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Table S1 – Graph spectra of animal social interaction networks
 a)

 

 

Study species  Network of… Data source Nodes Ties Weighted 
*f

b) 
2  

3  
4  N  

2
c) 

T
d) 

Trinidadian guppy 

(Poecilia reticulata) 

shoal 

membership 
Croft et al. (2004) 99 1452 yes 0.87 0.14 0.17 0.18 1.43 0.09 2.72 

African cichlid
 e) 

(Neolamprologus pulcher) 

affiliative 

interactions 

Schürch et al. 

(2010) 
72 370 yes 0.59 0.05 0.08 0.10 1.63 0.20 3.54 

   72 345 yes 0.50 0.03 0.04 0.06 1.71 0.25 3.28 

   72 473 yes 0.45 0.02 0.03 0.07 1.94 0.24 3.76 

House finch 

(Carpodacus mexicanus) 

social 

associations 

Oh & Badyaev 

(2010) 
538 22820 no 0.99 0.08 0.10 0.16 1.50 0.03 1.81 

   528 13322 no 0.98 0.05 0.11 0.12 1.50 0.05 2.04 

   835 28646 no 0.99 0.09 0.11 0.12 1.36 0.04 2.17 

Bechstein’s bat 

(Myotis bechsteinii) 

roosting 

associations 
Kerth et al. (2011) 42 898 yes 0.91 0.65 1.00 1.01 1.06 0.03 0.99 

Leaf-roosting bat 

(Thyroptera tricolor) 

roosting 

associations 
Chaverri (2010) 55 424 yes 0.48 0.01 0.02 0.08 1.88 0.21 4.29 

Yellow bellied marmot 

(Marmota flaviventris) 

affiliative 

interactions 

Wey & Blumstein  

(2010) 
35 180 yes 0.58 0.09 0.19 0.24 1.75 0.23 4.07 

   45 364 yes 0.47 0.06 0.07 0.15 1.82 0.19 8.13 

   40 246 yes 0.56 0.04 0.15 0.17 1.82 0.21 4.74 

Galápagos sea lion 

(Zalophus wollebaeki) 

social 

associations 

Wolf & Trillmich 

(2008) 
405 14610 yes 0.97 0.07 0.11 0.12 1.50 0.06 3.00 
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(continued) 

Study species  Network of… Data source Nodes Ties Weighted *f
b) 

2  
3  

4  
N  

2
c) 

T
d) 

Bottlenose dolphin
 f) 

(Tursiops spp.) 

preferred 

companionships 
Lusseau (2003)

 
62 318 no 0.72 0.04 0.23 0.25 1.71 0.19 2.54 

 
school 

membership 

Wiszniewski et al. 

(2010) 
120 8918 yes 0.96 0.29 0.58 0.62 1.16 0.02 1.12 

Collared mangabey 

(Cercocebus torquatus) 

grooming 

interactions 

Voelkl & Kasper 

(2009) 
35 1188 yes 0.89 0.78 0.87 0.90 1.19 0.04 1.02 

Vervet monkey
 e) 

(Chlorocebus aethiops) 

grooming 

interactions 

Voelkl & Kasper 

(2009) 
31 219 yes 0.80 0.57 0.69 0.74 1.46 0.07 13.4 

Hamadryas baboon 

(Papio hamadryas) 

grooming 

interactions 

Voelkl & Kasper 

(2009) 
35 178 yes 0.39 0.05 0.09 0.12 1.88 0.28 5.53 

Guinea baboon
 e) 

(Papio papio) 

socio-positive 

interactions 

Voelkl & Kasper 

(2009) 
33 512 yes 0.83 0.41 0.60 0.69 1.45 0.08 6.56 

a)
 The data set contains 19 networks. Networks with less than 30 nodes were not included, because they are not well suited for individual-based 

evolutionary simulations. Unless otherwise indicated, data are from free-ranging natural populations. 

b)
  Critical frequency at b / c = 5. Determines in combination with the payoff parameters and the effective population size how strongly the initial 

spread of reciprocal altruists is opposed by selection.
 

c)
  The second centralized moment of the eigenvalue distribution 2  is a measure for the sparseness of the network and corresponds to the 

probability of direct reciprocation.  

d)
  The normalized mean access time T  is defined as the mean number of steps that is needed for the random walk to reach a randomly chosen 

individual, relative to the expectation in a complete graph. High values of T  are indicative of community structure, which can shield reciprocal 

altruists from exploitation by defectors. The mean access time provides a measure for the evolutionary stability of generalized reciprocity. 

e)
 Lab population, or animals held in captivity.   

f)
 The two studies on bottlenose dolphins use similar photo-identification surveys to infer preferred companionships/school membership from the 

presence of individuals in the same school, but different methods were used to translate the raw data into a network of associations.  
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Figure S1 | Visualizations of the interaction networks represented in Figure 5. Networks were drawn using a 

spring-embedding algorithm (Netdraw 2.087; Borgatti, 2002) and are shown in the same order as represented in 

Table S1. (a) Trinidadian guppy; (b-d) African cichlid; (e-g) House finch; (h) Bechstein’s bat; (i) Leaf-roosting 

bat; (j-l) Yellow-bellied marmot; (m) Galapagos sea lion; (n,o) Bottlenose dolphin; (p) Collared mangabey; (q) 

Vervet monkey; (r) Hamadryas baboon; (s) Guinea baboon. Networks in (b), (d-f), (j), (k) and (o) are not 

included in Figure 1. 



- 4 - 

 

Figure S2 | Hit rates and Laplacian eigenvectors for a network with community structure. Colour version 

of Figure 4, with (a) the number of times individuals receive help from a single neighbour (cf. Figure 4a), 

and (b) the eigenvector of the Laplacian that captures the main subdivision of the population into two 

communities (cf. Figure 4b). The other panels show three additional eigenvectors. (c) Weak structure 

within the two communities (which is also detected by the algorithm that was used to draw the 

network) is highlighted by the eigenvector associated with the second smallest non-zero eigenvalue. (d) 

and (e) show the eigenvectors associated with the second-largest and the largest eigenvalue, 

respectively.   
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Figure S3 | Hit rates and Laplacian eigenvectors for a network with bipartite structure. Colour version of 

Figure 4, with (a) the number of times individuals receive help from a single neighbour (cf. Figure 4c), 

and (e) the eigenvector of the Laplacian that captures the bipartite structure of the population (cf. 

Figure 4d). The other panels show the eigenvectors associated with the smallest (b), second-smallest (c) 

and second-largest (d) nonzero eigenvalue of the Laplacian.  
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Figure S4 | Modularity in the dolphin network. (a) Simulations of our model on the bottlenose dolphin 

network (Lusseau 2003) show that a single defector (black triangle) in a population of altruists (circles) can 

exploit the altruists in its local network, but not those in other parts of the network. Reciprocal altruists are 

coloured according to the number of times they receive help from a single neighbour; values are mapped to a 

standard colour temperature scale that ranges from blue (lowest values) to red (highest values). The detrimental 

effects of the defector are concentrated in its own social environment, such that the defector ultimately 

undermines its own future prospects of receiving help. (b-e) Each network shows the weight of nodes in an 

eigenvector of the Laplacian, normalized for node degree. The upper two networks visualize the eigenvectors 

with the smallest (b) and second smallest (c) nonzero eigenvalues. These highlight communities of densely 

connected nodes that can also be recognized in panel (a). Mapped onto the lower two networks are the 

eigenvectors with the highest (e) and second-highest (d) eigenvalues, which highlight local bipartite network 

structure. 
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Supporting text | Derivation of the upper and lower bounds on the yield of altruism 

Preliminary definitions 

The social network is represented by a weighted graph G  with N  nodes and E  edges. The weight of 

the edge between the nodes i  and j  is denoted as ijw . The network is undirected (i.e., ij jiw w ), it has 

no self-loops (i.e., 0iiw  ), and the weights are positive. The degree of a node is defined as the sum of 

its edge weights, i.e., i ijj
d w . We assume that the network is connected. This implies that there is a 

path between each pair of nodes  ,i j  and that each node has a degree larger than zero. 

Four matrices associated with G  will be important in the following analysis. The first one is the 

adjacency matrix A , a N N  matrix with elements ij ijwA  representing the connectivity of the 

network. The second matrix is the degree matrix D , a N N  diagonal matrix defined as 

 1 2diag , , , Nd d dD . The third matrix is the normalized incidence matrix E , which is a N E  

matrix with elements 

 
 sign if edge  connects node  with node 

0 otherwise

ij

ik i

w
i j k i j

d




 



E  (S.1) 

The product TEE  gives rise to the fourth matrix, a symmetric N N  matrix L  that is known as the 

normalized Laplacian of the graph (Chung 1997).  

The matrices A , L  and D  are related to each other by 

 
1 1

2 2 , D A D DL  (S.2) 

and  L D A  is also known as the combinatorial Laplacian or the admittance matrix of the graph 

(Cvetković et al. 1998). 

A random walk of cooperative interactions 

We assume that the population at the current generation consists of a mixture of n reciprocal altruists 

and N n  defectors. An initial spontaneous act of help by player i  can trigger a sequence of 

reciprocated cooperative interactions among the reciprocal altruists. As long as the sequence does not 
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hit a defector, it travels over the network as a random walk. Let  i jP  denote the probability that the 

sequence has reached node j  by the time that it has travelled  steps. For 0 , the probability 

 i jP  satisfies 

    1 ,i j k j i k

k

P p P     (S.3) 

where  

 
kj

k j k

k

w
p c

d
   (S.4) 

denotes the probability that individual k , after having received help, reciprocates to another individual 

j . In this expression, 1kc   if individual k  is a conditional cooperator and 0kc   if k  is a defector. 

An explicit expression for  i jP  can be obtained by repeatedly applying the recurrence  

relation (S.3). The solution takes a simple form in matrix notation 

    T 1 ,i j j iP 

  e AD C e  (S.5) 

where C  is a diagonal matrix with elements ii icC  and the ie  represent the unit base vectors of N . 

Equation (3) in the main text specifies how the fitness difference between reciprocal altruists and 

defectors depends on the expected number of return events k . This quantity can be calculated from the 

probability distribution  i jP : the number of times that the walk returns to conditional cooperator i  

is given by  
1i i ik P

  and k  is the average of the ik  over all reciprocal altruists in the network. 

It is convenient to express the results in terms of the discrete Laplace transform of  i jP  (Noh and 

Rieger 2004), which is defined as      
0

expi j i jP s P s


 
  . Evaluating the Laplace transform 

at 0s   gives  E 0 1i ik P
    . 

Relationship with structural properties of the network  

Structural network properties, such as the presence of groups of densely connected nodes and the 

connectivity between such groups, are revealed by the eigenvalue spectrum of the graph. Many useful 

results are phrased in terms of the eigenvalues of the normalized Laplacian of the network (Chung 
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1997). We therefore rewrite the solution for  i jP  in equation (S.5), using equation (S.2) to replace 

the adjacency matrix A  by an expression that involves the normalized Laplacian. After some 

manipulation, we obtain 

     T ,j

i

d

i j j id
P  e I C eL  (S.6) 

where I  is the N N  identity matrix. 

Equation (S.6) is an exact result that is conditioned on the stochastic matrix C . This matrix specifies 

the current distribution of reciprocal altruists over the network. The outcome of evolution over the 

course of many generations is likely to be only weakly dependent on the exact realization of C  in any 

particular generation. Therefore, we proceed by studying the properties of the annealed random walk, 

by averaging over realizations of the distribution of altruists over the network. 

Given that the random walk starts at a reciprocal altruist ( 1ic  ), the annealed probability that it will 

have travelled from node i  to node j  after  steps is given by 

  
 

T

T

1

if 0

if 0j

i

j i

di j

k j id
k

P
q





 


 
 




e e

e I eL
 (S.7) 

Here, kq  is the probability that the k-th individual in the random walk will provide help, averaged over 

all possible realizations of the random walk and conditional on the fact that the walk has already 

travelled 1k   steps. It is easy to see that 1 1q   (by definition, the random walk is initiated by a 

reciprocal altruist) and 2 ( 1) / ( 1)q n N   ; this is the probability that a random neighbour of the 

individual who initiated help is a reciprocal altruist. Other than that, the sequence kq  depends in a 

complicated manner on both network structure and the position of individual i , although the latter 

dependence diminishes for longer random walks. We approximate the sequence kq  by choosing 1 1q  , 

2q f  and kq q  for all 2k  , where /f n N  is the frequency of reciprocal altruists in the current 

generation, and where q  is the probability that the random walk continues for at least one step after it 

has reached its stable asymptotic distribution over the network. The probability q  is slightly larger 

than f , since the individuals that are visited by the random walk are not sampled randomly from the 
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population. Instead, reciprocal altruists are overrepresented among the nodes that are adjacent to the 

current position of the random walk, since there must be a path connecting reciprocal altruists that 

leads to the current position (hence, q f  ). A similar argument shows that 1k kq q   for 1k  , such 

that the approximation kq q  provides an upper bound for the probability  i jP . A lower bound is 

obtained by taking kq f  for all 2k  . In many cases, the upper and lower bounds are close together 

(see Figure 3a, f and g for exceptions). Moreover, the lower and upper bound predict the limiting 

behaviour of simulation results for 0f   and 1f  , respectively (Figure 1). This section continues 

with a derivation of the upper bound. An expression for the lower bound can be obtained by 

substituting f  for q  in the right-hand side of the main result, equation (S.9). 

Since L  is a symmetric matrix, its eigenvalues k  are real. We sort the eigenvalues in the order of 

increased magnitude, 1 2 N     , and normalize the corresponding eigenvectors ku  to unit 

length. The eigenvectors form an orthonormal basis of N , such that the matrix of eigenvectors U  

( ku is the k-th column of U ), can be used to decompose L  as T
U U . Here,   is a diagonal matrix 

with the eigenvalues of the normalized Laplacian. 

After substituting this factorization, we obtain the following expression for the discrete Laplace 

transform of equation (S.7) 

       
 

2 2

1

1 1 1 ,
1 1

ij j

i i

N
w d ik jkf f fs

i j ij ij sq d dq q
k k

P s e
q e

 
 



 
 

     
 


U U

 (S.8) 

where ikU  is the -thi  element of eigenvector ku . In the final step of the analysis, we substitute j i  

and 0s  , and use the result to obtain an upper bound for the average number of returns:  

 
 2

1 1

1 1
1

1 .
k

N
f

N qq
k

k


 


 
  

 
  (S.9) 

A lower bound for the number of return events is obtained by substituting q f  , yielding 

 
 

1 1 1

1 1
1

1 .
k

N

f N f
k

k
 



 
  

 
  (S.10) 
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The eigenvalues and eigenvectors of the Laplacian reveal information about network community 

structure. This can be seen most clearly by considering a network that is subdivided into two parts, A  

and B , with little internal structure (Figures 4, S2 and S3). For such a network, one of the eigenvectors 

clearly reflects the subdivision of the network. The elements of that eigenvector are approximately 

  

1

1

if ,

if ,

A B

A A B

A B

B A B

V V

iV V V

AB i
V V

iV V V

d i A

d i B





 


 
 


v  (S.11) 

If AB  is the eigenvalue associated with ABv , then, by definition,    AB AB ABi i
 v vL . Working out 

the matrix multiplication on the right-hand side of this equation yields 

 1 ,A

B

ij ijV

AB V
j A j Bi id d


 

   
A A

 (S.12) 

which can be simplified further by multiplying both sides of the equation by id  and summing over all 

i A . The result is 

 
1 1

.
A B

AB A B V V
V 

  
 

 (S.13) 

This approximation is exact for the ideal case that ij A Aa A  for all pairs  ,i j A A  , ij B Ba A  for 

all  ,i j B B   and ij ji A Ba  A A  for all  ,i j A B  , where A Aa  , A Ba   and B Ba   are three 

arbitrary positive constants. The corresponding network exhibits no other structure than the subdivision 

into parts A  and B , and  

 .A B A B

A A A B A B B B

a B a A

AB a A a B a A a B
  

    
   (S.14) 

This limiting case illustrates several general properties of the eigenvalues of the Laplacian: (1) the 

eigenvalue associated with a given partitioning  ,A B  increases with the number of connections 

between A  and B , properly normalized for the size of the groups and the number of connections 

within groups, (2) the eigenvalue approaches zero if A  and B  are nearly isolated, and (3) the 

eigenvalue attains its maximum value if the graph is bipartite and every single edge connects one of the 

nodes in A  with a node in B  (i.e., 0A A B Ba a   ). In the general case, approximation (S.13) is not 

very accurate, due to the presence of structure within A  and B , the absence of a discrete boundary 
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between A  and B , and the discreteness of connections in unweighted networks. It is possible to 

correct for these factors, but it is more practical to work directly with the eigenvalues of the Laplacian, 

relying on equation (S.13) only to qualitatively interpret the results. 

Approximations for the collective yield 

It is useful to examine the collective yield of altruism at low ( 0f  ) and high ( 1f  ) frequencies of 

reciprocal altruists, since its behaviour at those frequencies explains differences in the fixation 

probabilities of mutants. We first consider a neighbourhood of 1f  , where the upper bound provides 

an accurate estimate for the actual number of return events. In the following section we derive that 

  11 1q f T 

    , where T  is the normalized mean access time of the random walk (the mean access 

time is the expected time needed for the random walk to reach a randomly chosen node in the network; 

Lovász, 1993). Using this result, and in the limit 1f  , we find that  1Y k k   is approximated by 

 
 1

1 .
f N

Y
T


   (S.15) 

To approximate the collective yield in populations that consist mainly of defectors, we first expand the 

right-hand side of equation (S.10) as a series,  

      

1

1 11 1 1

1 0 1 1

1 1 1 1 .
N N

k kf N N
k k

k f f



 



 
 

   

 
      

 
    (S.16) 

Realizing that the term indicated by the curly brace represents a centralized moment of the distribution 

of eigenvalues (  tr NL , such that  E 1k  ), this expression corresponds to equation (5) in the 

main text.   

Equation (S.16) relates k  to the cycle probabilities Z , which represent the probabilities that the 

random walk will return to its point of origin after exactly  steps. This can be seen by calculating Z  

as 

    1 11 1

1

E tr ,
N

kN Nii
k

Z  



     
       AD AD  (S.17) 
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where the k  are the eigenvalues of the random walk matrix 1AD . If kv  is an eigenvector of 1AD  

with eigenvalue k , then 1 2

k


D v  is an eigenvector of the Laplacian, i.e.,  

    1/2 1/2 1/2 1/2 1/21 .k k k k       D v I D AD D v D vL  (S.18) 

Accordingly, the eigenvalues are related by 1   , and we find  

    1

1

1 1

1 1 .
N

kN
k

Z k f Z 




 

        (S.19) 

For small values of f , the actual value of k  approaches the lower bound, and for 1f , we can 

approximate the collective yield by truncating the series expansion in (S.19) at its leading order. This 

yields 

 2 .
f

Y f Z
d

   (S.20) 

The second approximation applies only to unweighted networks ( d  is the average degree), and is exact 

if there is no correlation between the degrees of neighbouring nodes (this assumption is commonly 

made in approaches that attempt to infer network properties from the degree sequence and appears 

reasonable in most applications; Baumann and Stiller 2005). 

Expected length of the random walk 

To estimate the value of q , we calculate the average number of steps   that the random walk will 

take before it hits a defector, after it has converged on its stable asymptotic distribution; q  and   are 

related by 1 1/q    . The stationary distribution of the random walk over the network is given by 

 
 

 

*

1

lim ,
j i i

i N

G
j k

k

P d
P

V
P









 


 (S.21) 

where G ii G
V d


  denotes the volume of the graph G. It can be verified that this solution corresponds 

to an eigenvector of the random walk matrix 1AD  with eigenvalue 1. 

The individual identifiers of the  n  reciprocal altruists in the population are collected in a set C 

(
  
C {i | c

i
 1}) and those of the  N  n  defectors are collected in a set D (

  
D {i | c

i
 0}). We now 



- 14 - 

define  C DF   as the probability that a random walk, started at a node i C  will reach a defector for 

the first time after  steps. This probability is identical to a first-passage probability (Noh and Rieger 

2004) between two sets of nodes, C and D, in a population that consists entirely of reciprocal altruists 

(i.e., in this population, individuals are assigned to one of two groups according to the partitioning of 

the original population into reciprocal altruists and defectors). Accordingly,  C DF   satisfies the 

relationship 

      
0

,C D D D C DP P F  


    (S.22) 

where the coefficients    1

,A B A i i ji A j B
P V d P

  
   denote the probability of moving from a node 

in set A  to a node in set B  in  steps, under the assumption that the starting nodes in A  are drawn 

from the stationary distribution *

iP  of the random walk. 

The expected time needed for the random walk to reach one of the nodes in set D is given by 

    
0

0 .C D C DF F


 



    (S.23) 

The second equality in this expression relates   to the discrete Laplace transform of C DF  , which is 

given by      C D C D D DF s P s P s   ; this result is obtained by applying a Laplace transform on both 

sides of equation (S.22) and solving the resulting equation (Noh and Rieger 2004). Evaluating the 

Laplace transform for  i jP s  in equation (S.8) for 1f q   (the first-passage probability is 

calculated for a population of reciprocal altruists) and expanding  C DF s  as a series in s before taking 

the derivative yields,  

    
1 1 1 1

2 2 2 21 1
,G

D D C

V

V V V
ij ijj D i D i C

  

  

 
  

 
  D D D DL L  (S.24) 

where T U UL   is the Moore-Penrose pseudoinverse of the Laplacian (   is a diagonal matrix 

with 1

kk k
   for 1k   and 1,1 0  ). Averaging over all possible partitionings  ,C D  and assuming 

that the number of defectors is small, yields, 

    1 1 1

1
1 2 1 1 .

j j

N d d

jjN n N d N n d
j

 

  

    
  

 L  (S.25) 
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Here, we have exploited the fact that the stationary distribution of the random walk spans the null-

space of L , such that elements in each row of the matrix 
1 1

2 2
D DL  sum to zero.  

Equation (S.25) simplifies for regular graphs jd d , or if the correlation between cluster membership 

and degree is weak ( 2/ 0jj jE d   L ). In that case,  

 ,
N

N n
T


  (S.26) 

where  

 2

2 1

1 1
1 i

N N
d

ikd
k ikN

T


 


 
  

 
  U  (S.27) 

is the normalized mean access time (cf. Lovász, 1993, p. 18). We used approximation (S.26) in all of 

our numerical calculations. In regular networks, T  reduces to the inverse of the harmonic mean of the 

eigenvalues 2 3, , , N   . 
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Supporting methods | Mean access time in Erdős-Rényi random graphs (methods for Figure 5) 

Figure 5 compares the probability of direct reciprocation ( 2 ) and the normalized mean access time 

(T ) between real-world animal interaction networks and (connected) Erdős-Rényi random graphs 

(Erdős and Rényi 1959). To generate such graphs, we made random connections between pairs 

randomly drawn with replacement from a set of 400 nodes, and varied the total number of connections 

to create graphs with varying average degree (each dot in Figure 5 represents values for a single such 

graph). Only the largest component of the random graph was retained to numerically calculate the 

eigenvalue spectrum, 2  and T  (the range of values of 2  represented in Figure 5 lies below the 

percolation threshold, i.e., the network contains a giant component to which almost all of the nodes 

belong).  

 

Figure S5 | The semicircle law. The white bars represent a histogram of the 

eigenvalues of the normalized Laplacian of a large Erdős-Rényi random graph (N = 

500; p = 0.02; eigenvalues were calculated numerically). The spectral density 

converges in the limit of large N to a semi-circular distribution (grey line). This is a 

special case of Wigner’s semicircle law for the distribution of eigenvalues of large 

random matrices (Wigner 1955, 1958; Equation (S.28)).  

The dashed line in Figure 5 was calculated by using the fact that the spectral density of large Erdős-

Rényi random graphs converges to a semicircular distribution (Wigner 1955, 1958; Figure S5). That is, 

if N is the number of nodes in a connected Erdős-Rényi random graph, and p is the probability of 

finding a tie between a pair of randomly selected nodes, then the probability density distribution of the 

non-zero eigenvalues of the graph Laplacian approaches 
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2

1 1

2
1 if 1 2 1 2 ,

0 otherwise ,



  
  

 


    
 


 (S.28) 

in the limit N  . The width of the semi-circular distribution is given by 1 N p  . Given that 

0 2  , approximation (S.28) applies for 4N p  . 

The correlation between node degree and cluster membership is weak in Erdős-Rényi random graphs, 

such that, based on equation (S.27), we can calculate the normalized mean access time as  

      

 
 

2 1 1

1 2

1 2
1 1

1

1 1 1 1 1
1

2

4 1 11 1

1 1

1
.

N N N

i
k ik i i

N N

k k

N

N
k

d
N NN d

N p

p
N p

T

d k D k D k
k

D k
k







  


  




 





  

  

  

  

  

 



 (S.29) 

Here,  D k  is the degree distribution of the network, which, for 1k  , is given by 

    
   

 

1
Pr .

1 1

N kk

i N

N

k
p p

D k d k
p




  
 

 (S.30) 

The sum in the last term of expression (S.29) has no simple explicit solution, but it can easily be 

evaluated numerically. The calculation of 2  for Erdős-Rényi random graphs is also straightforward 

using the semicircle law. We find 

    
1 2 2

2
1 2

1
1 ,d

Np




    




    (S.31) 

in agreement with our earlier result that 2  is equal to the inverse of the average degree in unweighted 

networks, if the degrees of neighbouring nodes are uncorrelated (see Equation (S.20)). 
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