Reproduction and dispersal in an ant-associated root aphid community -

Supplementary material

A.B.F.Ivens, D.J.C. Kronauer, I. Pen, F.J. Weissing and J.J. Boomsma

The dependence of the ant Lasius flavus on root aphids

The honeydew secreted by the aphids is the main source of carbohydrates for the subterranean *L. flavus* ants, as other subterranean carbon sources are limited in the salt marsh and chalkgrassland habitats of these ants. Stable isotope analyses have confirmed that in the presence of aphids there is a demonstrable intermediate trophic level between the vegetation and the ants, consistent with the aphids being an intermediate foodweb node (A.B.F. Ivens & M. Schrama, unpublished data). *L. flavus* ants have also been recorded to eat a large proportion of their root aphids, suggesting that they also utilize their "dairy cattle" to increase protein acquisition (Pontin 1958; 1961; 1978; Ivens *et al.* in press). This implies that, similar to other subterranean ants, *L. flavus* depends on root aphid husbandry for producing colonies large enough to reproduce (Way 1963; Hölldobler & Wilson 1990).

Tables and Figures

Table S1 Results of tests for the presence of Linkage Disequilibrium for *ramet* and *genet* datasets of *Geoica utricularia*, *Tetraneura ulmi* and *Forda marginata*. G-tests for each available pair of loci were run using the Markov Chain algorithm of Raymond and Rousset (1995). P-values statistically significant at a 5%-level are given in bold, indicating pairs of loci with significant Linkage Disequilibrium. The parameter setting for dememorisation was 10000, the number of batches was set at 20, and the number of iterations per batch was 5000.

Ramet data				Genet data			
Locus 1	Locus 2	P-Value	S.E.	Locus 1	Locus 2	P-Value	
Geoica utrio	cularia						
Gu2	Gu2	0.000	0.000	Gu2	Gu3	0.000	
Gu2	Gu2	0.000	0.000	Gu2	Gu5	0.001	
Gu2	Gu2	0.000	0.000	Gu2	Gu6	0.016	
Gu2	Gu2	0.000	0.000	Gu2	Gu8	0.008	
Gu2	Gu2	0.000	0.000	Gu2	Gu9	0.483	
Gu2	Gu2	0.000	0.000	Gu2	Gu11	0.078	
Gu2	Gu2	0.000	0.000	Gu2	Gu13	0.054	
Gu5	Gu5	0.000	0.000	Gu5	Gu3	0.001	
Gu5	Gu5	0.000	0.000	Gu5	Gu6	0.003	
Gu5	Gu5	0.000	0.000	Gu5	Gu8	0.003	
Gu5	Gu5	0.000	0.000	Gu5	Gu9	0.904	
Gu5	Gu5	0.000	0.000	Gu5	Gu11	0.010	
Gu5	Gu5	0.000	0.000	Gu5	Gu13	0.011	
Gu6	Gu6	0.000	0.000	Gu6	Gu3	0.003	
Gu6	Gu6	0.000	0.000	Gub	Gu8	0.007	
Gu6	Gu6	0.000	0.000	Gub	Gu9	1.000	
Gu6	Gu6	0.000	0.000	Gu6	Gu11	0.124	

Gu6	Gu6	0.000	0.000	Gu6	Gu13	0.057	0.007		
Gu8	Gu8	0.000	0.000	Gu8	Gu3	0.002	0.001		
Gu8	Gu8	0.000	0.000	Gu8	Gu9	0.235	0.010		
Gu8	Gu8	0.000	0.000	Gu8	Gu13	0.002	0.001		
Gu9	Gu9	0.000	0.000	Gu9	Gu3	0.903	0.007		
Gu9	Gu9	0.000	0.000	Gu9	Gu13	0.097	0.009		
Gu11	Gu11	0.000	0.000	Gu11	Gu3	0.012	0.003		
Gu11	Gu11	0.000	0.000	Gu11	Gu8	0.049	0.004		
Gu11	Gu11	0.000	0.000	Gull	Gu9	0.338	0.013		
Gu11	Gull	0.000	0.000	Gull	Gu13	0.018	0.003		
Gu13	Gu13	0.000	0.000	Gu13	Gu3	0.009	0.002		
Pairs with significant LD : 28			Pairs with	Pairs with significant LD : 17					
Tetraneura ulmi									
Tu1	Tu3	0.000	0.000	Tu1	Tu3	0.467	0.004		
Tu1	Tu11	0.073	0.003	Tu1	Tu11	1.000	0.000		
Tu2	Tu1	0.000	0.000	Tu2	Tu1	0.066	0.002		
Tu2	Tu3	0.000	0.000	Tu2	Tu3	0.465	0.006		
Tu2	Tu4	0.000	0.000	Tu2	Tu4	0.205	0.003		
Tu2	Tu11	0.070	0.002	Tu2	Tu11	1.000	0.000		
Tu4	Tu1	0.000	0.000	Tu4	Tu1	0.198	0.003		
Tu4	Tu3	0.000	0.000	Tu4	Tu3	1.000	0.000		
Tu4	Tu11	0.000	0.000	Tu4	Tu11	1.000	0.000		
Tu10	Tu1	0.095	0.002	Tu10	Tu1	1.000	0.000		
Tu10	Tu2	0.091	0.002	Tu10	Tu2	1.000	0.000		
Tu10	Tu3	0.000	0.000	Tu10	Tu3	0.399	0.006		
Tu10	Tu4	0.000	0.000	Tu10	Tu4	1.000	0.000		
Tu10	Tu11	0.000	0.000	Tu10	Tu11	0.194	0.005		
Tu11	Tu3	0.000	0.000	Tu11	Tu3	0.208	0.011		
Pairs with significant LD: 11				Pairs with	Pairs with significant LD : 0				

Forda marg	inata								
Fm1	Fm3	0.000	0.000	Fm1	Fm3	0.001	0.001		
Fm1	Fm4	0.000	0.000	Fm1	Fm4	0.000	0.000		
Fm1	Fm6	0.000	0.000	Fm1	Fm6	0.001	0.001		
Fm1	Gu6	0.000	0.000	Fm1	Gu6	0.870	0.006		
Fm1	Gu11	0.000	0.000	Fm1	Gu11	0.000	0.000		
Fm1	Gu13	0.000	0.000	Fm1	Gu13	0.033	0.006		
Fm3	Fm4	0.000	0.000	Fm3	Fm4	0.000	0.000		
Fm3	Fm6	0.000	0.000	Fm3	Fm6	0.000	0.000		
Fm3	Gu6	0.000	0.000	Fm3	Gu6	0.060	0.005		
Fm3	Gu11	0.000	0.000	Fm3	Gu11	0.000	0.000		
Fm3	Gu13	0.000	0.000	Fm3	Gu13	0.003	0.001		
Fm4	Fm6	0.000	0.000	Fm4	Fm6	0.000	0.000		
Fm4	Gu6	0.000	0.000	Fm4	Gu6	0.537	0.009		
Fm4	Gu11	0.000	0.000	Fm4	Gu11	0.000	0.000		
Fm4	Gu13	0.000	0.000	Fm4	Gu13	0.001	0.001		
Fm6	Gu6	0.000	0.000	Fm6	Gu6	0.167	0.006		
Fm6	Gu11	0.000	0.000	Fm6	Gu11	0.000	0.000		
Fm6	Gu13	0.000	0.000	Fm6	Gu13	0.000	0.000		
Gu6	Gu11	0.000	0.000	Gu6	Gu11	0.023	0.003		
Gu13	Gu6	0.000	0.000	Gu13	Gu6	0.107	0.004		
Gu13	Gu11	0.000	0.000	Gu13	Gu11	0.001	0.000		
Pairs with significant LD : 23				Pairs with	Pairs with significant LD : 16				

Figure S1 Neighbour-Joining trees for the three root aphid genera. Neighbour-Joining trees were constructed based on shared allele distances (DAS) (Jin & Chakraborty 1993). Genetic distances were calculated and trees were constructed in POPULATIONS 1.2.30 (Olivier Langella 1999) and displayed graphically in R 2.12.0 (R development core team 2010) using the plot.phylo() function in the ape package (Paradis *et al.* 2004). Genetic distance in the trees is given as the proportion of alleles that are not shared between multilocus genotypes (MLGs). Colours represent specific multilocus lineages (MLLs) consisting of several multilocus genotypes (MLGs) with names corresponding to those given in Table 2 and node numbers representing bootstrap values (10000 iterations). The *Forda* tree includes both *F. formicaria* (Ff- MLGs, all belonging to one MLL given in red) and *F. marginata* MLGs.

Figure S2 Spatial distribution of cumulative frequencies of Multilocus Genotypes (**MLGs**) **of** *Forda formicaria*. Distinct MLGs are represented by different hatching patterns. *n* gives the sample size for each transect location (location 1-8, with adjacent sample sites being 1 km apart – see Fig 1).

Figure S3 Spatial autocorrelation pattern for *Forda formicaria*. The plot shows genetic correlation coefficient r (solid line), its 95% confidence bars as determined by bootstrapping, and the 95% confidence interval around zero as expected from random distributions of genotypes (dashed lines), plotted across the seven distance classes (1-7 km). The result for the Mantel test of the correlation is provided in the left corner of the panel. Due to small sample sizes (see Figure S2), these tests remain inconclusive.

Figure S1

Figure S2

References

Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge, MA.

Ivens ABF, Kronauer DJC, Pen I, Weissing FJ, Boomsma JJ (2012) Ants farm subterranean aphids mostly in single clone groups – an example of prudent husbandry for carbohydrates and proteins? In press, *BMC Evolutionary Biology*.

Jin L, Chakraborty R (1993) A bias-corrected estimate of heterozygosity for single-probe multilocus DNA fingerprints. *Molecular Biology and Evolution*, **10**, 1112-1114.

Paradis E, Claude J, Strimmer K (2004) APE: Analyses of Phylogenetics and Evolution in R language. *Bioinformatics*, **20**, 289-290.

Pontin AJ (1958) A preliminary note on the eating of aphids by ants of the genus *Lasius* (Hym., Formicidae). *The entomologist's monthly magazine*, **94**, 9-11.

Pontin AJ (1961) The prey of *Lasius niger* (L.) and *L. flavus* (F.) (Hym., Formicidae). *The entomologist's monthly magazine*, **97**, 135-137.

Pontin AJ (1978) Numbers and distribution of subterranean aphids and their exploitation by the ant *Lasius flavus* (Fabr.). *Ecological Entomology*, **3**, 203-207.

Raymond M, Rousset F (1995) An exact test for population differentiation. *Evolution*, **49**, 1280-1283.

Way MJ (1963) Mutualism between ants and honeydew-producing Homoptera. *Annual Review of Entomology*, **8**, 307-344.