon

the contributions of more than one player (Cadsby and Maynes 1999).

As mentioned, when facing with potential loss, some cooperators prefer buying

an insurance covering the possible loss and we call them the insured cooperators.

Other cooperators may disregard this insurance and readily bear the potential loss,

and they will be referred to as (common) cooperators. For the public goods game

played by N players, both of the insured cooperators and common cooperators are

contributors and their numbers are denoted by Ni (insured cooperators) and Nc

(cooperators) respectively. Thus the population is composed of Ni +Nc contributors

and Nd free-riders.

Next, if the threshold is already achieved, how to define the payoff function of

the participants gained from more contributions and provision is a crucial step. For

the sake of generality, herein we consider two types of payoff functions that are

plausible and conform to real situations for the study of cooperation, described in

the following two scenarios respectively.

Scenario I: If the group contribution exceeds the required threshold, all the par-

ticipants will henceforth share the fixed return T ∗/N from the accomplished pub-
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lic goods game. And that is, contributions above the threshold point of provision

are wasted. There exists a set of living examples conforming to this model setting,

such as voting for building a public garden or dam. The neighborhood residents

are asked to individually fill in a questionnaire, or vote, or petition the government

to get the project approved. For example, whether the public project will be ap-

proved and built, depends on the amount of supporters and the required minimum

numbers needed for successful action. The residents might not know how many

signatures are needed to get the project built. In the example above, the project gets

approved only if enough voters achieve the threshold, and excess signatures play a

meaningless role in affecting the results.

Scenario II: If enough contributions are made to reach the stated threshold level

of contributions, contributions above the provision point are not wasted, but result

in further group benefit and thus more contributions are still meaningful. Herein

we assume that the public goods is provided in an amount increasing with the

aggregate level of contributions even though the specified threshold has already

been met. The evenly distributed benefit is further assumed to be of the linear form

rc(Nc +Ni)/N , where more contributors will provide larger benefits to the group. A

large amount of meaningful and visual examples lend support to the above model

setting. The more contributions are raised, the higher probability that a project will

be successfully constructed. Returning to the earlier example, the neighborhood res-

idents decide to build the public dam by voluntary contributions. The rates of suc-

cessful provision and observed efficiency of the project are directly and positively

related to the amount of contributions. Clearly, an effective dam requires a mini-

mum of contributions to resist the invasion of flood. While if the required threshold

is reached, more contributions exceeding the threshold still remain a significant role

for a much more effective dam.

However, real-world dilemmas are typically not models with an obvious or

clearly defined classification, and thus we combine these two scenarios with a vari-

able ω as follows

U = ωT ∗ + (1− ω)rc(Nc + Ni). (5.1)

By changing the parameter ω, our model allows to transverse smoothly from sce-

nario I (i.e. ω = 1) to scenario II (i.e. ω = 0). In between the two extremes, we have
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a mixed situation of these two scenarios in the threshold public goods system.

Further, the payoff to an individual depends only upon her strategy and the

combination of the strategies of her opponents. Each player chooses to contribute

all or nothing. The proposed TPGG with three strategies has identical allocation

rules with the common PGG if the public goods achieves the threshold: each player

receives an equal amount of reward from the successful game, minus her own cost

related to her strategies. As already stressed, the contributors within a TPGG group

are composed by common cooperators (whose number is Nc) and insured coopera-

tors (whose number is Ni). Let us now linger on the game dynamics of the investi-

gated population.

And, we look at the situation the threshold of common goods is attained by

rc(Nc + Ni) ≥ T ∗, (5.2)

where r denotes the amplification effect on the common pool, and T ∗ is the required

threshold for the public goods provision to succeed.

Each player derives exclusively from the contributions provided by cooperators

and insured cooperators, minus her cost to the common pool. For a group of size

N probably consisting of the three characters (i.e. cooperator C, defector D and

insured cooperator I), the payoffs of these three roles are specified as follows:



















Pc = U
N
− c

Pd = U
N

Pi = U
N
− c− λ

. (5.3)

The enhancement factor r > 1 means that if all cooperate, they are better off than if

all defect. For a public goods game to deserve its name, r < N should be satisfied,

where each individual is better off defecting than cooperating. In this game, each

unit of investment is multiplied by r and the resulting goods is distributed among

all participants irrespective of their strategies. The first term in the expression rep-

resents the benefit that the agent obtains from the public goods, while the second

term denotes her cost. For a cooperator, the cost is the investment c to the public

goods. For an insured cooperator, the cost is the contribution c to the common pool

and her payment λ to the insurance. Still, defectors withhold their share and exploit

other players.
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If the contributions are not sufficient to provide the public goods,

rc(Nc + Ni) < T ∗, (5.4)

the contributors lose their contributions and the goods is not provided finally. Thus,

the net payoffs of the three strategies are determined by



















Pc = −c

Pd = 0

Pi = ε− c− λ

. (5.5)

Compared with formula (5.3), each player is better off if the goods is provided than

if it is not. For insured cooperators, they will be compensated by the insurance

against the risk of ‘wasting’ their contributions on this unrealized project. Thus, the

payoff advantages of defectors over insured cooperators depend on the involved

parameters: the cooperative contribution c, the compensation ε (ε > 0) provided by

the insurance, and the insurance cost λ. So, it is difficult to say whether those who

do not contribute are better off than those who do contribute.

For simplicity and without loss of generality, we set the cooperative cost c from

a contributor (either a cooperator or an insured cooperator) to 1. For r > 0, we can

rewrite rc(Nc + Ni) ≥ T ∗ as N − Nd ≥ (T ∗/r), and thus introduce H = ceil[N −
(T ∗/r)]. Notably, this ceiling function of H returns the smallest integer greater than

or equal to N − (T ∗/r). Substituting the function H for T ∗ thus yields a simple

judgment: Nd < H leads to the success provision of the TPGG, and Nd ≥ H means

the failure of the game. In the following study, we employ the threshold value H as

the maximum number of defectors above which public goods game ends in failure.

In this model, the resulting dynamics will be closely related to a variety parameters,

as illustrated in Fig. 5.1 which provides some examples of the proposed TPGG.

5.3 Evolutionary dynamic outcomes

Here we posit a very large, well-mixed population of players. From time to time,

sample groups of N such players are chosen at random and could join in a threshold

public goods game. Notably, the probability that two players in large populations



5.3. Evolutionary dynamic outcomes 83

ever encounter again can be neglected. The probability that there are m defectors

among the N − 1 other agents in the sample population of size N in which a given

player finds herself, is determined by
(

N − 1

m

)

xm
d (1− xd)

N−1−m. (5.6)

This probability is independent of whether the agent is a contributor or a defector.

xd denotes the fraction of defectors in the population. The only determinant in the

well-mixed population is the payoff that the agent herself receives. Consequently,

the expected payoff for a defector in such a group is

Pd =

H−2
∑

m=0

ωT ∗ + (1− ω)r(N − 1−m)

N

(

N − 1

m

)

xm
d (1− xd)N−1−m. (5.7)

The payoff of a cooperator is given by

Pc =

H−1
∑

m=0

[
ωT ∗ + (1 − ω)r(N −m)

N
− 1]

(

N − 1

m

)

xm
d (1− xd)

N−1−m

+

N−1
∑

m=H

(−1)

(

N − 1

m

)

xm
d (1− xd)

N−1−m. (5.8)

The payoff of an insured cooperator will thus be

Pi =
H−1
∑

m=0

[
ωT ∗ + (1 − ω)r(N −m)

N
− 1− λ]

(

N − 1

m

)

xm
d (1 − xd)

N−1−m

+

N−1
∑

m=H

(ε− 1− λ)

(

N − 1

m

)

xm
d (1 − xd)

N−1−m. (5.9)

Further, the advantage of one strategy over another depends on the payoff dif-

ference between them, below we will discuss the strategy competition results in

detail.

Competition between strategy C and I :

5.3.1. THEOREM. there are two interior roots on the edge of ID when φ1(xd,1)+ε−λ−1 >

0 and ε− (λ + 1) < 0, one interior root on the edge of ID when φ1(xd,1) + ε− λ− 1 = 0

and ε − (λ + 1) < 0 or when φ1(xd,1) + ε − λ − 1 > 0 and ε − (λ + 1) > 0, and
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no interior root on the edge of ID when φ1(xd,1) + ε − λ − 1 < 0, where φ1(xd) =
[r(1−ω)−Nε](N−H)

N

∫ 1−xd

0 tN−H−1(1− t)H−1dt+ T∗

N

(

N−1
H−1

)

xH−1
d (1−xd)

N−H and xd,1 =
T∗(H−1)

[r(1−ω)−Nε](N−H)+T∗(N−1) .

Proof :

Pc − Pi = λ− ε

N−1
∑

m=H

(

N − 1

m

)

xm
d (1− xd)N−1−m. (5.10)

Then we get limxd→0(Pc − Pi) ≈ λ > 0, and limxd→1(Pc − Pi) ≈ (λ − ε) < 0.

Competition between strategy I and D:

Pi − Pd = ε− λ− 1 +

H−1
∑

m=0

[
r(1 − ω)

N
− ε]

(

N − 1

m

)

xm
d (1− xd)N−1−m

+
T ∗

N

(

N − 1

H − 1

)

xH−1
d (1− xd)N−H

= ε− λ− 1 +
[r(1 − ω)−Nε](N −H)

N

∫ 1−xd

0

tN−H−1(1− t)H−1dt

+
T ∗

N

(

N − 1

H − 1

)

xH−1
d (1− xd)N−H . (5.11)

By introducing φ1(xd), we can rewrite Eq. (5.11) as

Pi − Pd = ε− λ− 1 + φ1(xd), (5.12)

and hence,

dφ1(xd)

dxd

=
[r(1 − ω)−Nε](N −H)

N

(

N − 1

H − 1

)

[−xH−1
d (1− xd)

N−H−1]

+
T ∗

N

(

N − 1

H − 1

)

[(H − 1)xH−2
d (1− xd)

N−H − (N −H)xH−1
d (1− xd)

N−H−1] (5.13)

Provided that 0 < xd < 1 holds, the above Eq. (5.13) keeps the same sign with

−[r(1 − ω) − Nε](N − H)xd + T ∗(H − 1)(1 − xd) − T ∗(N − H)xd. Resolving the

equation −[r(1−ω)−Nε](N−H)xd +T ∗(H − 1)(1−xd)−T ∗(N −H)xd = 0 yields

xd,1 =
T ∗(H − 1)

[r(1 − ω)−Nε](N −H) + T ∗(N − 1)
. (5.14)

Consequently, both the maximum and minimum values of φ1(xd) exist, since

φ1(xd) is continuous in [0, 1]. Given that dφ1(xd)
dxd

= 0 when xd = xd,1, dφ1(xd)
dxd

> 0

if xd < xd,1 holds, and dφ1(xd)
dxd

< 0 when xd > xd,1, Pi − Pd reaches the maximum
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value at xd,1. Then we can safely get xd,1 = T∗(H−1)
T∗(N−1)−Nε(N−H) at ω = 1, xd,1 =

T∗(H−1)
T∗(N−1)+(r−Nε)(N−H) at ω = 0.

From Eq. (5.11) we get limxd→0(Pi − Pd) ≈ r(1−ω)
N
− λ− 1 < 0, and limxd→1(Pi −

Pd) ≈ ε− (λ + 1).

To sum up, there are two interior roots on the edge of ID when φ1(xd,1) + ε −
λ − 1 > 0 and ε − (λ + 1) < 0, one interior root on the edge of ID when φ1(xd,1) +

ε−λ−1 = 0 and ε− (λ+1) < 0 or when φ1(xd,1)+ ε−λ−1 > 0 and ε− (λ+1) > 0,

and no interior root on the edge of ID when φ1(xd,1) + ε− λ− 1 < 0. �

Competition between strategy C and D:

5.3.2. THEOREM. there are two interior roots on the edge of CD when φ2(xd,2) > 1, one

interior root when φ2(xd,2) = 1, and no interior root when φ2(xd,2) < 1, where φ2(xd) =
r(N−H)(1−ω)

N

(

N−1
H−1

) ∫ 1−xd

0 tN−H−1(1−t)H−1dt+ T∗

N

(

N−1
H−1

)

xH−1
d (1−xd)

N−H and xd,2 =
T∗(H−1)

r(1−ω)(N−H)+T∗(N−1) .

Proof : In analogy to the above methods, the sign of Pc − Pd determines whether it

pays to switch from defection to cooperation or vice versa, with Pc − Pd = 0 being

the equilibrium condition. Fig. 5.2 illustrates three examples with respect to T ∗, to

help depicting the complicated situations of Pc − Pd.

Pc − Pd = −1 +

H−1
∑

m=0

r(1 − ω)

N

(

N − 1

m

)

xm
d (1 − xd)

N−1−m

+
T ∗

N

(

N − 1

H − 1

)

xH−1
d (1 − xd)

N−H . (5.15)

By employing

φ2(xd) =
r(N −H)(1− ω)

N

(

N − 1

H − 1

)
∫ 1−xd

0

tN−H−1(1− t)H−1dt

+
T ∗

N

(

N − 1

H − 1

)

xH−1
d (1− xd)N−H , (5.16)

Eq. (5.15) can be reduced to

Pc − Pd = −1 + φ2(xd). (5.17)



86 5. Effects of Insurance in Threshold Public Goods Games

Next,

dφ2(xd)

dxd

= −

r(1 − ω)(N − H)

N

(

N − 1

H − 1

)

[−x
H−1

d (1 − xd)
N−H−1]

+
T ∗

N

(

N − 1

H − 1

)

[(H − 1)xH−2

d (1 − xd)
N−H

− (N − H)xH−1

d (1 − xd)
N−H−1]

=

(

N − 1

H − 1

)

x
H−2

d (1 − xd)
N−H−1[−

r(1 − ω)(N − H)

N
xd

+
T ∗

N
(H − 1)(1 − xd) −

T ∗

N
(N − H)xd] (5.18)

0 < xd < 1 helps the Eq. (5.18) keep the same sign with −r(1 − ω)(N −H)xd +

T ∗(H − 1)(1− xd)− T ∗(N −H)xd. Then,

− r(1 − ω)(N −H)xd + T ∗(H − 1)(1− xd)− T ∗(N −H)xd = 0 (5.19)

gives rise to

xd,2 =
T ∗(H − 1)

r(1 − ω)(N −H) + T ∗(N − 1)
. (5.20)

Pc − Pd = −1 when xd = 0, and Pc − Pd = −1 when xd = 1. Similarly, φ2(xd)

is a continuous function in the interval of [0, 1], and thus both the maximum and

minimum values of φ2(xd) can be found. Considering that dφ2(xd)
dxd

> 0 if xd < xd,2,

and dφ2(xd)
dxd

< 0 if xd > xd,2, Pc − Pd reaches its maximum value at xd,2. In this case,

ω = 1 leads to xd,2 = H−1
N−1 , and ω = 0 results in xd,2 = T∗(H−1)

r(N−H)+T∗(N−1) . It thus

follows that: there are two interior roots on the edge of CD when φ2(xd,2) > 1, one

interior root when φ2(xd,2) = 1, and no interior root when φ2(xd,2) < 1. �

In the continuous time model, the evolution of the fractions of the three strategies

are given by

ẋk = xk(Pk − P̄ ), (5.21)

where k can be c, d, i, and P̄ = xcPc + xdPd + xiPi. Now consider some typical

possible cases of different parameters and the resulting game dynamics one by one,

pointed out by Fig. 5.3.

Case 1 (ε − λ − 1 + φ1(xd,1) < 0, φ2(xd,2) − 1 < 0): In this case, full defection

equilibrium (D) is the only stable and a global attractor. For an insured cooperator,
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her contribution for common goods and the cost for insurance cannot be totally

reimbursed and thus she suffers negative payoffs if the threshold is not reached.

Each individual has an incentive to free ride for the higher payoffs, and thus the

dominant strategy equilibrium in case 1 is the defection.

Case 2 (ε − λ − 1 + φ1(xd,1) > 0, ε − λ − 1 > 0, and φ2(xd,2) − 1 < 0): Herein,

there is a border equilibrium consisting of insured cooperation and defection. And

this equilibrium is stable and a global attractor. In comparison with case 1, the

compensation ε from insurance is increased and the resulted ε < λ + 1 will foster

the survival of insured cooperators gaining higher payoffs than defectors. Thence-

forth, larger compensation provided by insurance will stimulate more contributors

to jointly produce the threshold public goods when they face the ambiguous risks

and losses.

Case 3 (ε−λ−1+φ1(xd,1) < 0, φ2(xd,2)−1 > 0): In this case, there are two border

equilibrium points consisting of cooperation and defection. The one close to the full

cooperation is a stable equilibrium and the other near full defection is unstable. In

comparison with case 1, the increasing threshold T ∗ leads to two stable equilibria

here: full defection and the coexistence of cooperation and defection. Which equi-

librium the system will evolve to depends on the initial states of the population.

Case 4 (ε − λ − 1 + φ1(xd,1) > 0, φ2(xd,2) − 1 > 0): In this case, there are two

stable border equilibria: one consisting of cooperation and defection, and the other

consisting of insured cooperation and defection. In comparison with case 2, the

increment of required threshold T ∗ results in the two equilibria on the edge of CD

here. Similar to case 3, lager ω will propel the equilibrium point on the edge of CD

to approach to the point of pure defection. We offer an accessible explanation of

this observation: larger ω implies a bigger competitive advantage of defectors over

cooperators based on payoffs, which is essential for the stability of the competing

strategies.

Summarizing the four cases above, we can conclude that the insurance guarantee

for contributive behaviors encourages contributions and provision, but in a manner

which interacts with both the required threshold and the reimbursed compensation

from insurance. Results presented above show that larger required threshold T ∗

helps contributors gain more advantages in payoffs than free riders, therefore im-

proving the provision for public goods. In addition, increasing the compensation ε
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from insurance also dramatically alters the dynamic outcomes of the game. Defec-

tors reap the benefit of the common goods without any contribution into it, which

inhibits the spread of contributive behaviors. Although defectors always do better

than cooperators in the public goods games with binary contributions, insurance

proposed here can offer the possibility for contributors of receiving higher payoffs

than defectors, and so contributors will increase. The insurance reduces or removes

the risk that contributions made towards the public goods will be lost if the thresh-

old is not attained. Supported by sufficiently high compensation ε, contributors

can avoid extinction by the potential payoff advantages over defectors, or even the

possible dominance of the population. It is also worth emphasizing that the alloca-

tion rules (adjusted by ω here) of the public goods after the contributions reach the

threshold point, also act as a focal point for survival of cooperation. Smaller ω en-

hances the payoff advantages of contributors over defectors and hence cooperation

thrives in our model. Hence, the insurance guarantee encourages contributions and

provision in threshold public goods games, and suggests a positive role in unrid-

dling the bewilderment of the ‘Tragedy of the Commons’.

5.4 Conclusions

In the threshold public goods game, public goods are provided if the joint contribu-

tions meet or exceed a predetermined threshold level of provisions; otherwise, no

public goods is provided. With the existence of the potential risks, we are interested

in the capacity of agents to contribute and to produce the public goods when they

can opt to be insured at some cost. Therefore individuals joining the game are pro-

vided with three strategy options: cooperation, defection and insured cooperation.

Here, the public goods is provided in a threshold fashion with a predetermined

threshold T ∗: if the accumulated contributions reach or exceed T ∗ then the public

goods is provided, otherwise it is not. In addition, the public goods are allocated ac-

cording to two different rules if the contributions exceeds the threshold: fixed value

or a linear form of contributors. In this model our attention is paid to relating indi-

vidual contributions in threshold public goods game to riskiness and risk aversion

mechanisms.

Theoretical computations show that the evolutionary dynamics are intrinsically
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regulated by the game parameters specified by the proposed insurance choice. We

demonstrate that compensation from insurance is of crucial importance for stabiliz-

ing cooperation among competing strategies. Larger compensation will tempt more

agents to contribute, thus inhibiting the spread of free riding behavior. Further,

increasing the threshold can also elicit more contributions to the threshold public

goods game. And, the allocation rules of the public goods after the contributions

catch up with the threshold point, also notably affect the final results.

Researchers are often intrigued by employing public goods games to simulate

collective dilemmas existing in the real world. In this endeavor, incorporating fea-

tures of the real-world dilemma into the game also deserves attention. Our work

is therefore a potential remedy to collective cooperation problem nested within a

dilemma when cooperators are provided with some insurance, implying that the

insurance for competing strategies deserves more attention in theoretical and empir-

ical studies. The work reported here also lends itself to multiple extensions. An im-

mediate one, for example, would be improving the theoretical validity of the study

here by introducing insurance in experimental research. One feasible experimen-

tal research is to conceive of a threshold public goods game with more complicated

forms or functions (usually nonlinear) of insurance. Moreover, it would be inter-

esting to see whether insurance provided for both cooperators and defectors in the

populations can foster cooperation. For instance, the volunteers in experiments can

face multiple actions (e.g., cooperation, defection, insured cooperation and insured

defection). In this way, we can gain a thorough understanding about the roles of in-

surance in the real-life collective dilemmas: such as the construction of some public

projects and in other cases where a public good needs to be provided. A closer look

at the nature of insurance in situations that are called collective dilemmas can foster

the advancement of our understanding of cooperative and selfish behaviors. Hence,

learning how insured agents can forgo individual interests for collective interest is

useful for understanding social behaviors and developing social policy.
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Figure 5.1: Diagrams illustrating four examples of TPGG, whose dynamics outcomes

are closely related to the model parameter involved. Parameters here: N = 50, T ∗ =

40. The x-axis is indexed by the number of contributors (including cooperators and

insured cooperators), and the y-axis represents the individual benefits from TPGG.

Results show that, when r = 5, individuals can gain positive benefits from TPGG if

there are at least 8 contributors. When r = 2, at least 20 contributors in one TPGG

are needed to bring each participant with positive benefits. As mentioned, varying

the parameter ω can transverse the model smoothly from scenario I (i.e. ω = 1) to

scenario II (i.e. ω = 0) about the payoff functions in the TPGG after the threshold

point has already been reached. In between the two extremes, we obtain a mixed

situation of the payoff distribution rules in the threshold public goods system.



5.4. Conclusions 91

0 0 . 2 0 . 4 0 . 6 0 . 8 1− 1− 0 . 50
0 . 5 1

xd (Fraction of defectors)

P
c
−
P
d

w=0
w=1

( a )
N = 10 , r = 6 , T

∗
= 40 .

0 0 . 2 0 . 4 0 . 6 0 . 8 1− 1− 0 . 50
0 . 5 1

xd (Fraction of defectors)

P
c
−
P
d

w=0
w=1

( b )
N = 10 , r = 6 , T

∗
= 30 .

0 0 . 2 0 . 4 0 . 6 0 . 8 1− 1− 0 . 50
0 . 5 1

xd (Fraction of defectors)

P
c
−
P
d

w=0

w=1

( c )
N = 10 , r = 6 , T

∗
= 15 .

Figure 5.2: (Color online) Examples illustrating the payoff difference Pc−Pd between

cooperators Pc and defectors Pd, which is closely related to the required threshold

T ∗. Lines connecting the symbols are just to guide the eye. The mentioned examples

suggest that the possible roots of the Pc − Pd will be: none, a unique or two roots

situated in the interval (0,1).
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Figure 5.3: (Color online) The dynamic outcomes under different cases. The corners

C (cooperation), D (defection), and I (insured cooperation) are equilibrium pints.

Open dots are unstable equilibrium points and closed dots are stable equilibrium

points. In case 1, full D is the only stable equilibrium while in the other three cases,

other strategies may be the dominative ones. Therefore, we can conclude that our

model promotes contribution by adding the third strategy: insured cooperation.



Chapter 6

Effects of Opting Out and Insurance in Public

Goods Games

Self-interest frequently causes individuals engaged in joint enterprises to choose ac-

tions that are counterproductive. Free-riders can invade a society of cooperators,

causing a tragedy of the commons. In our previous works, we have investigated

the influences of buying a policy that sequentially covers all punishment costs on

the evolution of cooperation in public goods games with potential punishment on

defectors, illustrating that insurance against punishment does not destabilize coop-

eration under realistic assumptions. There is compelling evidence that voluntary

participation are effective mechanisms in ascertaining the evolution and stability of

cooperation. As an extension form of evolutionary public goods game, competition

among cooperative, defective with probabilistic punishment, speculation insured

by some policy, and loner strategies is investigated here. By means of an evolu-

tionary game theoretical approach, results suggest that our model displays complex

dynamic behaviors. Depending on the initial condition, the state converges either

to a domination of cooperators, or to a rock-scissors-paper type heteroclinic cycle of

three strategies. Our model is, therefore, expected to shed light on the role of vol-

untary participation and speculation in solving the befuddling problem about the

emergence of cooperative behaviors.

6.1 Introduction

Situations in which the private interest can be at odds with the public interest

constitute an important class of societal problems. Evolutionary game theory

is an interdisciplinary mathematical tool which seems to be able to embody several
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relevant features of the problem and, as such, is used in much cooperation-oriented

research. In particular, the oft-cited public goods game (Hardin 1968, Axelrod and

Dion 1988, Heckathorn 1996, Fehr and Gächter 2002, Brandt et al. 2006, Hauert et al.

2002b) is a paradigm example for investigating the emergence of cooperation in

spite of the fact that self-interest seems to dictate defective behavior.

In typical public goods games, the so-called social dilemmas can be considered

as binary situations in which two strategies are available: either choose alternative

cooperation (C) in order to serve the public interest, or choose alternative defection

(D), which serves the immediate private interest. The individual contributions are

multiplied by a factor r and then divided equally among all players. With r smaller

than the group size, this is an example of a riddle from the evolutionary viewpoint:

individuals who do not contribute, but exploit the public goods, fare better than

those who pay the cost by contributing. Thus, natural selection favors defection

and leads to a social dilemma, because when all defect the mean payoff is lower

than that when all cooperate.

A variety of solutions for this dilemma have been discussed in the past stud-

ies. The theory of kin selection focuses on cooperation among individuals that are

genetically closely related, whereas theories of direct reciprocity focus on the self-

ish incentives for cooperation in bilateral long-term interactions (Imhof and Nowak

2010, Nowak 2006, Ohtsuki and Nowak 2007, Pacheco et al. 2008). The theories of

indirect reciprocity and costly signalling indicate how cooperation in larger groups

can emerge when the cooperators can build a reputation (Nowak and Sigmund 2005,

Berger 2011, Brandt and Sigmund 2005). Current research has also highlighted two

factors boosting cooperation in public goods interactions, namely, punishment of

defectors (Gurerk et al. 2006, Hauert et al. 2007, Sigmund 2007, Brandt et al. 2003,

Helbing et al. 2010, Gächter et al. 2008, Henrich 2006) and the option to abstain from

the joint enterprise. Voluntary participation (Hauert et al. 2002b, Hauert et al. 2002a)

allows individuals to adopt a risk-aversion strategy, termed loner. A loner refuses to

participate in unpromising public enterprises and instead relies on a small but fixed

payoff.

A strong body of theoretical and empirical evidence points to the importance

of punishment as a major factor for sustaining cooperation in public goods games

(Sigmund et al. 2010b, Fehr and Gachter 2005, Fowler et al. 2005). In addition, our
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previous work (Zhang et al. 2013) has studied a simple model to investigate the

question whether stable cooperation can break down in the presence of speculation,

a kind of risk-aversion strategy. Results indicate scenarios where speculation either

leads to the reduction of the basin of attraction of the cooperative equilibrium or

even the loss of stability of this equilibrium, if the costs of the insurance are lower

than the expected fines faced by a defector. We reach the conclusion that an insur-

ance of this type is not viable and under realistic assumptions speculation does not

destabilize cooperation.

However, to our knowledge, past research paid little attention to the joint roles of

punishment, voluntary participation and speculation in affecting the public goods

provision. Actually, agents often have multiple choices in decision making due to

the individual personality, especially when facing the potential punishment if de-

fecting. Agents probably perform different behaviors due to the often observed

different consciousness of risk prevention in real world. For example, resolute de-

fectors will persist in their defection strategy, though taking the risk of being pun-

ished with a probability. Speculators incline to buy an insurance policy covering the

costs of punishment when caught defecting. While timid loners will conservatively

obtain an autarkic income independent of the other players’ decision. These men-

tioned choices can better represents the possible attempts to raise money for public

goods in complicated real-life situations. Thus, in most biological scenarios, the

heterogeneity of competing individuals is an irrefutable fact and multiple choices

is undeniably a part of biological reality. With this formulation, as an extension of

our previous work proposing speculation (Zhang et al. 2013), we add the fourth

strategy, called loner, which can refuse to participate and get some small but fixed

income. As mentioned, it is based on the assumption that players can voluntarily

decide whether to participate in the joint enterprise or not.

The four behavioral types in the population are: (a) the cooperators ready to

join the group and to contribute their effort, (b) the defectors who join, but do not

contribute, moreover, defectors are caught with a certain probability and a fine is

imposed on them when caught. Here we are less interested in the specific establish-

ment of an effective system of punishment, but the two additional options (specu-

lation and loner) found in several systems. To address this question, we consider

a public goods game with an external-agency punishment system indicated above.
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(c) the speculators who purchase an insurance policy covering the costs of punish-

ment when caught defecting. It means that by paying a fixed cost for their insurance

policy, speculators can defect without paying any fine from punishment. (d) the lon-

ers unwilling to join the public goods game, but prefer to rely on a small but fixed

payoff.

By means of a theoretical approach, we investigate the joint evolution of coopera-

tion, defection, speculation and loner, focusing on the question whether such model

will subsequently allow the stable establishment of sizable levels of cooperation.

6.2 The model setting

Our investigation is based on the public goods game (PGG), a paradigm to study

the evolution of costly cooperation among selfish individuals, since it highlights the

potential differences between individual interests and the social optimum. In the

standard, obligatory public-goods model, the social dilemma can be considered as

binary situations in which two strategies are available: either choose alternative C

(cooperation) in order to serve the public interest, or choose alternative D (defec-

tion), which serves the immediate private interest.

To model this scenario with four strategies by evolutionary game theory, we as-

sume a large population consisting of cooperators, defectors, speculators, and lon-

ers. To be precise, each participant receives an equal benefit rcxc which is propor-

tional to the fraction of cooperators (xc) among the players. The costs associated

with behaviors differ among strategies. Cooperators pay a fixed cost c as the con-

tribution for the public goods game. Defectors contribute nothing, but will be pos-

sibly caught and then confronted with punishment. Their expected fine is α, which

reflects the product of the probability of being detected and the fine in cost of detec-

tive. Speculators neither contribute for common goods nor pay a fine when caught,

instead they pay an amount λ corresponding to the insurance policy. Loners obtain

a fixed pay-off σ from a solitary pursuit without contribution.

We consider a very large, well-mixed population of players. From time to time,

sample groups of N such players are chosen randomly and offered to join in a public

goods game. Notably, the probability that two players in large populations ever

encounter again can be neglected.



6.2. The model setting 97

Within such a group, if Nc denotes the number of cooperators and Nl is the num-

ber of loners among the public goods players, the net payoffs of the four strategies

are respectively given by






















Pc = rcNc

N−Nl
− c

Pd = rcNc

N−Nl
− α ,

Ps = rcNc

N−Nl
− λ

Pl = σ

(6.1)

where r denotes the amplification effect on the common pool. In this game, each

unit of investment is multiplied by r and the product is distributed among all partic-

ipants (except loners) irrespective of their strategies. The first term in the expression

represents the benefit that the agent obtains from the public goods, while the second

term denotes cost. For cooperators, the cost is the investment c to the public goods,

and for speculators, the cost is the payment λ to the insurance. Selfish individuals

will therefore always avoid the cost of altruism, i.e. a collective of selfish players

will never cooperate.

In order to compute the payoff values for cooperators, defectors and specula-

tors, we first derive the probability that n of the N sampled individuals are actually

willing to join the public goods game. In the case n = 1 (no co-player shows up)

we assume that the player has no other option than to play as a loner, and obtains

payoff σ. This happens with probability xN−1
l . Here, xl is the fractions of loners.

For a given player (C, D or S) willing to join the public goods game, the probability

of finding, among the N −1 other players in the sample, n−1 co-players joining the

group (n > 1), is given by

(

N − 1

n− 1

)

(1 − xl)
n−1(xl)

N−n (6.2)

The probability that m of these players are cooperators is
(

n− 1

m

)

(
xc

xc + xd + xs

)m(
xd + xs

xc + xd + xs

)n−1−m (6.3)

where xc, xd, xs respectively denote the fractions of cooperators, defectors and spec-

ulators in the population.

For simplicity and without loss of generality, we set the cost c of cooperation

equal to 1. In the above case, the payoff for a defector is rm/n−α, while the payoffs
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for a cooperator and a speculator are respectively specified by r(m + 1)/n − 1 and

rm/n− λ. Hence, the expected payoff for a defector in such a group is:

(
rm

n
− α)

n−1
∑

m=0

(

n− 1

m

)

(
xc

1− xl

)m(1− xc

1− xl

)n−m−1

=
r

n
· (n− 1)

xc

1− xl

− α

The payoff of a cooperator in a group of n players is:

[
r(m + 1)

n
− 1]

n−1
∑

m=0

(

n− 1

m

)

(
xc

1− xl

)m(1− xc

1− xl

)n−m−1

=
r

n
· (n− 1)

xc

1− xl

+
r

n
− 1

The payoff of a speculator in a group of n players is:

(
rm

s
− λ)

N−1
∑

m=0

(

n− 1

m

)

(
xc

1− xl

)m(1− xc

1− xl

)n−m−1

=
r

n
· (n− 1)

xc

1− xl

− λ

The payoff of a loner is the constant value of σ.

Then, the expected payoff for a defector in the population is,

Pd = σxN−1
l +

N
∑

n=2

[
r

n
· (n− 1)

xc

1− xl

− α]

(

N − 1

n− 1

)

(1 − xl)
n−1(xl)

N−n

= σxN−1
l +

rxc

1− xl

[1− 1− xN
l

N(1− xl)
]− α(1 − xN−1

l ) (6.4)

In the continuous time model, the evolution of the fractions of the four strategies

proceeds according to

ẋi = xi(Pi − P̄ ), (6.5)

where i can be c, d, s, l, and P̄ = xcPc + xdPd + xsPs + xlσ.
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6.3 Evolutionary dynamics outcomes

We firstly focus on the replicator dynamics starting from a three-strategy state in

the population, then we pay attention to analyzing the output when all the four

strategies initially exist in the population.

For the replicator dynamics of three-strategy evolution, we comprehensively

consider four scenarios depicted in Fig. 1 till Fig. 4 as follows. The advantage of

one strategy over another depends on the payoff difference between them, hence

Pd − Pc =

N
∑

n=2

[1− r

n
− α]

(

N − 1

n− 1

)

(1− xl)
n−1(xl)

N−n

= 1− α + (r − 1 + α)xN−1
l − r

N

1− xN
l

1− xl

; (6.6)

Pd − Ps =
N
∑

n=2

[λ− α]

(

N − 1

n− 1

)

(1− xl)
n−1(xl)

N−n

= (λ − α)(1− xN−1
l ); (6.7)

Ps − Pc = 1− λ + (r − 1 + λ)xN−1
l − r

N

1− xN
l

1− xl

. (6.8)

�

In the above calculations, N > 1, 1 < r < N and α > 0. The sign of Pi − Pj

in fact determines whether it pays to switch from cooperation to defection or vice

versa, Pi − Pj = 0 being the equilibrium condition, where i, j can be strategy C, D,

S, and L.

We now proceed to the study of evolutionary dynamics when λ 6= α where four

strategies coexist in the population, being referred to an interior point. We make the

following three assumptions and will get the results that: at least one strategy will

become extinct with the evolution of the system initialized from an interior point.

6.3.1. THEOREM. If λ 6= α, at least one strategy will become extinct with the evolution of

the system initialized from an interior point. Here, an interior point means that the fraction

of every strategy is larger than zero.

Proof : We now analyze the system in different situations.

(1) when λ 6= α, supposing λ > α (i.e. Pd > Ps), when xl 6= 0. We suppose that there
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is a closed set, meaning that the subsequent evolving state of each initial state in this

set also belongs to this set. So xc > 0, xd > 0, xs > 0 and xl > 0 in this closed set.

(1.1) We first suppose only one point (x∗
c , x

∗
d, x

∗
s, x

∗
l ) in this closed set, and satis-

fying x∗
c > 0, x∗

d > 0, x∗
s > 0, x∗

c > 0, and ẋ∗
c = ẋ∗

d = ẋ∗
s = ẋ∗

l = 0, thus







ẋ∗
d = x∗

d(p
∗
d − p̄∗)

ẋ∗
s = x∗

s(p
∗
s − p̄∗)

(6.9)

Herein, the result ẋ∗
d = ẋ∗

s = 0 needs ṗ∗d = p̄∗ = ṗ∗s , which contradicts with

ṗ∗d − ṗ∗s > 0. Therefore we can safely get the conclusion that there is no interior

stable point.

(1.2) We next assume that the interior domain is a limit cycle. In this case, the

four strategy players will gain the same average payoffs driven by the replicator

equation, where p̄c = p̄d = p̄s = p̄l. However, p̄d = p̄s contradicts with pd > ps,

indicating that the closed set is not a limit cycle.

(1.3) We then verify whether the interior domain is a chaos, where also xc >

0, xd > 0, xs > 0, xl > 0. By introducing the fraction of defections in a population

consisting of defectors and speculators, f = xd

xd+xs
, thus

ḟ = (
xd

xd + xs

)′ =
ẋdxs − xdẋs

(xd + xs)2
=

xdxs(pd − ps)

(xd + xs)2
> 0. (6.10)

Then, limt→∞( xd

xd+xs
) = 1 and xs → 0.

The above mentioned results suggest that, when λ > α there is no such a closed

set, in which the evolving state of each initial state which consist of these four strate-

gies in this set also belongs to this set.

(2) When λ < α and according to the results in (1), there is no internal domain.

(3) When λ = α and thus pd = ps, the four-strategy system was reduced to

the simplex T = (C, D, L) or T = (C, S, L) . We will discuss this situation in the

following.

Summing up the above dynamics, we can safely get the following conclusions:

λ = α reduce the system to a three-strategy game, and λ 6= α will lead to the dis-

tinction of at least one strategy.
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6.3.1 Scenario 1: the corners of the simplex T = (C, D, L)

6.3.2. THEOREM. If r > 2 − 2α holds, there there exists a threshold value of xl in the

interval (0, 1), above which Pd − Pc < 0.

Proof : Here, we employ the function G(xl) = (1 − xl)(Pd − Pc) which has the same

roots as Pd − Pc. For xl ∈ (0, 1),

G(xl) = (1− xl)(Pd − Pc)

= (1− r

N
− α)− (1 − α)xl + (r − 1 + α)xN−1

l + (
r

N
+ 1− α− r)xN

l

(6.11)

G′(xl) = (α− 1) + (N − 1)(r − 1 + α)xN−2
l + N(

r

N
+ 1− α− r)xN−1

l (6.12)

Note that G(1) = G′(1) = 0,

G′′(1) = (N − 1)(N − 2)(r − 1 + α)xN−3
l + N(N − 1)(

r

N
+ 1− α− r)xN−2

l (6.13)

G′′(1) = (N − 1)(2− 2α− r) (6.14)

We have

G(xl) ≃ G(1) + G′(1)(z − 1) +
1

2
G′′(1)(z − 1)2

=
1

2
(N − 1)(2− 2α− r)(1 − xl)

2. (6.15)

For r > 2− 2α, limxl→1− G(xl) < 0,

G′′(xl) = xN−3
l (N − 1)[(N − 2)(r − 1− α) + xl(r + N −Nα−Nr). (6.16)

Since G′′(xl) changes sign at most once in the interval (0, 1), we claim that there

exists a threshold value of xl in the interval (0, 1), above which Pd − Pc < 0.

From the above analysis, we get














G(xl) = (1− xl)(Pd − Pc)

G(0) = 1− r
N
− α

G(1) = 0

(6.17)

As illustrated in Fig. 1, the game dynamics takes on three qualitatively different

cases, which will be discussed one by one.
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Case 1.1(1− r/N − α > 0, i.e. G(0) > 0):

lim
xl→1−

G(xl) =
1

2
(N − 1)(2− 2α− r)(1 − xl)

2. (6.18)

When r < 2 − 2α, G(xl) > 0, xl ∈ (0, 1), the three corners represent a rock-

scissors-paper type heteroclinic cycle, and there is no stable equilibrium of the game

dynamics in this case.

Case 1.2 (1 − r/N − α > 0,r > 2 − 2α, G(1−) > 0): the three corners represent

a heteroclinic cycle. It is a center surrounded by closed orbits. Similar to case 1.1,

there is no stable equilibrium of the game dynamics in this case.

Case 1.3 (1−r/N−α < 0, i.e. r > 2−2α): In this case, for all xs, pure speculation

(S) and pure defection (D) are both unstable equilibria of the game dynamics. The

cooperation equilibrium (C) is stable and in fact a global attractor.

Summarizing the three cases in this scenario corresponding to the simplex T =

(C, D, L), we can conclude that the three corners represent a rock-scissors-paper

type heteroclinic cycle if 1− r/N − α > 0 (cases 1.1 and 1.2) while pure cooperation

is a global attractor if 1 − r/N − α < 0 (case 1.3). Hence, the outcome of the game

dynamics depends on the model parameters. �

C

D

L
(1.1)

C

D

L
(1.2)

C

D

L
(1.3)

Figure 6.1: The evolution dynamics results of T = (C, D, L), where in the absence

of speculation. (1.1): r < 2 − 2α. (1.2): r > 2 − 2α; and (1.3): 1 − r/N − α < 0.

Parameters: N = 5, δ = 0.3, and r = 1.6, α = 0.1 for (1.1); r = 3, α = 0.1 for

(1.2); r = 3, α = 0.5 for (1.3). Open dots are unstable equilibrium points and closed

dots are stable equilibrium points. It suggests that three corners represent a rock-

scissors-paper type heteroclinic cycle if 1 − r/N − α > 0 (cases 1.1 and 1.2) while

pure cooperation is a global attractor if 1− r/N − α < 0 (case 1.3).

6.3.3. PROPOSITION. When T = (C, D, L), under the replicator dynamics of (6.5), it holds
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that

if 1− r/N − α > 0 and r < 2− 2α, there is no inner fixed point in T ;

if 1− r/N − α > 0 and r > 2− 2α, there is one inner fixed point in T ;

if 1− r/N − α < 0, full C is only stable fixed point in T .

Proof : When r > 2 − 2α, there exists a fixed point xl ∈ (0, 1) that Pd = Pc. From

Eq. (6.4), we can get the only xc and xd = 1− xl − xc, hence there is one inner fixed

point in T . If 1− r/N − α > 0 and r < 2− 2α, Pd > Pc for all xl ∈ (0, 1), so there is

no fixed point in T . If 1 − r/N − α < 0, we have r > 2 − 2α, (N > 2). Then it must

be true that Pc > Pd, so full C is only stable fixed point in T . �

6.3.2 Scenario 2: the corners of the simplex T = (C, D, S)















Pd − Pc = 1− α− r
N

Pd − Ps = λ− α

Pc − Ps = λ + r
N
− 1

(6.19)

Case 2.1 (λ− α > 0, 1 − α − r/N > 0 and 1 − λ − r/N > 0): Here, pure cooper-

ation and pure speculation are both unstable equilibria of the game dynamics. Full

defection equilibrium (D) is stable and in fact a global attractor.

Case 2.2 (λ−α > 0, 1−α−r/N > 0 and 1−λ−r/N < 0): In this case, pure cooper-

ation and pure speculation are both unstable equilibria of the game dynamics. Pure

defection equilibrium (D) is stable and a global attractor. The difference between

case 2.1 and case 2.2 is that when there are only cooperators and speculators in the

population, pure cooperation is the attractor in case 2.2 while pure speculation is

the attractor in case 2.1.

Case 2.3 (λ − α > 0, 1 − α − r/N < 0, and 1 − λ − r/N < 0): Herein, pure

defection and pure speculation are both unstable equilibria of the game dynamics.

Pure cooperation is a stable and global attractor.

Case 2.4 (λ − α < 0, 1 − α − r/N > 0, and 1 − λ − r/N > 0): In this case, pure

speculation is the only stable and global attractor.

Case 2.5 (λ− α < 0, 1− α− r/N < 0, and 1− λ− r/N < 0): Pure cooperation is

thus the only stable and global attractor.
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Case 2.6 (λ− α < 0, 1− α− r/N < 0, and 1− λ − r/N > 0): Pure speculation is

the only stable and global attractor. The difference between case 2.6 and 2.4 is that

when the population consists of only cooperators and defectors, pure cooperation is

the attractor in case 2.6 while pure defection is the attractor in case 2.4.

Summarizing the six cases in scenario 2 corresponding to the simplex T = (C, D, S),

we can see that there is always a global attractor in the system. And similar with

scenario 1, the outcome of the game dynamics depends on model parameters.

C

D

S
(2.1)

C

D

S
(2.2)

C

D

S
(2.3)

C

D

S
(2.4)

C

D

S
(2.5)

C

D

S
(2.6)

Figure 6.2: The evolution dynamics results of T = (C, D, S), where in the absence of

defection. We consider six cases, which are discussed in cases 2.1 till 2.3 in the upper

panel of Fig. 6.2. Fig. 6.2 focuses on the situation λ−α > 0 implying that the fine for

defectors is higher than the costs of cooperation. Lower panels of Fig. 6.2 considers

the opposite case λ − α < 0, where defection is the dominating strategy. Results

show that there is always a global attractor in the system, and the outcome of the

game dynamics depends on model parameters. Parameters: N = 5, r = 3, δ = 0.3,

and α = 0.1, λ = 0.2 for (2.1); α = 0.1, λ = 0.8 for (2.2); α = 0.5, λ = 0.8 for (2.3);

α = 0.1, λ = 0.2 for (2.4); α = 0.8, λ = 0.5 for (2.5); α = 0.8, λ = 0.1 for (2.6).

6.3.4. PROPOSITION. When T = (C, D, S), under the replicator dynamics of (6.5), it holds

that

if λ− α > 0 and 1− α− r/N > 0: full D is only stable fixed point in T ;
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if 1− α− r/N < 0 and 1− λ− r/N < 0: full C is only stable fixed point in T ;

if λ− α < 0 and 1− λ− r/N >: full S is only stable fixed point in T ;

Proof : When xl = 0, if 1 − α − r/N > 0, Pd > Pc; if λ − α > 0, Pd > Ps, therefore if

xd > 0, Pd > P̄ . That means full D (xd = 1) is only stable fixed point in T .

When xl = 0, if 1 − α − r/N <, Pc > Pd; if 1 − λ − r/N < 0, Pc > Ps, therefore if

xc > 0, Pc > P̄ . That means full C (xc = 1) is only stable fixed point in T .

When xl = 0, if λ − α < 0, Ps > Pd; if 1 − λ− r/N > 0, Ps > Pc, therefore if xs > 0,

Ps > P̄ . That means full S (xs = 1) is only stable fixed point in T . �

6.3.3 Scenario 3: the corners of the simplex T = (C, L, S)

It is easily observed that xl = 0 leads to Pc − Ps = λ − 1 < 0. Thus, the three

corners represent a rock-scissors-paper type heteroclinic cycle. There is no stable

equilibrium in this case.

6.3.5. PROPOSITION. When T = (C, S, L), under the replicator dynamics of (6.5), it holds

that

if 1− r/N − λ > 0 and r < 2− 2λ, there is no inner fixed point in T ; if 1− r/N − λ > 0

and r > 2− 2λ, there is one inner fixed point in T ; if 1− r/N −λ < 0, full C is only stable

fixed point in T .

Proof : By using λ takes the place of α, we can get the similar results with proposition

6.3.3. �

6.3.4 Scenario 4: the corners of the simplex T = (D, L, S)

Case 4.1 (λ− α < 0): In this case, pure loners is the only stable and in fact the only

global attractor.

Case 4.2 (λ − α < 0): Still, pure loners remains the only stable and in fact the only

global attractor. The difference between case 4.1 and 4.2 is that when there are only

speculators and defectors in the population, pure speculation is the attractor in case

4.1 while pure defection is the attractor in case 4.2.
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Summarizing the two cases in scenario 4 corresponding to the simplex T =

(C, D, S), we can conclude that pure loners is the only global attractor in the sys-

tem.

C

S

L
(3.1)

C

S

L
(3.2)

C

S

L
(3.3)

Figure 6.3: The evolution dynamics results of T = (C, S, L), where in the absence

of speculation. (3.1): r < 2 − 2λ. (3.2): r > 2 − 2λ; and (3.3): 1 − r/N − λ < 0.

Parameters: N = 5, δ = 0.3, and r = 1.6, λ = 0.1 for (3.1); r = 3, λ = 0.1 for (3.2);

r = 3, λ = 0.5 for (3.3). It suggests that three corners represent a rock-scissors-paper

type heteroclinic cycle if 1− r/N − λ > 0 (cases 3.1 and 3.2) while pure cooperation

is a global attractor if 1− r/N − λ < 0 (case 3.3).

L

S

D
(4.1)

L

S

D
(4.2)

Figure 6.4: The evolution dynamics results of T = (D, L, S) where in the absence of

cooperation.(4.1) resulting game dynamics in the absence of speculation, where pure

loners is the only global attractor in the system. Parameters: N = 5, r = 3, δ = 0.3,

and α = 0.4, λ = 0.1 for (3); α = 0.4, λ = 0.1 for (4.1); α = 0.1, λ = 0.4 for (4.2).

6.3.6. PROPOSITION. When T = (S, D, L), under the replicator dynamics of (6.5), it holds

that

full L is only stable fixed point in T ;

Proof : When xc = 0, Pl − Pd = (α + σ)(1 − NN−1
l ) > 0 and Pl − Ps = (λ + σ)(1 −
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NN−1
l ) > 0, therefore full L (xl = 1) is only stable fixed point in T . �

6.4 Conclusions

Public goods pose a riddle from the evolutionary viewpoint. The extensive research

here is mainly focused on the exploration of strategic options. In the standard,

obligatory public-goods model, the two simplest strategies choose always defec-

tion and cooperation, and the corresponding players are called defectors (shortly

D) and cooperators (C), respectively. There is a growing evidence that the threat

of punishment can induce self-interested players to prefer actions that sustain the

public goods, and turn away from free riding. When facing potential punishment

as a defector, speculation and optional participation are also feasible choices driven

by individual diversity in a wide range of real-world situations.

Our previous work find scenarios where speculation either leads to the reduction

of the basin of attraction of the cooperative equilibrium or even the loss of stability of

this equilibrium, if the costs of the insurance are lower than the expected fines faced

by a defector. As an extension of our study proposing speculation strategy(Zhang

et al. 2013), here we base our analysis of the evolutionary game on replicator dy-

namics for four strategies: C (cooperators), D (defectors), S (speculators) and L

(nonparticipants). For simplicity we assumed that punishment of a given effective-

ness is externally imposed upon the defectors in a public goods game. We do not

consider the question how the punishment system was established or who carries

the costs of punishment.

Here, we show that the evolutionary fate of the system depends on special as-

sumptions about model parameters. When starting from the three-strategy state,

the observed domination of some strategy or a rock-paper-scissors type of cycle

suggests that the additional strategic options can radically alter the evolution of co-

operation. Specifically, larger multiplication factor r and punishment α on defectors

can facilitate cooperation to be a dominant strategy in the absence of speculation

(scenario 1). Here, we show that the option to abstain from the joint enterprise offers

an escape from the social trap. This leads to the decline of exploiters and allows the

reemergence of cooperators. Further, public goods cooperation can also be favored

to be an equilibrium by moderate values of punishment α and cost of insurance λ in
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the absence of loner (scenarios 2). It is also intriguing that cooperation fails to dom-

inate the population in the competition with speculation and loner strategy, even

though in the absence of defection (scenarios 3). When the initial state consists of

the four strategies, at least one strategy will evolve to vanish within the evolution.

Summarizing, we show that this conclusion depends on the particular assump-

tions of the proposed model here. An interesting future direction would be to ad-

dress whether the presence of more strategy options altogether affect the dynamics

of behaviors in the field of human cooperation.



Chapter 7

General Conclusions

Summarize the past, anticipate the

future.

This final chapter summarizes the main results that have been presented in this

thesis and provides recommendations for future research.

7.1 Conclusions

Cooperation is a cornerstone of social organization and commonplace in human so-

cieties. Altruism refers to a costly behavior that benefits others. However, mutual

cooperation is often found in nature even when selfish behavior is apparently ra-

tional for individuals. Why and under what circumstances, presumptively selfish

agents cooperate is a question of longstanding interest to multidisciplinary research.

In investigating this cooperation dilemma problem the standard framework utilized

is evolutionary game theory. Evolutionary game theory is an interdisciplinary math-

ematical tool which seems to be able to embody several relevant features of the

problem and, as such, is used in much cooperation-oriented research. Vast theoret-

ical mechanisms for emergence and maintenance of cooperation in social dilemma

games have been reported thus far.

Rooted in biology and reaching out to complex networks and control engineer-

ing, this thesis thoroughly investigates the competition and coexistence of compet-

ing strategies in gaming population in the framework of evolutionary games.

Chapter 2 develop a general model for the updating of states in a network that

allows us to derive conditions for the steady-state coexistence of strategies. The

analysis reveals that coexistence crucially depends on the number of agents con-
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sulted for updating. We conclude that updating rules are as important for evolution

on a network as network structure and the nature of the interaction.

Chapter 3 extends the model to a more general one for the updating of states

in a network. We introduce individual player’s switching probabilities between

competing partners, not only competing strategists. It allows us to derive conditions

for the steady-state coexistence of competing strategies. New theoretical models

and results developed in this thesis are useful for probing into how strategies are

being taken in structured populations. It provides an original and novel approach

for studying evolution dynamics, while also pave feasible ways for possible robotic

study in future. The results imply that strategy updating deserves more attention in

empirical and theoretical studies.

Chapter 4 presents the dynamic outcomes of gaming populations when the di-

versity of time scales is introduced in the strategy update process. We have break

with the traditional assumption concerns that nature selection acts on the popu-

lation at the same time scale, i.e. players have the same frequency in updating

their strategies. We eliminate this restriction by dividing the population into two

groups (fast ones and slow ones), and investigate the evolutionary dynamics in fi-

nite populations with time scales on updating and study the influences of different

composition of the two groups on fixation probabilities. Numerical and analytical

calculations are performed to study the evolution dynamics of strategies in the spe-

cial classes of two-player games (Prisoner’s dilemma game, Snowdrift game and

Stag-hunt game). Results show that the decoupling of time scales on updating leads

to dramatic changes in the dynamics of strategies. We give a proximation formula

of fixation probability of mutant types in finite populations and investigate the out-

come of evolution under weak selection. This work is a preliminary study on time

scales on updating and more attention is required on this topic in future.

Chapter 5 shows the strategy dynamics in threshold public goods games in which

players can buy insurance for their contribution. A threshold public goods game re-

quires a minimum amount of contributions to be collected from a group of individ-

uals for provision to occur. If the threshold is not achieved, the loss can be covered.

Our analytical results show that when agents face the potential aggregate risk in

threshold public goods games, more contributions occur with increasing compensa-

tion from insurance. Moreover, insurance significantly enhances individual contri-
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butions and facilitates provision, especially when the required threshold is high.

Chapter 6 bases our analysis of the evolutionary game on replicator dynamics

for four strategies: C (cooperators), D (defectors), S (speculators) and L (nonpar-

ticipants). For simplicity we assume that punishment of a given effectiveness is

externally imposed upon the defectors in a public goods game. We do not consider

the question how the punishment system is established or who carries the costs of

punishment. Results suggest that the evolutionary fate of the system depends on

special assumptions of model parameters. The corresponding results highlight the

kinds of model parameters for which evolution favours cooperation, and those in

which it does not. Moreover, the observed domination of some strategy or a rock-

paper-scissors type of cycle suggests that the additional strategic options can radi-

cally alter the evolution of cooperation, and, the coexistence of competing strategies

are possible under some conditions.

7.2 Further research topics

All the above phenomena indicate that there are possibly many ways or factors to

influence and enhance the competition or coexistence of strategy behaviors among

selfish populations. Further investigations would be required to clarify the distin-

guished role of multiple strategies, appearance of different subpopulation struc-

tures, and inhomogeneities of games in these networked populations. Here we only

identify three possible directions for subsequential research, servings as a modest

spur to induce others to come forward with their valuable contributions in future.

Game Competition among multiple strategies. An interesting future direction would

be to address whether the presence of more strategy options altogether affect the

dynamics of behaviors in the field of human cooperation. This thesis has dealt

with four strategies available for the gaming populations: cooperation, defection,

loner and speculation. More candidate strategies will be taken into consideration in

network models in future research. For example, the insured cooperation, insured

defection strategy, which means strategy players can get some insurance when the

game. This is more plausible when the success of the game depends on some thresh-

old point, or the defectors will suffer some punishment in the evolutionary game

playing. In addition, this thesis has focused on the synchronization or consensus
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problem, under the condition that all the agents update their states synchronously.

To mimic the real social systems and probe the origin of altruistic behaviors in na-

ture, this motivates extending the study in this thesis to the case with competition

among multiple strategies . That is to say, each agent is provided with a multiple-

strategy profile, and can choose any one from it when playing games with others.

However, accordingly the evolutionary dynamics will really a complicated because

it will be closely related with multiple game parameters led by the various strate-

gies. It is a challenging problem if one considers a combination of different commu-

nication constraints.

Competing among players situating on different topologies. Many tools to foster co-

operation and solve the social dilemma in an efficient way have been designed and

tested. It is well known that the evolution of cooperative behavior is dependant

upon certain environmental conditions. One such condition that has been exten-

sively studied is the use of a spatially structured population. The key concept of

spatially structured populations is: agents are assigned to the vertices of a net-

work, which can be a regular lattice or has a more complex structure. The edges

denote links between players in terms of game dynamical interactions. Then, agents

are constrained to interact only with their adjacent neighbors to play evolutionary

games in which more successful strategies spread on the system. This thesis has

studied some structured population situating ont the complex networks. To sim-

plify the research work, we only focus on the case that the whole population situates

on a single complex network. The multiple structures among the gaming popula-

tion can be further investigated when the population can be divided into several

groups with their respective networks. For this idea, the correlationship between

multiple networks is the key problem needed to be solved. This kinds of investiga-

tion can help us get more hints about the potential relationship between evolution-

ary dynamic process and the characteristics (e.g. population structure, individual

heterogeneity) of gaming population.

Competing among players playing different games. Almost most past studies, includ-

ing the work mentioned in this thesis, focus on the simple case where only one game

model (e.g. prisoner’s dilemma game, snowdrift game, or public goods game, and

so on) is employed as the metaphor to describe the conflicting tension between the

short-term benefits of defection and the long-term benefits of cooperation. Everyday
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experience told us that large heterogeneity between agents is common in real social

systems. Individuals are probably involved in complex interacting networks, where

they join different games within different gaming groups. For example, they may

are asked to participate in a public goods game in a collective group, such as with

their colleagues or neighbors for a public goods project. Meanwhile, they may join

a prisoner’s dilemma game with only one partner in some gaming situations. To

focus on the main research object in each work, this thesis has only considered the

mentioned simple case where only one game is employed in the large gaming pop-

ulation. Actually, studying the competing among players playing different games

is also a challenging project in this field, because the evolutionary process will be

complicated or difficult to gain the results. For example, we should wrestle with the

challenging calculation of payoffs gained in different games. In the future, we can

pay more attention to the multiple games mentioned here.

An Application issue-Competing among different gaming ’players’. The current work

in this thesis studies the competing strategies among the population by the means

of theoretical analysis and numerical simulation. The robotics (e.g. E-pucks in our

group) has also attracted plenty of attention from researchers in many fields, and

many works have been proposed and published, suggesting that robotics to study

the collective dynamics is a promising direction. Along this thriving research line,

we could first try to investigate evolutionary problems among the robotic popula-

tions, to verify the theoretical analysis results. It is of interest to study a mixed pop-

ulation consisting of robotics and real agents, and focus on the behaviors of these

different ’players’.
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Amaral, L. N. A., Scala, A., Barthélémy, M. and Stanley, H. E.: 2000, Classes of small-

world networks, Proc. Natl. Acad. Sci. USA 97, 11149–11152.
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Summary

The emergence and existence of cooperation in real societies continues to intrigue re-

searchers from multiple areas, and is basking in a great boom as a multi-disciplinary

field of research. A dilemma based on universal Darwinism derives from the fact

that defectors gain an advantage over cooperators, whenever cooperation is costly

so consequently, not cooperating pays off. However, cooperative behaviors abound

in nature. To delve into this problem the widespread framework utilized is game

theory along with its extensions involving evolutionary process. The selfish behav-

ior here is manifested by a defective strategy, aspiring to obtain the greatest benefit

from the gaming interactions with others. Vast theoretical or experimental mecha-

nisms for emergence and maintenance of cooperation in social dilemma games have

been reported thus far.

As mentioned earlier, the cooperative dilemma problem draws attentions of re-

searchers from various disciplines, and one of the reasons may probably lies on the

fact that it is really an interdisciplinary and cutting-edge topic. And, cooperative

dilemmas in which the self-interest may at odds with the collective interest actually

constitute a significant form of vast societal problems, where the maximum payoffs

led by the mutual or collective cooperation are in great need. Up to now a great

deal of research is aimed at pointing out the way to breakthrough it, by virtue of

the viewpoints or methods from several different branches of the sciences, such as

biology, physics, sociology, computer science, economics, etc. Each discipline has

dealt with this problem differently, and meanwhile each may have much to learn
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from the other.

Inspired by the research focus in the two groups (’Theoretical Biology Group’

and ’Network Analysis and Control Group’ in Groningen University) where I car-

ried out my PhD study, I establish the theoretical study of this topic from the biolog-

ical or sociological perspective, at the same time, with the help of the simulations

in the framework of complex networks under more realistic assumptions. The cen-

tral topic of this thesis is the competing and coexistence of different agents, since

not only one type of strategist actually exists in conflicting situations often encoun-

tered in natural and social sciences. Attracted and also bewildered by this social

diversity, the main research focus we have in mind is to theoretically and experi-

mentally investigate the conflict and coordination of multiple competing behaviors,

as summarized in this thesis.

First and foremost, the research project is related with our proposed switching

probabilities between players. What is noteworthy is that the evolution dynamics

of involving strategies are the core of the employed evolutionary game theory. A

commonly used approach to strategic interaction is combing game theory and pop-

ulation dynamics in a replicator equation or imitation dynamics. This framework or

structure is frequently employed in most existing literatures, whereas requires the

specific values of payoffs as an indispensable factor. However, in many situations

of decision-making under conflicting interests, the information about strategies or

payoffs are not easy to acquire, especially for the capacity-constrained players. In a

real case of games for benefits, there is normally no easy way for players to know of

the ongoing performance of their partners.

In our work, the general situation is modeled here as a repeated game played

in a sequence of periods, and strategy update are led by the so-called individual

player’s switching probabilities, as discussed in Chapter 2. We restrict our analy-

sis to the case where switching only occurs between competing strategies. Results

help us to find a causal link between the coexistence of competing strategies and

the number of agents consulted for updating. This new theoretical model and the

results are also beneficial for investigating how strategies are being taken in struc-

tured populations. Considering the complicated strategy decision process and the

involved factors, strategy updating still deserves more attention in empirical and

theoretical studies.
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However, do strategy revisions merely occur between different strategists? In

many competitive games, strategy revisions also emerge when two same strategists

encounter. This is in line with some real-world mimicry, where decisions or actions

of each player may be less directly linked to or affected by the actions of the other

players. In this case, strategy revisions also occur in social contexts where players

interact and happen to adopt the same strategy concurrently. To answer these ques-

tions, we design a general paradigm to study the strategy switching probabilities

between competing players, and the related results are summarized in Chapter 3.

The results reveal that the evolutionary fate of the coexisting strategies can be calcu-

lated analytically, and provide novel hints for the resolution of cooperative dilemma

problems in a competitive context.

Then, it is understandable that the speed or frequency of strategy update may

vary in each individual in real social societies. Previous studies have focused mainly

on the assumption of homogeneous times scales in strategy updating of the popu-

lations. Because participants had varying reaction times or frequencies in strategy

updating, we reported the modulation of player behavior attributable to different

time scales in strategy updating, as summarized in Chapter 4. Our approach can be

interpreted as individual heterogeneity regards to time scales.

To dissociate between slow and fast opponents, we divide the population into

two groups endowed with respective time scales. And, we extend our analysis to

three representative dilemma models (Prisoner’s dilemma game, Snowdrift game,

and Stag-hunt game). In sum, we have gained a sequence of approximation formu-

las that determine the fixation probabilities under variations of the initial conditions.

Results suggest that the different time scales result in much richer evolutionary dy-

namics, and some inspirations can be gained to control the fall or rise of cooperative

behaviors. To more convincingly show the individual diversity, our work lends it-

self to several extensions, such as an immediate and feasible one, one more type of

players that updates with median time scales can be taken into account.

Next, with a view to the significance and diversity and strategy choices, we ex-

tend the general two-strategy profile by adding a third strategy, called insured co-

operation, which corresponds to buying an insurance covering the potential loss re-

sulted from the unsuccessful public goods game. We focus our study on the thresh-

old public goods games. Particularly, only the contributing agents can opt to be



132 Samenvatting

insured, which is an effort decreasing the amount of the potential loss occurring.

Our results in Chapter 5 show that permitting the adoption of insurance signifi-

cantly enhances individual contributions and facilitates provision, especially when

the required threshold is high.

Finally, a large majority of the current evolutionary game studies that shed light

on the mechanism behind many cooperative phenomena in gaming systems con-

centrated on pair-wise interactions between individuals. It is tempting to introduce

and investigate the individual diversity in terms of strategy in a competitive con-

text. Thus it is conceivable that participants face the following options: cooperation,

defection, speculation and being a loner. The traces of all of these forms of actions

could be spotted in everyday life. In the analysis shown in Chapter 6, we identify

specific characteristics of the game parameters in public goods games that concep-

tually mark the transitions among various steady states of the system.

Summarizing, modeling the characteristics of individual diversity, involves ex-

ploring the heterogeneous factors of individuals, from strategy choice to time scales

of strategy updating and more practical forms that exist in societies. At the core are

the issues of how reasonable assumptions are required to propose based on these

realistic considerations, and the degree that individual decisions are influenced by

regard for others. Hope our work can offer inspirations and references for the sus-

tainable cooperative behaviors, avoiding the free riding phenomenon in some situ-

ations, and promoting high efficient transactions and cooperates in society finally.



Samenvatting

Wetenschappers zijn al jaren ge?ntrigeerd door samenwerking. In onze maatschap-

pij, maar ook overal in het dierenrijk, kunnen tal van voorbeelden worden gevon-

den waarbij individuen met elkaar samenwerken. Onderzoek aan samenwerking

word gekenmerkt door vele disciplines: biologie, sociologie, natuurkunde, com-

puter wetenschappen en economie. Ieder van deze disciplines bestudeert het fenomeen

van samenwerking met een eigen aanpak. Nieuwe inzichten ontstaan vaak wanneer

deze vakgebieden met elkaar in aanraking komen. Redenerend vanuit de evolu-

tieleer is het vaak moelijk te verklaren waarom individuen samenwerken. Waarom

zou een individu een kostbare samenwerking aangaan, terwijl hij het risico loopt dat

de interactie partner louter profiteerd van deze samenwerking en niets bijdraagt?

Individuen die niet samenwerken kunnen op deze manier misbruik maken van in-

dividuen die zich co?peratief opstellen. Veel maatschappelijke problemen zijn in-

derdaad het gevolg van dit soort problemen, waarbij individuen die niet bijdragen

aan de groep kunnen profiteren van co?peratieve individuen in de groep. Desalniet-

temin zijn er veel voorbeelden waarbij individuen samenwerken zonder problemen.

Samenwerking wordt vaak bestudeert door middel van spel theorie, hierbij spe-

len verschillende individuen een spel, waarbij ze kunnen kiezen om samen te werken

of niet. De opbrengsten van een dergelijk spel zijn vaak het hoogst wanneer beide

individuen samenwerken, maar ieder individu kan meer verdienen dan zijn inter-

actie partner door ervoor te kiezen niet samen te werken. De vraag is hoe met een

dergelijk spel samenwerking toch behouden kan blijven in de populatie. Ge?nspireerd
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door het werk in de twee groepen (’Theoretical Biology Group’ en ’Network Anal-

ysis and Control Group’ aan de Rijksuniversiteit van Groningen) waarbij ik mijn

promotie onderzoek gedaan heb, heb ik modellen ontwikkeld voor het bestuderen

van samenwerking. Ik maak gebruik van principes uit de spel theorie en bestudeer

de interacties tussen individuen, die deel uit maken van een complex netwerk. Het

centrale doel van dit proefschrift is om te begrijpen hoe verschillende strategi?en

competeren en co?xisteren in een populatie door middel van theoretische en em-

perisch aanpak.

In het eerste deel van dit proefschrift maken we een basis model. We stellen

voor dat individuen elkaars gedrag kopi?ren met een bepaalde kans. In vele mode-

len wordt uitgegaan dat individuen veel informatie hebben over elkaars strategi?n

en success, deze informatie be?nvloed welke stategi?n worden gekopi?erd (bijvoor-

beeld a.d.h.v. evolutionaire of culturele processen). In werkelijkheid hebben in-

dividuen echter zeer gelimiteerde informatie over hun interactie partners. Het is

daarom aannemelijk dat in de meeste gevallen het onduidelijk is welke strategie de

optimale is. In ons model kopi?ren individuen elkaars strategie met een bepaalde

kans, zonder er van uit te gaan dat individuen meer informatie over een dergeli-

jke strategie hebben. We kijken vervolgens hoe verschillens strategi?n met elkaar

competeren en co?xisteren in gestructeerde populaties (hoofdstuk 2). Voor een nog

algemenere implementatie van ons model, gaan we ervan uit dat niet alleen indi-

viduen met verschillende strategi?n elkaar kunnen kopi?ren, maar ook individuen

met dezelfde strategie. Voor deze versie van het model kunnen we de resultaten

analytisch berekenen (hoofdstuk 3). De modellen geven inzichten over hoe samen-

werking behouden kan blijven in de populatie.

Een andere aanname die vaak wordt gemaakt in spel theorie is dat alle indi-

viduen even snel van strategie kunnen wisselen, m.a.w. de aanpassingssnelheid van

individuen is identiek. In werkelijkheid is het echter aannemelijk dat individuen

verschillen in hoe snel ze zich aanpassen aan hun interactie partners. In hoofstduk

4 bestuderen we hoe heterogeniteit in de aanpassingssnelheid de dynamiek van het

model be?nvloedt. Uiteindelijk, focussen we ons op twee aanpassingssnelheden:

individuen die zich langzaam aanpassen en individuen die zich snel aanpassen. We

bestuderen hoe individuen zich gedragen in verschillende spel theoretische dilem-

mas: ’prisoner’s dilemma’, ’snowdrift game’ en ’stag-hunt game’. Afhankelijk van
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hun strategie, krijgen individuen een opbrengst uit hun interactie met andere indi-

viduen. Individuen kopi?ren elkaars gedrag met een bepaalde kans. De opbrengst

uit de interacties be?vloedt tevens de kans waarop individuen sterven en reproduc-

eren. We laten zien dat de verschillende aanpassingssnelheden resulteren in een

rijke dynamiek van het model, zeker in vergelijking met een implementatie waar-

bij alle individuen even snel van strategie kunnen wisselen. Bovendien geven deze

modellen inzichten over de manieren waarop samenwerking bevorderd kan wor-

den.

In de laatste hoofstukken van dit proefschrift bestuderen we een grotere diver-

siteit aan strategi?n. In plaats van twee strategi?n - samenwerkende en niet samen-

werkende individuen - voegen we een derde strategie toe aan ons model. Deze

strategie betaald een bepaalde hoeveelheid vaste kosten, om zich zo weerbaar te

maken tegen individuen die niet samenwerken. Je zou het kunnen zien als het af-

sluiten van een verzekering tegen potentiele verliezen. In hoofdstuk 5 bekijken we

hoe een ’verzekerde’ strategie samenwerking tussen individuen kan bevorderen.

In aanwezigheid van verschillende strategi?n kan de populatie naar verschillende

evenwichten gaan. In hoofstuk 6 bestuderen we de model parameters die van in-

vloed zijn op de transities tussen deze evenwichten en de inzichten die het geeft

voor het bevorderen en behouden van samenwerking.

De modellen in dit proefschriften laten zien hoe verschillende eigenschappen

van belang kunnen zijn voor de samenwerking tussen individuen: de strategi?n die

individuen gebruiken, de kans waarmee ze hun strategie veranderen, de snelheid

waarmee dat gebeurt en de interactie partners die individuen hebben. De belangri-

jke vraag blijft echter, welke eigenschappen in werkelijkheid het meest doorslaggevend

zijn. Uiteindelijk hopen we dat onze modellen bijdragen aan het verkrijgen van

verdere inzichten, die de samenwerking tussen mensen in onze samenleving kun-

nen bevorderen.
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