


Overview of the Method. Given this setup, we can use a repro-
ductive value approach (16–18) to obtain selection differentials
for male ornamentation, female preference, and conditional sex
allocation, which together describe how the system evolves. This

approach involves three basic steps: (i) Determine the dynamics
of a resident population with trait value x for a given trait of
interest; (ii) determine the invasion fitness of a rare mutant with
alternative trait value x̂ within this resident population; and (iii)
determine how mutant fitness w depends on x and x̂. Below we
outline these steps in detail.

Dynamics of the Resident Population. We first consider the dy-
namics of a resident population with ornamentation level t,
preference p, and sex-allocation traits s0 and s1. The numbers of
females, type-0 males, and type-1 males change from one gen-
eration to the next according to the transition matrix

A ¼ 1
2
k

2
4 ½ð1− αÞð1− s0Þ þ αð1− s1Þ�vf q0ð1− s0Þvf q1ð1− s1Þvf
½ð1− αÞs0ð1− μ0Þ þ αs1μ1�vm0 q0s0ð1− μ0Þvm0 q1s1μ1vm0
½ð1− αÞs0μ0 þ αs1ð1− μ1Þ�vm1 q0s0μ0vm1 q1s1ð1− μ1Þvm1

3
5:

[1]

The factor 1/2 is a formality to prevent offspring being counted
twice (once via its mother and once via its father), whereas the
constant k is a scaling factor (equivalent to the average clutch
size) to ensure that the population is stable (in technical terms,
to ensure that the dominant eigenvalue is 1; see refs. 18 and 19).
The leftmost column of A represents the per-capita reproductive
output of females, the center column that of type-0 males, and
the rightmost column that of type-1 males. The three rows rep-
resent, from top to bottom, the result of this reproductive output
in terms of surviving females, type-0 males, and type-1 males in
the next generation.
The entries in the matrix are derived from the basic assump-

tions of our model. To give an example, take the leftmost entry
in the center row, which represents the reproductive contribution
of mothers to type-0 males in the next adult generation. There
are two scenarios in which a female gives birth to a type-0 son:
either she mates with a type-0 male (probability 1 − α) and
produces a son (probability s0) who is unaffected by mutation
(probability 1 − μ0), or she mates with a type-1 male (probability
α) and produces a son (probability s1) who mutates to a non-
ornamented state (probability μ1). In either case, the survival of
that son to reproductive age is vm0. The other entries in matrix A
are derived by using similar logic, detailed in SI Model.
The relative frequencies of females (yf), type-0 males (ym0),

and type-1 males (ym1) change from one generation to the next
according to the dynamic equation yt+1 = Ayt, where y is the
column vector (yf, ym0, ym1)

T representing the relative frequencies
in the current generation (yt) and the next generation (yt+1),
respectively (note that the superscript T indicates transposition).
Explicit equations for yf and ym1 are given in SI Model.

Invasion Fitness of a Rare Mutant. Now we ask whether rare
mutants with different values for the traits of interest can invade
the resident population. The dynamics of mutants are governed
by a matrix similar to A, with the appropriate parameters
replaced by their mutant counterparts:

B ¼ 1
2
k

2
4 ½ð1− α̂Þð1− ŝ0Þ þ α̂ð1− ŝ1Þ�v̂f q0ð1− s0Þv̂f q̂1ð1− s1Þv̂f
½ð1− α̂Þ̂s0ð1− μ0Þ þ α̂ŝ1μ1�vm0 q0s0ð1− μ0Þvm0 q̂1s1μ1vm0
½ð1− α̂Þ̂s0μ0 þ α̂ŝ1ð1− μ1Þ�v̂m1 q0s0μ0 v̂m1 q̂1s1ð1− μ1Þv̂^m1

3
5:

[2]

Mutant phenotypes are equipped with a hat (^) to distinguish
them from resident phenotypes. Note that the probability α̂ that
a mutant female mates with a type-1 male is distinct from the
corresponding resident probability α, because it is determined by
the female’s mutated preference p̂. Her viability v̂f also depends
on p̂, whereas that of mutant males v̂m1 depends on their mutant
level of ornamentation t̂. In contrast, because type-0 males lack

Fig. 1. Summary of the sequence of events in each generation of our
model. The survival of females (vf) and ornamented males (vm1) to re-
production is reduced by the cost of their preference and ornament, re-
spectively (nonornamented males do not pay a cost; vm0 = 1). Reproducing
females give a proportion α of their matings to ornamented males, resulting
in an average number of mates q1 for ornamented males compared with q0

mates for nonornamented males (q1 $ q0). For each offspring produced,
the probability that it is a son is s0 for females with nonornamented partners
and s1 for those with ornamented partners. With mutation probability μ0,
the son of a nonornamented male is ornamented, whereas with mutation
probability μ1, the son of an ornamented male is nonornamented (μ1 > μ0,
i.e., mutations are biased toward the loss of ornamentation).

Table 1. Variables and parameters used in the model

Symbol Meaning

yf Relative frequency of females
ymi Relative frequency of type-i males (i = 0,1)
zf Class-specific individual reproductive value of females
zmi Class-specific individual reproductive value of type-i males
vf Viability of females
vmi Viability of type-i males
α Probability that a female mates with a type-1 male
qi Average number of mates per type-i male
si Proportion of sons produced when mated to a type-i male
μi Probability that the son of a type-i male mutates into the

Ć alternative type
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ornamentation altogether, their viability vm0 and per-capita
number of mates q0 are the same as for resident type-0 males and
so are left without a hat. The sex-allocation traits s0 and s1 receive
hats in the first column, representing the reproductive output of
mutant females, but not in the second and third columns because
mutant males are assumed to mate with resident females only
(due to the rarity of mutant females). Note that when the mutant’s
trait values are the same as those of the resident (x ¼ x̂), matrices
A and B are identical.
The ability of mutant individuals to invade the resident pop-

ulation is given by their fitness w, which is the dominant eigen-
value of matrix B. Assuming mutations of small effect, the
selection differential vw=vx̂ expresses how w depends on x̂, the
mutant value for the trait of interest. According to a standard
result (20) from evolutionary invasion analysis, this is

vw
vx̂

¼ zT
vB
vx̂

y=zTy; [3]

where y represents the relative frequencies of females, type-
0 males, and type-1 males in the resident population (technically,
a dominant right eigenvector of A), z = (zf, zm0, zm1)

T represents
their reproductive values (technically, a dominant left eigenvector
of A) and the derivatives are evaluated at the resident trait values.

Results
Analytical Results. Using the approach (5, 21) outlined in SI
Model, we can use Eq. 3 to obtain the following selection dif-
ferentials (16) for the traits p, t, s0, and s1, evaluated at the
resident trait values (i.e., where p̂ ¼ p, t̂ ¼ t, ŝ0 ¼ s0, and ŝ1 ¼ s1):

vw
vp̂

¼ α9

�
zm1

q1
−
zm0

q0

�
yf þ v9f

vf
zf yf [4]

vw
v̂t

¼ q91
q1

zm1ym1 þ v9m1

vm1
zm1ym1 [5]

vw
vŝ0

¼ 1− α

s0

�
zm0

q0
−

1
2ð1−�sÞ

�
yf [6]

vw
vŝ1

¼ α

s1

�
zm1

q1
−

1
2ð1−�sÞ

�
yf ; [7]

where �s ¼ ð1− αÞs0 þ αs1 is the average offspring sex ratio.
Primes (9) denote differentiation with respect to the trait
under consideration.
At the equilibrium for the sex-allocation traits s0 and s1, the

selection differentials given by Eqs. 6 and 7 must be zero (20),
and so zm0=q0 ¼ 1=½2ð1−�sÞ� and zm1=q1 ¼ 1=½2ð1−�sÞ�. Thus, we
have zm0=q0 ¼ zm1=q1, which implies that the first term on the
right of Eq. 4 vanishes as well. Assuming that v9f ¼ dvf=dp is
negative, i.e., that female choice is costly (13), it follows that the
selection differential for p is negative. Hence, at the sex-alloca-
tion equilibrium, selection cannot sustain a costly female pref-
erence. Sex-ratio adjustment dependent on male ornamentation
erodes the female preference to zero, and as a result, male or-
namentation will evolve to zero as well.

Numerical Results. A numerical implementation of this analytical
model, illustrated in Fig. 2, shows how conditional sex-ratio ad-
justment erodes sexual selection (see SI Model for full details of
the calculation). Initially, we fix the sex-allocation traits at s0 =
s1 = 0.5, such that offspring sex ratios are unbiased (Fig. 2, left of
the vertical dashed lines). Under these conditions, male orna-

mentation and female preference evolve away from their survival
optima (at zero elaboration and zero preference, respectively) to
a stable, exaggerated level (Fig. 2A), following predictions from
standard models of sexual selection (14, 15, 22, 23). Then, from
the point indicated by the dashed lines, we allow the sex-allo-
cation traits s0 and s1 to evolve. Conditional sex-ratio adjustment
evolves as predicted by theory (5, 6): Females mated to highly
ornamented males have more sons than those mated to less-
ornamented males (Fig. 2B, to the right of the dashed line).
[Note that s1 is prevented from deviating too far from 0.5 be-
cause of counterselection to restore an even population sex ratio,
because type-1 males vastly outnumber type-0 males (6).] As
biased sex allocation develops, however, this strategy weakens
sexual selection, leading to a gradual decline in male ornamen-
tation and female preference (Fig. 2A, right of the dashed line).
Thus, sexual selection favors conditional sex allocation, but

this plasticity then erodes sexual selection. Two main processes
are responsible for this erosion. First, sex-ratio adjustment allows
females with unattractive partners to mitigate the fitness disad-
vantage of low male ornamentation. In simple terms, ending
up with an unattractive male is not so disastrous if a female
can skew offspring production toward daughters. This plasticity
reduces the fitness benefit of female choosiness, which is selected
against because of its costs. Second, because choosier females
tend to mate with more ornamented males and, therefore, pro-
duce mainly sons, their strong preference genes will rarely be
expressed by their offspring. This masking lowers the average fe-
male preference in subsequent generations and, thereby, reduces

Fig. 2. Sex-ratio adjustment erodes sexual selection (numerical results). A
shows the level of male ornamentation (t, blue) and female preference
(p, pink; note that this partly obscures the blue line), whereas B shows the
proportion of sons produced by females mated to nonornamented (s0, light
green) and ornamented (s1, dark green) males. Offspring sex ratios are ini-
tially unbiased (s0 = s1 = 0.5), but they are allowed to evolve from the point
indicated by the vertical dashed lines. Male ornamentation and female
preference reach a stable level of exaggeration in the absence of sex-ratio
bias, then decline to zero as conditional sex allocation develops (subject
to counter selection on s1 to restore an even population sex ratio; ref. 6) and
s0 and s1 reach their optima. For the example shown, cp = 0.2, cf = 0.001, cm =
0.1, μ0 = 0.02, and μ1 = 0.3; the starting values for ornamentation and
preference were t = 0.5 and P = 1.5.
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the fitness benefit of male ornamentation. In effect, the condi-
tional strategy of sex allocation reduces the heritability of both low
attractiveness and strong preferences, undermining selection to
invest in costly ornamentation.

Individual-Based Simulations. Using individual-based computer
simulations, we can extend this analysis to a more realistic situ-
ation where male ornamentation and female preference vary
continuously and the evolutionary dynamics are subject to sto-
chastic demographic factors. We simulated a finite population in
which a costly male ornament and a costly female preference
could change over time through selection and mutation (see
Materials and Methods for full details). As in the earlier numerical
results, evolutionary change in the male ornament and female
preference follows predictions from standard analytical models of
sexual selection (14, 15, 22, 23), with both traits quickly evolving to
a stable, exaggerated level (Fig. 3A, left of the dashed line).
Similar patterns are seen regardless of whether male ornamen-
tation is an arbitrary Fisherian trait (Fig. 3) or is a condition-
dependent indicator of “good genes” (see additional simulation
results in SI Results and Fig. S1).
We then allowed a conditional strategy of sex-ratio adjustment

to evolve by incorporating two additional traits, s− and s+ (6).
These traits determine a female’s sex-allocation strategy, with s−
(0 # s− # 1) being the chance of producing a son when mated to
a male with below-average ornamentation and s+ (0 # s+ # 1)
that when mated to a male with above-average ornamentation.
Starting from a situation in which offspring sex ratios are un-
biased (s− = s+ = 0.5), conditional sex-ratio adjustment gradually
develops as predicted by theory (5, 6): Females mated to highly
ornamented males overproduce sons, whereas those mated to
less-ornamented males overproduce daughters (Fig. 3B). [Note
that with continuous variation in male ornamentation, s− and s+
become biased to a similar extent (6).] This strategy then
weakens sexual selection, leading to a gradual decline in male
ornamentation and female preference (Fig. 3A, right of the
dashed line).
When male ornamentation is a condition-dependent indicator

of good genes (23), sexual selection is weakened to a lesser ex-
tent than when it is a purely Fisherian trait (SI Results). In the
former case, the heritable benefits for a female who mates with
an attractive male are not entirely sex-limited; although only her
sons can profit from their father’s ornamentation genes, both her
daughters and her sons will inherit his genes for viability. Thus,
even when females exert a great degree of control over the sex of
their offspring, it still pays to mate with more ornamented males.
This difference notwithstanding, for both Fisherian and good
genes models of sexual selection, ornamentation and preference
are substantially reduced as conditional sex allocation develops.
To check that sex-ratio adjustment is directly responsible for

this decline, we ran another set of simulations in which strategies
with varying degrees of sex-ratio bias were introduced partway
through (Fig. 4). Initially, with the sex ratio fixed at 0.5, the male
ornament and female preference quickly evolve to a stable, ex-
aggerated level as before. We then introduced a biased sex-
allocation strategy for all females, causing them to produce more
sons when mated to an attractive partner and more daughters
when mated to an unattractive partner. The effect on sexual
selection is dramatic. For a moderate degree of bias, s+ = 0.7
and s− = 0.3, very rapidly the ornament and preference drop to
approximately one-half of their original level of expression.
Adjustment strategies involving weaker biases result in a smaller
drop, whereas with stronger biases the decline in ornamentation
is even sharper (Fig. 4).
Our simulation results confirm that the equilibrium levels of

female preference and male ornamentation are substantially
lower when sex-ratio adjustment is possible. In effect, sexual

selection undermines itself by favoring a conditional strategy of
sex-ratio adjustment based on male attractiveness.

Discussion
Previous theory (5, 6) has confirmed the empirical suggestion (3)
that variation in male sexual displays favors conditional sex allo-
cation by females. Here, we have shown an unexpected conse-
quence of this process: that by reducing the fitness difference
between females with attractive and unattractive partners, this
sex-allocation strategy undermines the same selective force that
created it, causing male ornamentation to decline. Moreover,
because choosier females tend to mate with more highly orna-
mented males and, therefore, produce sons, their stronger pref-
erence genes are likely to be masked in the next generation,
weakening sexual selection still further. Our evolutionary simu-
lations predict a lower level of sexual display than in cases where
facultative sex-ratio adjustment is not possible. This finding
implies that, all else being equal, the most exaggerated secondary
sexual traits should be seen in species with little or no control over
offspring sex. For instance, we might expect that species with
genotypic sex determination will have more exaggerated sexual
ornamentation than closely related species with temperature-
dependent sex determination, assuming that the latter mechanism
affords parents greater control over the sex of their offspring.
It is known that the evolution of phenotypic plasticity in a

quantitative trait can alter the evolution of the average pheno-
type for that trait (24–27). Here, we have shown a related effect:
that plasticity in one trait (sex-ratio bias) can alter the evolution
of another trait (ornamentation) on which it is conditional. We
propose that this phenomenon is not restricted to sex allocation,
but is an example of a more general principle. Whenever heri-
table variation in fitness is maintained for a given trait, selection

Fig. 3. Coevolutionary dynamics of sexual selection and sex allocation (in-
dividual-based simulations). A shows the level of male ornamentation
(t, blue) and female preference (p, pink) under Fisherian sexual selection,
whereas B shows the female sex-allocation strategy in the same set of simu-
lations based on traits s+ and s−, where s+ (dark green) is the probability of
producing a son when her partner has above-average ornamentation and s−
(light green) is the probability of producing a sonwhen he has below-average
ornamentation. Offspring sex ratios are initially unbiased (s+ = s− = 0.5), but
they are allowed to evolve from the point indicated by the vertical dashed
lines. All values are shown as the mean (solid line) ± SD (stippling) from 20
replicate simulation runs. For parameter values, see Materials and Methods.
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should favor any conditional strategy that improves the fitness
prospects of the least successful phenotypes, but in doing so, it
erodes selection on the trait.
To illustrate the general nature of our argument, we give

examples from a range of contexts that do not involve sex allo-
cation. The first concerns kleptoparasitism (28), in which one
animal steals food that a conspecific has caught before the latter
can eat it. Selection for good hunting skills is expected to be
strong in any predatory species, but there may still be substantial
variation in hunting success because of mutations in polygenic
traits affecting the development of motor skills. If poor hunters
adopt kleptoparasitic behavior, however, this conditional strat-
egy will reduce fitness differences based on hunting success and,
thereby, weaken selection on hunting ability. Combined with the
costs incurred by parasitized hunters, the weakened selection may
lead to a decline in hunting skills that, in turn, will reduce the
benefits of stealing. Thus, selection on hunting ability and klep-
toparasitism interact in a highly dynamic fashion.
The second example involves polygynous mating systems in

which access to females is determined by male dominance rela-
tions. In such systems, there will be strong selection for male
characteristics related to dominance, such as large body size. Slight
differences between males in these characteristics early in life may
largely determine their relative positions in the dominance hier-
archy, leading to substantial differences in lifetime reproductive
success. If small males adopt a “sneaker” tactic (29), however,
allowing them to achieve significant reproductive success by sub-
versive means, this conditional strategy will reduce fitness differ-
ences between males of high and low dominance rank and, thereby,
weaken selection on body size. This weakening of selection, in turn,
will alter the selection–mutation balance, allowing greater levels of
genetic variation for body size to persist in the population.
Our final example deals with costly dispersal. In many plant

and animal species, dispersal away from the natal habitat may be
favored despite the energetic cost or mortality risk associated
with this movement. The benefits of dispersal will typically be
frequency-dependent, with the greatest pressure to disperse oc-
curring when most individuals stay at home. However, if indi-
viduals that forgo dispersal can adapt better to overcrowding, for

example, through niche construction, then the strength of se-
lection on dispersal will be weakened. Selection favors a strategy
that mitigates the fitness disadvantage of staying in the natal
habitat, and this plasticity erodes directional selection on the
ability to disperse away from that habitat.
These diverse examples show that our model applies to a broad

range of contexts. The evolutionary feedback process we have
described is likely to be a widespread and important force main-
taining phenotypic variation in the face of directional selection.

Materials and Methods
Details of the Individual-Based Simulations. The individual-based simulations
were similar to those described in an earlier paper (6). In the main text, we
focus on Fisherian sexual selection, whereas the simulations for good genes
sexual selection are presented in SI Results. We modeled a population of
5,000 individuals, each with diploid, autosomal genetic values for the fol-
lowing traits: p, coding for preference (expressed only by females); t, coding
for ornamentation (expressed only by males); and two sex-allocation traits, s−
and s+ (expressed only by females). The value for p can take any real number,
whereas t is limited to positive values and s− and s+ are limited between
0 and 1. We chose to restrict t to positive values because this range might
better represent certain forms of male display (30), for example, the height
of a plumage crest, but we obtain similar results when male ornamentation
can also take negative values (see additional simulation results in SI Results
and Fig. S2). Female preference and male ornamentation are both assumed
to be costly; survival to maturity is maximized for p = 0 and t = 0 and declines
away from these optima as specified by the functions expð− cfp2Þ and
expð− cmt2Þ, where cf and cm are positive constants.

For reproduction, females are drawn from the population with a chance
proportional to their survival probability. Each surviving female then samples
10males, again weighted by survival probability, and chooses one of them on
the basis of his ornamentation. The chance that she picks a given male is
proportional to expðcpptÞ, where cp is a positive constant scaling the im-
portance of ornamentation to female choice. Thus, females with a positive
preference (p > 0) prefer more ornamented males, those females with
a negative preference (p < 0) prefer less ornamented males and those
females with p = 0 mate randomly. To facilitate sexual selection, we started
the simulations with a positive preference (22, 30); the same process occurs
when starting from a situation of random choice, but it takes longer.

Each mating produces a single offspring, whose genetic values are de-
termined by standard Mendelian inheritance. We assume that there is no
genetic dominance and that the loci are unlinked. Offspring sex is determined
by the father’s ornamentation and the mother’s sex-allocation strategy: the
probability of producing a son is s+ when the father’s ornamentation level is
above average and s− when it is below average. For each trait, we assume
that mutations occur in a small fraction of offspring (with probability μp for
p, μt for t, and μs for s− and s+), causing the genetic value to change upward
or downward by an amount drawn from a uniform probability distribution
(up to a certain maximum amount). Upward and downward mutations are
equally likely except in the ornamentation trait t, for which we assume that
a downward mutation bias reduces ornamentation by an average amount g
(6, 15). Reproduction continues until a total of 5,000 offspring have been
produced, at which point all of the adults die and are replaced by the off-
spring generation. The same cycle of events was repeated for 100,000
generations, which is the timespan depicted in our figures. Computer code
for the simulations is available from the authors upon request.

For the results shown in the main text, the parameter values were cp = 1.0,
cf = 0.001, cm = 0.5, μp = μt = μs = 0.05 and g = 0.02, with the average genetic
values in the initial population set at �p ¼ 1, �t ¼ 0, and �sþ ¼ �s− ¼ 0:5. How-
ever, the eroding effect of sex-ratio adjustment is seen for a wide range of
parameter values, whenever sexual selection leads to exaggerated male
ornamentation.
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SI Model
Full Derivation of the Resident Transition Matrix A.Here, we explain
how we derived the entries of the transition matrix A (Eq. 1),
which governs the dynamics of a resident population with or-
namentation level t, preference p, and sex-allocation traits s0 and
s1. We reproduce the matrix here for clarity:

A ¼ 1
2
k

2
4 ½ð1− αÞð1− s0Þ þ αð1− s1Þ�vf q0ð1− s0Þvf q1ð1− s1Þvf
½ð1−αÞs0ð1− μ0Þ þ αs1μ1�vm0 q0s0ð1− μ0Þvm0 q1s1μ1vm0
½ð1− αÞs0μ0 þ αs1ð1− μ1Þ�vm1 q0s0μ0vm1 q1s1ð1− μ1Þvm1

3
5:

[S1]

To recap: The first column of A (a1) represents the per-capita
reproductive output of females, the second column (a2) that of
type-0 males, and the third (a3) that of type-1 males. The three
rows represent, from top to bottom, the result of this re-
productive output in terms of surviving females, type-0 males,
and type-1 males in the next generation. We will use the notation
anm to represent the element occupying the nth row and mth
column of matrix A.
The top-left entry (a11) represents the per-capita reproductive

contribution of mothers in the current generation to mothers in
the next generation. A proportion 1 − α of their matings are with
nonornamented males, with whom a proportion 1 − s0 of the
offspring they produce are daughters. The remaining α matings
are with ornamented males, with whom a proportion 1 − s1 of
the offspring they produce are daughters. In both cases, these
daughters survive to reproduce with probability vf.
The middle-left entry (a21) represents the per-capita repro-

ductive contribution of mothers in the current generation to
nonornamented fathers in the next generation. A proportion 1 −
α of these mothers’ matings are with nonornamented males, with
whom a proportion s0 of the offspring they produce are sons;
with probability 1 − μ0, these sons are unaffected by mutation
and, therefore, inherit their father’s lack of ornamentation. The
remaining α matings are with ornamented males, with whom
a proportion s1 of the offspring they produce are sons; with
probability μ1, these sons lose their father’s ornamentation
through mutation. In both cases, these nonornamented sons
survive to reproduce with probability vm0.
The bottom-left entry (a31) represents the per-capita re-

productive contribution of mothers in the current generation to
ornamented fathers in the next generation. A proportion 1 − α of
these mothers’ matings are with nonornamented males, with
whom a proportion s0 of the offspring they produce are sons;
with probability μ0, these sons mutate into the ornamented state.
The remaining αmatings are with ornamented males, with whom
a proportion s1 of the offspring they produce are sons; with
probability 1 − μ1, these sons are unaffected by mutation and,
therefore, inherit their father’s ornamentation. In both cases,
these ornamented sons survive to reproduce with probability vm1.
The top-center entry (a12) represents the per-capita re-

productive contribution of nonornamented fathers in the current
generation to mothers in the next generation. The expected
number of mates for these fathers is q0. A proportion 1 − s0 of
their offspring are daughters, who survive to reproduce with
probability vf.
The middle-center entry (a22) represents the per-capita re-

productive contribution of nonornamented fathers in the current
generation to nonornamented fathers in the next generation.
The expected number of mates for these fathers is q0. A pro-
portion s0 of their offspring are sons, who inherit their father’s

lack of ornamentation with probability 1 − μ0 and then survive to
reproduce with probability vm0.
The bottom-center entry (a32) represents the per-capita re-

productive contribution of nonornamented fathers in the current
generation to ornamented fathers in the next generation. The
expected number of mates for nonornamented fathers is q0. A
proportion s0 of their offspring are sons, who mutate into the
ornamented state with probability μ0 and then survive to re-
produce with probability vm1.
The top-right entry (a13) represents the per-capita re-

productive contribution of ornamented fathers in the current
generation to mothers in the next generation. The expected
number of mates for these fathers is q1. A proportion 1 − s1 of
their offspring are daughters, who survive to reproduce with
probability vf.
The middle-right entry (a23) represents the per-capita re-

productive contribution of ornamented fathers in the current
generation to nonornamented fathers in the next generation.
The expected number of mates for ornamented fathers is q1. A
proportion s1 of their offspring are sons, who mutate into the
nonornamented state with probability μ1 and then survive to
reproduce with probability vm0.
Finally, the bottom-right entry (a33) represents the per-capita

reproductive contribution of ornamented fathers in the current
generation to ornamented fathers in the next generation. The
expected number of mates for these fathers is q1. A proportion s1
of their offspring are sons, who inherit their father’s ornamen-
tation with probability 1 − μ1 and then survive to reproduce with
probability vm1.

Finding the Relative Frequencies. For consistency, it is required that
all females (relative frequency yf) have the same reproductive
output as all males (ym0 + ym1), in other words that

a1yf ¼ a2ym0 þ a3ym1: [S2]

This equation is helpful in finding the dominant eigenvalue λ of
A, which is the long-term growth rate of the resident pop-
ulation. Let y = (yf, ym0, ym1)

T be the dominant right eigen-
vector of A, containing the stable relative class frequencies; this
eigenvector is given by Ay = λy, or, in terms of the columns of
A, a1yf + a2ym0 + a3ym1 = λy. Substituting S2 into this equation,
we get λy ¼ 2a1yf ⇒ λ ¼ 2a11 ¼ kð1−�sÞvf , where �s ¼ ð1− αÞs0þ
α s1 is the average offspring sex ratio. The long-term growth
rate is therefore equal to the per-capita number of surviving
daughters. Note that k gets rescaled by density dependence so
that in a stable population λ = 1, i.e., k ¼ 1=ð1−�sÞvf (see refs. 1
and 2). For the rest of our analysis, we do not need an explicit
solution for the stable class distribution, but it will prove useful
to have explicit equations for yf and ym1:

2λyf ¼ ð1−�sÞvfyf þ q0ð1− s0Þvfym0 þ q1ð1− s1Þvfym1; [S3a]

2λym1 ¼ ½ð1− αÞs0μ0 þ αs1ð1− μ1Þ�vm1yf þ q0s0μ0vm1ym0
þ q1s1ð1− μ1Þvm1ym1: [S3b]

Calculating the Selection Differentials for a Rare Mutant. The tran-
sition matrix B, as given in Eq. 2, is as follows:
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B ¼ 1
2
k

2
4 ½ð1− α̂Þð1− ŝ0Þ þ α̂ð1− ŝ1Þ�v̂f q0ð1− s0Þv̂f q̂1ð1− s1Þv̂f
½ð1− α̂Þ̂s0ð1− μ0Þ þ α̂ŝ1μ1�vm0 q0s0ð1− μ0Þvm0 q̂1s1μ1vm0
½ð1− α̂Þ̂s0μ0 þ α̂ŝ1ð1− μ1Þ�v̂m1 q0s0μ0 v̂m1 q̂1s1ð1− μ1Þv̂m1

3
5;

[S4]

where mutant phenotypes have hats (^) to distinguish them from
resident phenotypes. This matrix describes the dynamics of rare
mutant individuals in the resident population.
To quantify the invasion prospects of mutants, we investigate

the sensitivity of B’s dominant eigenvalue w with respect to small
changes in the mutant trait values. If z and y are left and right
eigenvectors of A, then according to a standard result (3),

vw
vx̂

¼ zT
vB
vx̂

y=zTy; [S5]

where x̂ is the mutant value for the trait of interest and the
derivatives are evaluated at the resident trait values. Because
we are mainly interested in the direction of selection, we will
ignore the denominator of the right-hand side (which is always
positive). The vectors y and z correspond to the stable class
distribution and class reproductive values for the resident pop-
ulation (3). As with y, it is not necessary to calculate the repro-
ductive values z explicitly, but we do need the following
equations for the reproductive values of type-0 and type-1 males:

2λ zm0 ¼ q0½ð1− s0Þvfzf þ s0ð1− μ0Þvm0zm0 þ s0μ0vm1zm1� [S6a]

2λ zm1 ¼ q1½ð1− s0Þvfzf þ s1μ1vm0zm0 þ s1ð1− μ1Þvm1zm1�: [S6b]

Now we can work out the selection differential for p, using the
numerator of the right-hand side of Eq. S5. Writing v9f ¼ dvf=dp
and α9 ¼ dα=dp, we get

vw
vp̂

¼ zT

2λ

2
4 α9ðs0 − s1Þvf þ v9fð1−�sÞ q0ð1− s0Þv9f q1ð1− s1Þv9f

α9½s1μ1 − s0ð1− μ0Þ� 0 0
α9½s1ð1− μ1Þ− s0μ0� 0 0

3
5y

[S7a]

¼ zT

2λ

2
4
α9ðs0 − s1Þvf þ v9f=vf ½ð1−�sÞvf yf

þq0ð1− s0Þvf ym0 þ q1ð1− s1Þvf ym1�
α9½s1μ1 − s0ð1− μ0Þ� yf
α9½s1ð1− μ1Þ− s0μ0� yf

3
5 [S7b]

¼½S3a� z
T

2λ

2
4 α9ðs0 − s1Þvf þ ðv9f=vfÞ2λ yf

α9½s1μ1 − s0ð1− μ0Þ� yf
α9½s1ð1− μ1Þ− s0μ0� yf

3
5 [S7c]

¼½S6a;b�
α9

�
zm1

q1
−
zm0

q0

�
yf þ v9f

vf
zf yf : [S7d]

Likewise, the selection differential for t, with primes denoting
differentiation with respect to t, is

vw
v̂t

¼ zT

2λ

2
4 0 0 a13q91=q1

0 0 a23q91=q1
a31v9m1=vm1 a32v9m1=vm1 a33ðv9m1=vm1 þ q91=q1Þ

3
5y

[S8a]

¼ zT

2λ

2
4 a13ðq91=q1Þym1

a23ðq91=q1Þym1
ða31 yf þ a32 ym0 þ a33 ym1Þv9m1=vm1 þ a33ðq91=q1Þym1

3
5

[S8b]

¼½S3b� z
T

2λ

2
4 a13ðq91=q1Þym1

a23ðq91=q1Þym1
2λðv9m1=vm1Þym1 þ a33ðq91=q1Þym1

3
5 [S8c]

¼ 1
2λ
ðq91=q1Þða13zf þ a23zm0 þ a33zm1Þ ym1 þ ðv9m1=vm1Þ zm1 ym1

[S8d]

¼½S6b�ðq91=q1Þ zm1 ym1 þ ðv9m1=vm1Þ zm1 ym1: [S8e]

Next we turn to the sex-allocation traits. The selection differential
for s0 is

vw
vŝ0

¼ 1− α

2ð1−�sÞvf ½− vf þ ð1− μ0Þ vm0 zm0 þ μ0vm1 zm1� yf [S9a]

¼ 1− α

2ð1−�sÞvf

�
−
vfzf
s0

þ 1− s0
s0

vfzf þ ð1− μ0Þvm0 zm0 þ μ0vm1zm1

�
yf

[S9b]

¼ 1− α

2ð1−�sÞvf

�
−
vfzf
s0

þ 2ð1−�sÞvf
q0s0

zm0

�
yf [S9c]

¼ 1− α

s0

�
zm0

q0
−

1
2ð1−�sÞ

�
yf ; [S9d]

whereas that for s1, calculated in a similar way, is

vw
vŝ1

¼ α

s1

�
zm1

q1
−

1
2ð1−�sÞ

�
yf : [S10]

The selection differentials S7d, S8e, S9d, and S10 form Eqs. 4–7.

Numerical Simulations. For numerical simulations, we need to
make some additional specific assumptions. Let r ¼ expðcpptÞ
be the odds that a resident female with preference p chooses a
type-1 male with ornamentation level t over a type-0 (non-
ornamented) male, where cp is a positive constant. Then the
probability α that such a female will mate with a type-1 male is
given by

α ¼ r ym1

ym0 þ r ym1
: [S11]

Eq. S11 is actually an implicit equation for α, because the class
frequencies ymi will depend on α. However, for a mutant female,
the class frequencies are constant, giving α9 ¼ αð1− αÞðdr=dpÞ=r.
The odds that a type-1 male with mutant ornamentation level t̂ is
chosen by a resident female is r̂ ¼ expðcpp̂tÞ, which makes his
expected number of mates

q̂1 ¼ yf
r̂

ym0 þ r ym1
; [S12]

and, therefore, q91=q1 ¼ ðdr=dtÞ=r. Likewise, q̂0 ¼ yf=ðym0þ
r ym1Þ ¼ q0 (the expected mating success of mutant and resident
type-0 males is identical because neither expresses an ornament).
Finally, we assume (as in the individual-based simulations)
that viability decreases according to a Gaussian function with
p and t:
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vf ¼ expð− cfp2Þ [S13a]

vm1 ¼ expð− cmt2Þ [S13b]

and vm0 = 1.
Evolutionary dynamics can be modeled by using the dynamic

equation _x ¼ vw=vxjx¼x̂ for the traits p, t, s0, and s1. An example is
shown in Fig. 2.

SI Results
Good Genes Sexual Selection. For the good genes simulations, we
included an extra trait, v, to model genetic variation in viability,
which affects survival to adulthood. Female survival now de-
pends on her viability and her expressed preference, as specified
by the function v$expð− cfp2Þ, whereas male survival is pro-
portional to v$expð− cmγ2Þ, where γ denotes his expressed
ornamentation. This ornamentation is assumed to be condition-
dependent, with γ = tv, which means that males of higher via-
bility are more ornamented for a given value of t. Thus, male
ornamentation acts as a conditional indicator of genetic viability
(4). Females choose on the basis of this condition-dependent
ornamentation; so now the chance that a given male is picked
from the sample of 10 males is proportional to expðcppγÞ.
Likewise, sex-ratio adjustment by females is based on the ex-
pressed ornamentation of her chosen partner, so it depends on
γ rather than t. Mutations occur in both t (with probability μt)
and v (with probability μv), but in contrast to the Fisherian

simulations, those mutations in t are unbiased (g = 0). Instead,
biased mutations are assumed to affect the viability trait v, re-
ducing its value by an average amount h (h > 0) and, thereby,
maintaining genetic variation between males (4, 5).
Fig. S1 shows the results of these good genes simulations with

parameter values cp = 1.0, cf = 0.0025, cm = 0.5, μp = μt = μv =
μs = 0.05, and h = 0.02 and average genetic values starting at
�p ¼ 1, �t ¼ 0, �v ¼ 0:01, and �sþ ¼ �s− ¼ 0:5. As in the Fisherian
simulations, male ornamentation and female preference co-
evolve to exaggerated levels under sexual selection, but then
decline as sex-ratio adjustment develops.

When Ornamentation Can Take Negative Values. We ran additional
simulations in which the genetic value for ornamentation could
take any real number, as in some previous models of sexual se-
lection (4, 6). Otherwise, the details of the simulations were kept
the same, with male survival maximized for t = 0 and declining
away from this optimum according to the function expð− cmt2Þ,
where cm is a positive constant.
Fig. S2 shows the results of these simulations for Fisherian

sexual selection with parameter values cp = 1.0, cf = 0.001, cm =
0.5, μp = μt = μs = 0.05, and g = 0.02 and average genetic values
starting at �p ¼ 1 and �t ¼ 0. The sex-allocation traits were ini-
tially fixed at sþ ¼ s− ¼ 0:5, but partway through the simu-
lations, we allowed these traits to evolve. As before, male orna-
mentation and female preference coevolve to exaggerated levels
under sexual selection, but then decline as sex-ratio adjustment
develops.
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Fig. S1. Coevolutionary dynamics of good genes sexual selection and sex allocation (individual-based simulations). A shows the level of male ornamentation
(t, blue) and female preference (p, pink) under good genes sexual selection, whereas B shows the female sex-allocation strategy in the same set of simulations
based on traits s+ and s−, where s+ (dark green) is the probability of producing a son when her partner has above-average ornamentation and s− (light green) is
the probability of producing a son when he has below-average ornamentation. Offspring sex ratios are initially unbiased (s+ = s− = 0.5) but are allowed to
evolve from the point indicated by the vertical dashed lines. All values are shown as the mean (solid line) ± SD (stippling) from 20 replicate simulation runs.

Fawcett et al. www.pnas.org/cgi/content/short/1105721108 3 of 4

www.pnas.org/cgi/content/short/1105721108


Fig. S2. Coevolutionary dynamics of sexual selection and sex allocation when ornamentation can evolve either above (positive) or below (negative) its survival
optimum, as in some previous models of sexual selection. A shows the level of male ornamentation (t, blue) and female preference (p, pink) under Fisherian
sexual selection, whereas B shows the female sex-allocation strategy in the same set of simulations based on traits s+ and s−, where s+ (dark green) is the
probability of producing a son when her partner has above-average ornamentation and s− (light green) is the probability of producing a son when he has
below-average ornamentation. Offspring sex ratios are initially unbiased (s+ = s− = 0.5) but are allowed to evolve from the point indicated by the vertical
dashed lines. All values are shown as the mean (solid line) ± SD (stippling) from 20 replicate simulation runs.
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