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Abstract An integrated account of the molecular changes occurring during the process of

cellular aging is crucial towards understanding the underlying mechanisms. Here, using novel

culturing and computational methods as well as latest analytical techniques, we mapped the

proteome and transcriptome during the replicative lifespan of budding yeast. With age, we found

primarily proteins involved in protein biogenesis to increase relative to their transcript levels.

Exploiting the dynamic nature of our data, we reconstructed high-level directional networks, where

we found the same protein biogenesis-related genes to have the strongest ability to predict the

behavior of other genes in the system. We identified metabolic shifts and the loss of stoichiometry

in protein complexes as being consequences of aging. We propose a model whereby the

uncoupling of protein levels of biogenesis-related genes from their transcript levels is causal for the

changes occurring in aging yeast. Our model explains why targeting protein synthesis, or repairing

the downstream consequences, can serve as interventions in aging.

DOI:10.7554/eLife.08527.001

Introduction
Aging, the gradual decrease in function occurring at the molecular, cellular, and organismal level, is

a main risk factor for cardiovascular disease, neurodegeneration, and cancer (Niccoli and Partridge,

2012). Understanding its driving force is the required step towards enabling interventions that might

delay age-related disorders (de Magalhães et al., 2012). While this remains an unsolved problem in

biology (Medawar, 1952; Mccormick and Kennedy, 2012), significant advances in the field have

shown the process of aging to be malleable at both the genetic and environmental levels, indicating

that it is possible for its causal elements to be dissected. The rate of aging, however, is influenced

by diverse factors, including protein translation, protein quality control, mitochondrial dysfunction,

and metabolism (Kennedy and Kaeberlein, 2009; Webb and Brunet, 2014; Lagouge and Larsson,

2013; Barzilai et al., 2012). The multitude of factors involved indicates that aging is a complex and

multifactorial process, where ultimately an integrated and systems-level approach might be neces-

sary to untangle the causal forces.

Important insights into the complex process of aging originate from research on the unicellular

eukaryote Saccharomyces cerevisiae, which can produce 20–30 daughter cells before its death

(Mortimer and Johnston, 1959, and see Wasko and Kaeberlein, 2014; Denoth Lippuner et al.,

Janssens et al. eLife 2015;4:e08527. DOI: 10.7554/eLife.08527 1 of 24

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.08527.001
http://dx.doi.org/10.7554/eLife.08527
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


2014 for recent reviews). Significant contributions towards global mapping of the aging process

have been demonstrated through transcriptome studies (Egilmez et al., 1989; Lin et al., 2001;

Lesur and Campbell, 2004; Koc et al., 2004; Yiu et al., 2008) and genome-wide single-gene dele-

tion lifespan measurements (reviewed in Mccormick and Kennedy, 2012). However, a major task

remains to comprehensively describe the molecular changes that accompany the aging process. As

the exponential increase in daughter cells represents a major challenge in terms of generating suffi-

cient numbers of aged cells, to date no comprehensive description of the changes on both the pro-

teome and transcriptome level has been provided. Assuming that the molecular changes occurring

along the replicative lifespan of yeast are, in part, responsible for its decreased viability that occurs

over time, we reason that revealing the dynamic and interdependent changes that accompany this

process would allow us to distinguish cause from consequence in aging.

Here, we developed a novel column-based cultivation method that allowed us to generate large

numbers of advanced-age cells in a constant environment. Applying next-generation RNA sequenc-

ing and shotgun proteomics, we mapped the molecular phenotypes of aging yeast cells at 12 time

points, well into advanced age where the majority of cells had died due to aging. Analysis of these

dynamic and comprehensive datasets allowed us to identify a general uncoupling of protein levels

from their corresponding messenger RNA (mRNA) levels. This uncoupling was most apparent in pro-

tein biogenesis-related proteins, which we found over-represented relative to their transcripts. Using

computational network-based inference methods, we found that changes in these genes had the

strongest ability to predict the behavior of other genes, thereby suggesting their causal role in repli-

catively aging yeast. On the basis of these analyses, we provide a systems-level model of aging uni-

fying and integrating diverse observations made within the field.

eLife digest Aging is a complex process, and so many scientists use baker’s yeast as a simpler

model to understand it. Although many genes that influence aging have been found, all the

generated knowledge is still rather fragmented. It also remains difficult to disentangle cause and

consequence. That is to say, sometimes a gene that looks like it might cause aging could simply be

a gene that responds to an age related phenomenon. To unravel this puzzle of cause and effect, it is

necessary to first get an idea on a system level of everything that changes as an organism ages.

Now, Janssens, Meinema et al. have managed to map many of the molecular changes that occur

as baker’s yeast ages; this is something that has yet to be achieved for any other organism. The

work first involved developing a new way of growing baker’s yeast to keep and generate large

cohorts of aging yeast cells in a constant environment. It also required the use of a mathematical

‘un-mixing’ tool to separate the data obtained from the aging cohort from the data from the young

offspring that the yeast produce while they age.

Janssens, Meinema et al. measured both the majority of the transcriptome and much of the

proteome of baker’s yeast throughout its reproductive lifespan. The “transcriptome” refers to the

collection of RNA molecules in the cell, which are produced whenever a gene is expressed. The

“proteome” refers to all the proteins in the cell, which are translated from the RNA transcripts by

the cell’s so-called “translational machinery”. These experiments revealed that this yeast’s proteome

reflects its transcriptome less and less as it ages. In particular, this ‘uncoupling’ of the proteome

from the transcriptome was seen most strongly for the proteins related to the cell’s translational

machinery; these proteins accumulated with age relative to their transcripts.

Janssens, Meinema et al. then conducted a computational network-based analysis of the data.

This indicated that the uncoupling is the driving force behind the aging process. Many of the other

molecular changes that occur with aging were predicted to be consequences of this uncoupling.

These findings give a framework for many observations in the existing literature. However, it

remains unclear why proteins related to translational machinery are overrepresented in aging yeast

in the first place. This question should be explored in future work.

DOI:10.7554/eLife.08527.002
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Results

Novel culture and computational methods to determine aged cell
phenotypes
To obtain aged yeast cells, we bound streptavidin-conjugated iron beads to biotinylated cells

(adapted from Smeal et al., 1996) from an exponentially growing culture. This starting cohort of

mother cells was put into a column containing stainless steel mesh that was positioned within a mag-

netic field (Figure 1A, Figure 1—figure supplement 1). The daughter cells do not inherit the iron

beads, as the yeast cell wall remains with the mother during mitosis (Smeal et al., 1996). By running

a constant flow of medium through the column, we washed away the majority of emerging daughter

cells. The flowing medium also provided fresh nutrients and oxygen and ensured constant culture

conditions, as confirmed for pH, glucose, and oxygen levels (Figure 1—figure supplement 2A–C).

By maintaining multiple columns simultaneously, we could harvest cells from the same starting

cohort at different time points and thus at different replicative ages (Figure 1—figure supplement

2D). Because we could retain up to 109 mother cells per column (Figure 1—figure supplement 3),

we could produce sufficient numbers of aged cells for performing parallel proteome and transcrip-

tome analyses. Computer simulations showed that the age distribution broadened over time (Fig-

ure 1—figure supplement 4A,B). The broadened age distribution results in a lower resolution

making detecting the actual changes occurring at later time points more difficult, and we therefore

harvested cells at exponentially increasing time intervals to maximize the differences between time

points at later ages.

To assess whether our column-based cultivation method generated correctly aged cells in a

reproducible manner, we developed flow cytometric assays to determine the typical phenotypes of

aging cells. Avidin-fluorescein isothiocyanate (AvF) binding to the biotin-labeled cells distinguished

the starting cohort of mother cells from daughter cells (Figure 1—figure supplement 5A). Dead

cells were identified using propidium iodide (PI), which fluoresces upon intercalating with the DNA

of membrane-permeable dead cells (Figure 1—figure supplement 5A). These two assays were used

to determine the fractions of daughters, mothers, and dead cells in a population (Figure 1—figure

supplement 5B). From this data, we derived the viability of the mother cells over time, which we

found to be in excellent agreement with the lifespan curve of yeast as observed in a microfluidic

device (Huberts et al., 2014) (Figure 1B). Using the forward scatter of the flow cytometer as a

rough proxy for cell size, we could qualitatively observe the cell size increase of live mothers that is

known to occur in aging mother cells (Egilmez et al., 1990) (Figure 1C). Similarly, using fluoro-

phore-conjugated wheat-germ agglutinin, which labels bud scars that appear after every division

(Powell et al., 2003), we observed an increase of bud scar staining on mother cells in the column, as

also visualized by confocal microscopy (Figure 1D, Figure 1—figure supplement 2D). These analy-

ses confirmed known changes that characterize aging yeast: increased cell size and bud scars, and

decreased population viability (Figure 1B–C).

Next, we developed a combined experimental and mathematical method to determine the

molecular phenotype of aging mother cells without contributions from daughter or dead cells. The

approach exploits the fact that a system of linear equations can be solved when the number of

unknowns equals the number of independent equations. Specifically, while we could determine the

number of mothers, daughters, and dead cells in a sample using flow cytometry, the contribution of

each type of cells to the measured abundance of a particular protein or transcript was unknown.

Therefore, by measuring protein and transcript abundances in three mixed samples with various pro-

portions of mothers, daughters, and dead cells, we could mathematically un-mix the abundances.

This resulted in un-mixed data for the aging mother cells. Experiments using samples containing

mixed cell populations with known molecular phenotypes validated this mathematical un-mixing

method for the RNA sequencing (RNAseq) transcriptome, targeted (selected reaction monitoring)

proteome, and global (shotgun) proteome data with a <16% average error (Figure 2—figure sup-

plement 1 and 2; Supplementary file 1).

To use this data un-mixing approach, we harvested three mixed samples for each time point

(Figure 2A, Figure 2—figure supplement 3). One sample was collected from the column effluent

(Mix 3, mainly daughter cells). Harvesting all cells from the column and applying a further enrichment

step on a larger magnet produced the two other samples: one sample contained mainly aged

mother cells (Mix 2, 80–99% mothers), while the other contained an intermediate composition

Janssens et al. eLife 2015;4:e08527. DOI: 10.7554/eLife.08527 3 of 24

Research article Biochemistry Computational and systems biology

http://dx.doi.org/10.7554/eLife.08527


compared to Mixes 2 and 3 (wash fraction, Mix 1). In each of these mixed-cell samples, we deter-

mined the fraction of mothers, daughters, and dead cells and generated the mixed-population pro-

teomes and transcriptomes. Then, we mathematically un-mixed the proteomes and transcriptomes

to obtain the molecular phenotype of aging mother cells. The data was corrected for sampling

Figure 1. Experimental design for analysis of molecular changes during the replicative lifespan of yeast and its validation. (A) Schematic overview of the

column-based cultivation and data analysis pipeline with 16 parallel columns, where (zoom in) mother cells (M) containing streptavidin-bound (green

triangles) iron beads (black circles) were captured on the magnetized column and aged under constant environmental conditions, while the daughter

cells (D) were flushed away. Samples are collected in two replicate campaigns (R1, R2) at indicated time points in the lifespan. (B) Flow cytometry-based

assessment of viability of mother (Avidin-fluorescein isothiocyanate positive [AvF]) and daughter (AvF negative) cells in R1 and R2, calculated for each

time point comparing viable (propidium iodide [PI] negative) versus inviable (PI positive) cells in harvested samples Mix 1–3 (see figure 2A for

explanation of Mix 1–3). The solid black line represents cell viability in time measured for the same strain in the same media using a microfluidic device

(Lee et al., 2012; data from Huberts et al., 2014, was obtained from the authors). (C) Cell size is qualitatively assessed with median forward scatter of

live mothers (AvF positive, PI negative) vs live daughters (AvF and PI negative). Dashed line represents the median forward scatter of young cells that

have reached the fully-grown cell size to start their first division. (D) Aging was qualitatively assessed throughout the experiment by observing an

increase in median WGA intensity over time in a population of primarily mothers (Mix 2) compared to a sample composed primarily of daughters

flushed out of the column (Mix 3). Inset: bright field (BF) and fluorescence microscopy image of cell stained with AlexaFluor 633 conjugated

wheat germ agglutinin (WGA), which selectively binds chitin in bud scars. Scale bar 5 mm.

DOI: 10.7554/eLife.08527.003

The following source data and figure supplements are available for figure 1:

Source data 1. Table S1: Materials used for construction of novel column-based cultivation method.

DOI: 10.7554/eLife.08527.004

Figure supplement 1. Setup of the aging columns.

DOI: 10.7554/eLife.08527.005

Figure supplement 2. Cellular aging under constant conditions.

DOI: 10.7554/eLife.08527.006

Figure supplement 3. Cell counts per time point.

DOI: 10.7554/eLife.08527.007

Figure supplement 4. Simulated yeast aging population dynamics.

DOI: 10.7554/eLife.08527.008

Figure supplement 5. Characterization of mixed-cell samples.

DOI: 10.7554/eLife.08527.009
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Figure 2. Mathematical un-mixing of proteomes and transcriptomes in mixed-cell populations. For each time point in the aging experiment, three

samples (mixed-cell samples 1,2,3; originating from different harvesting steps) composed of different fractions of Mother (M, green), Daughter (D, blue)

and Dead cells (De, red) were harvested and analyzed. On the basis of the compositions of the mixed-cell samples (wM, D, De) and the determined

proteome or transcriptome data of the mixed-cell samples (Amix1,2,3), with the mathematical un-mixing, we obtained un-mixed data (AM, D, De) over the

time course of 72 hr from two replicates. See Figure 1—figure supplement 5 for details about determining the composition of the mixed-cell samples

and Figure 2—figure supplement 3 for the un-mixing method. Data from proteome (B) and transcriptome (C) replicates highly correlated (Spearman

correlation >0.85) for M (circles) and D cells (squares), indicating high reproducibility of the experimental and data processing pipelines. (D, E) Levels of

random chosen proteins (D) and transcripts (E) from both replicate measurements (gray) and the fit (solid line) are indicated for un-mixed mother data.

Raw abundance is a measure of mass spectrometry (MS) peak intensities (proteome) or fragments per kb of transcript per million mapped (FPKM) reads

(transcriptome).

DOI: 10.7554/eLife.08527.010

The following source data and figure supplements are available for figure 2:

Source data 1. Table S2: The shotgun proteome data processing.

DOI: 10.7554/eLife.08527.011

Source data 2. Table S3: The transcriptome data processing.

DOI: 10.7554/eLife.08527.012

Source data 3. Table S4: The final shotgun proteome data.

DOI: 10.7554/eLife.08527.013

Source data 4. Table S5: The final transcriptome data.

DOI: 10.7554/eLife.08527.014

Figure supplement 1. Validation of the mathematical un-mixing procedure.

DOI: 10.7554/eLife.08527.015

Figure supplement 2. Validation of the mathematical un-mixing procedure, shotgun proteome and RNA sequencing.

DOI: 10.7554/eLife.08527.016

Figure supplement 3. Generation and composition of the mixed-cell samples.

DOI: 10.7554/eLife.08527.017

Figure supplement 4. Validation of the bead effect correction.

DOI: 10.7554/eLife.08527.018

Figure supplement 5. Overview of the experimental pipeline.

DOI: 10.7554/eLife.08527.019

Figure 2. continued on next page
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artefacts related to bead labeling and cell harvesting (Figure 2—figure supplement 4; supplemental

notes 2 and 3 in Supplementary file 1). Together, through this approach, we obtained pure data for

aging mother cells and daughter cells.

In two experimental series with overlapping time points, we generated 61 samples for both the

proteome and the transcriptome as required for un-mixing. After data processing, we obtained high

quality data at 12 unique time points during the lifespan of replicatively aging yeast (Figure 2—fig-

ure supplement 5). We found the replicates to be in excellent agreement (Spearman correlations

>0.85) (Figure 2B,C). A unified dataset was generated for both the proteome and the transcriptome

by fitting the replicate datasets with a polynomial regression (Figure 2D,E), only retaining highly

reproducible expression profiles (~85% of genes, Figure 2—figure supplement 6), and resampling

the fit at the actual time points of the experiment. This yielded profiles for 1494 proteins and 4904

transcripts from aging mother cells. The raw data (Janssens et al., 2015a; Janssens et al.,

2015b) and the data for each processing step are provided in the supplementary Tables S2 and S3

(Figure 2—source data 1 and 2). The final datasets for aging mother cells are presented in Table S4

(proteome) and Table S5 (transcriptome) (Figure 2—source data 3 and 4).

Biogenesis proteins increase relative to transcript levels during aging
Correlation analyses between the proteomes of young cells and the proteomes of aging mother cells

confirmed the expected divergence of the aging cell away from the youthful state (Figure 3A, Fig-

ure 3—figure supplement 1). Daughters from later time points showed a partially aged signature

(Figure 3—figure supplement 2), consistent with the notion that rejuvenation of daughter cells is

incomplete later in a mother’s life (Kennedy et al., 1994). Furthermore, we found agreement

between specific proteome changes detected by us and observations present in literature, including

changes related to glycolysis, gluconeogenesis (Lin et al., 2001), increased expression levels in

energy reserve pathway proteins (Levy et al., 2012), increases in stress response protein levels

(Erjavec et al., 2007; Crane et al., 2014), and mitochondrial changes (Hughes and Gottschling,

2012) (Figure 3B, Figure 3—figure supplement 3). Also, we confirmed that changes detected in

our population-level study similarly occurred at the single-cell level, which excluded the possibility

that our observed changes may reflect a gradual enrichment of a long lived subpopulation. Specifi-

cally, we see the levels of the stress-related chaperone Hsp104 and the translation elongation factor

Tef1 to increase with age (Figure 3—figure supplement 4), similar to what was shown using a

microfluidic platform tracking single cells (Zhang et al., 2012). Also, other single protein changes

reported to occur in literature match well (Koc et al., 2004; Lee et al., 2012; Hughes and Gottsch-

ling, 2012; Zhang et al., 2012; Lord et al., 2015; Denoth-Lippuner et al., 2014; Eldakak et al.,

2010; Sun et al., 1994) (Figure 3—figure supplement 4). Together, these observations confirm the

validity of our novel experimental design.

To obtain further insights into the global changes in protein expression in mother cells, we plot-

ted our dynamic data as heat map expression profiles. We found that changes started at young age,

were gradual, and mostly occurred in one direction (i.e. up, down) (Figure 4A,B). Specifically, we

found that 64% (184/288 total changes) of the proteins that showed a twofold change by the end of

the yeast lifespan also showed a significant change in the same direction at an earlier time point

(Figure 3B). These findings suggest that aging is a gradual process occurring from early on.

We next investigated whether these changes in the proteome data matched transcriptional

changes. Interestingly, the RNAseq data showed similar gradual and unidirectional changes occur-

ring from the beginning on (Figure 4—figure supplement 1A,2,3). To compare the changes

between the proteome and transcriptome, we determined the non-parametric Spearman rank corre-

lation, and found a starting correlation of 0.75, a value in agreement with other single-study compar-

isons between yeast proteomes and transcriptomes (Csárdi et al., 2015). When comparing this

correlation in time, however, we found that it declined steadily with age, down to a correlation of

0.70 (Figure 5A). This decreasing trend was observed regardless of the statistical method used (Fig-

ure 5—figure supplement 1). Furthermore, this trend is also not an experimental artefact, since

Figure 2. Continued

Figure supplement 6. Selection of genes with highest similarity between replicates.

DOI: 10.7554/eLife.08527.020
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samples originating from all time points were treated identically, and both proteome and transcrip-

tome datasets originated from the same biological samples. The decrease in correlation between

the proteome and transcriptome means that they do not change synchronously. Indeed, during

aging, we found different Gene Ontology (GO) terms to describe the changes in the proteins and

transcripts that show a larger than two-fold change during aging (Figure 3B vs. Figure 4—figure

supplement 2A). These results indicate that, over time, protein levels were increasingly uncoupled

from their transcript levels.

To identify the most uncoupled cellular processes, we plotted the fold-changes of transcript and

protein expression in old and young cells on a gene product co-expression map (Figure 5A). The

transcript and protein levels of genes in quadrants 1 (Q1) and 3 (Q3) were ‘coupled’, meaning that

the changes in protein levels followed the changes in transcript levels. Q1 and Q3 were enriched in

gene products related to sterol biosynthesis and cytoskeletal and cell wall processes, possibly

related to cell growth. In contrast, the expression of gene products in quadrants 2 (Q2) and 4 (Q4)

were ‘uncoupled’, meaning that the changes in protein levels did not follow the changes in transcript

levels. In Q2, the proteins were over-represented relative to their transcripts, that is, there were

Figure 3. The aging proteome. (A) The Spearman correlation at progressive time points compared with the young reference sample for the mother

and daughter proteome shows a divergence away from a youthful state for the mother. (B) The numbers of proteins changing by at least twofold from

the reference (young) sample per time point. Blue and red bars and text represent changes that had not occurred previously, either up- or down-

regulated, respectively. Gray bars and text are changes that already occurred at a previous time point. Gene functional enrichments per grouped time

points were derived from Gene Ontologies (GO) and are scaled with significance of enrichment obtained by database for annotation, visualization and

integrated discovery (DAVID) bioinformatics resource version 6.7 (scaling of text: DAVID enrichment score see Materials and methods and Table S6

(Figure 3—source data 1).

DOI: 10.7554/eLife.08527.021

The following source data and figure supplements are available for figure 3:

Source data 1. Table S6: Full lists of GO-term enrichment scores for all enrichment analyses.

DOI: 10.7554/eLife.08527.022

Figure supplement 1. The aging transcriptome diverges minimally from a young profile.

DOI: 10.7554/eLife.08527.023

Figure supplement 2. Changes in mother-age dependent daughter profiles.

DOI: 10.7554/eLife.08527.024

Figure supplement 3. Profiles that contribute to the enrichments of proteins changing more than twofold.

DOI: 10.7554/eLife.08527.025

Figure supplement 4. Single protein profiles matching literature.

DOI: 10.7554/eLife.08527.026
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more proteins per transcript in older cells than in younger cells. Of all analyzed transcript–protein

pairs, 38.4% were located in Q2, suggesting a global tendency towards relative protein overabun-

dance with aging (Figure 5). In line with this global protein overabundance, Q4 contained fewer

genes and less GO-term enrichments. Strikingly, Q2 was strongly enriched in ‘translation regulation’

gene products (i.e. ribosome and protein biogenesis machinery) (Figure 5B), and the extent of their

overabundance progressively increased as the cells aged (Figure 5—figure supplement 2,3).

Network inference identifies protein biogenesis-related genes as causal
in yeast aging
Next we asked whether this increased level of biogenesis-related proteins, uncoupled from transcrip-

tional regulation, was causal for downstream effects during replicative aging in yeast. Identifying

causality on a systems-wide level is difficult, and the key challenge is to separate cause from

Figure 4. Protein profiles in aging yeast. (A) Expression profiles for the proteome were clustered using the Ward clustering algorithm and plotted in a

dendrogram. Visualization of the most prominent (red line in dendrogram) protein fold change profiles (log2 scale) occurring with age, showing up-

regulated (cluster 1), down-regulated (cluster 2) and mainly flat (cluster 3) profiles. Gene functional enrichments per grouped time points were

summarized into representative terms as in Figure 3B. (B) Unidirectional changes occurring with aging are illustrated with a heat map of the fold

changes (log2 scale) of proteins in the aging mother compared to the young reference sample.

DOI: 10.7554/eLife.08527.027

The following figure supplements are available for Figure 4:

Figure supplement 1. Comparison of aging proteomes and transcriptomes.

DOI: 10.7554/eLife.08527.028

Figure supplement 2. Analysis of twofold changes per time point in the aging transcriptome.

DOI: 10.7554/eLife.08527.029

Figure supplement 3. Analysis of aging changes clustered by expression profile.

DOI: 10.7554/eLife.08527.030
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downstream effects. However, our dynamically resolved, comprehensive data offered the possibility

to suggest causal relationships.

To elucidate the causal order of changes during aging, we reconstructed a high-level directional

network revealing the interdependences of changes in transcript expression (Figure 6, Figure 6—

figure supplement 1A). Therefore, we defined each transcript’s expression profile as a network

node, and an edge between each pair of nodes as a partial correlation between the nodes’ expres-

sion profiles (Figure 6—figure supplement 1B and C). Next, we determined the directionality of

the edges, indicated by arrows. We defined directionality to represent the ability of a transcript’s

profile to predict the profile of another transcript. Concretely, when looking at two connected

nodes, the node that could be explained by the connected node was considered as the responsive

node, while the predicting node was considered to be the causal node (Opgen-Rhein and

Strimmer, 2007) (Figure 6—figure supplement 1D and E). This relation defined the directionality

of the edge. Any transcript that had no predictive ability and could not be predicted by any other

transcript was removed from the network analysis. Following this, the nodes were clustered by maxi-

mizing the global modularity of the network (Csardi and Nepusz, 2006) (Figure 6A). Finally, the

clusters were ranked based on the ratio of causal (outward arrows) to responsive nodes (inward

arrows) per cluster to determine the higher-level causal relations existing between clusters. A sensi-

tivity analysis was performed to determine the optimal sparsity of the network and the cut-off for

the partial correlation among transcript profiles, through which we established that the network was

a robust representation of the datasets (supplemental note 4 in Supplementary file 1, Table S7, Fig-

ure 6–source data 1). These steps produced a high-level directional network, in which the ranking

of the clusters with respective GO enrichments revealed causal relations during aging (Figure 6B).

This high-level directional network of the transcriptome data showed that the very first causal-

ranked cluster in the network that we detected was highly enriched for gene products associated

Figure 5. A post-transcriptional overrepresentation in protein biogenesis with aging. (A) A progressive uncoupling of the proteome from the

transcriptome in time is apparent from the decreasing Spearman correlation between the two. (B) Co-expression map showing fold changes (log2) of

72 hr aged samples compared to the young reference, plotting the proteome versus the transcriptome. Quadrants 1 and 3 (Q1 and Q3) represent

changes where the protein changes match their transcript changes (coupled), while quadrants 2 (Q2) and Q4 (Q4) reflect opposite changes (uncoupled).

Summarizing terms per quadrant are derived from Gene Ontologies (GO) as in Figure 3B (scaling of text: DAVID enrichment score).

DOI: 10.7554/eLife.08527.031

The following figure supplements are available for Figure 5:

Figure supplement 1. Correlation of proteome versus transcriptome using alternative statistical methods for comparison.

DOI: 10.7554/eLife.08527.032

Figure supplement 2. Co-expression map showing fold changes of 10.7, 22, 45.4 and 72.3 hr compared to the young reference, highlighting gene

products contributing to gene enrichments.

DOI: 10.7554/eLife.08527.033

Figure supplement 3. Change in posttranscriptional protein overabundance with aging.

DOI: 10.7554/eLife.08527.034
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with protein biogenesis (i.e. ribosome biogenesis and transfer RNA [tRNA] processing; Figure 6B).

These are the same biological processes that had uncoupled transcript and protein levels

(Figure 5B); indeed, genes from this causal cluster were enriched in Q2 of the co-expression map,

which showed uncoupled expression (Figure 6—figure supplement 2A and B). These analyses sug-

gest that the uncoupling of protein and transcript levels for ‘biogenesis’-related genes has a central

role in the aging process, and may affect the transcript and protein abundances of other genes, as

elaborated upon in the discussion.

Consequences for other cellular processes
The overabundance of proteins relative to transcripts must have consequences for cellular function-

ing. Protein overproduction could increase cell size, one of the first hallmarks described in yeast

aging (Egilmez et al., 1990). Increased cell size could reduce glucose influx rates per cell volume

and induce metabolic changes, for example, at low rates of glucose influx, cells switch to respiration

(Huberts et al., 2012). Indeed, in our transcript-based network analysis (Figure 6B) as well as in our

proteome dataset (Figure 3B), we found that metabolic signatures related to starvation and oxida-

tive stress were consequences of aging.

Furthermore, we hypothesized that if protein levels become globally uncoupled from their tran-

script levels during aging (Figure 5), the optimal stoichiometry of proteins in complexes may be per-

turbed (Figure 7A). Indeed, using curated lists of protein complexes (Cherry et al., 2012), we found

Figure 6. Network inference identifies protein biogenesis-related genes as causal force during aging. (A) The directed and clustered transcriptome

network consists of 3631 edges, connecting 1241 nodes in 8 clusters (see Figure 6—figure supplement 1 and supplemental note 4, in

Supplementary file 1, for further details). Only actual relations are depicted, the causal direction between two nodes is indicated with an arrow, where

the arrowhead points to the responsive node. (B) Clusters ranked from more causal to more responsive in the causality network (from blue to red for

clusters 1 through 8). The degree of causality is determined by the ratio of the outgoing over incoming connections per cluster (from A). The blue to

red arrows indicate the sum of outgoing arrows between two clusters, where arrow thickness is logarithmically scaled to the number of arrows (from A),

that is, the summed predictive power of one cluster over the other. Terms per cluster are derived from Gene Ontologies (GO) as in Figure 3B

(scaling of text: database for annotation, visualization and integrated discovery [DAVID] enrichment score).

DOI: 10.7554/eLife.08527.035

The following source data and figure supplements are available for figure 6:

Source data 1. Table S7: The direction matrices and the sensitivity analyses for the proteomic and transcriptomic high-level directional networks.

DOI: 10.7554/eLife.08527.036

Figure supplement 1. The transcriptome network.

DOI: 10.7554/eLife.08527.037

Figure supplement 2. Network cluster gene enrichments in the co-expression map.

DOI: 10.7554/eLife.08527.038
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that an increased deviation from the original stoichiometry occurred with aging (Figure 7B–D, and

Figure 7—figure supplement 1–3). We observed many complexes that were not previously impli-

cated in aging to be age-affected, and we found previously implicated protein complexes such as

the vacuolar adenosine triphosphatase (Hughes and Gottschling, 2012) and the nuclear pore com-

plex (Lord et al., 2015; Denoth-Lippuner et al., 2014) to lose stoichiometry (Figure 7C and D and

Figure 7—figure supplement 1,2). The global stoichiometry loss was greater in aged mothers com-

pared with the daughter population (Figure 7—figure supplement 3A), confirming that this is an

aging-related phenotype. Additionally, we found that the stoichiometry loss was greater overall at

the proteome level than at the transcriptome level (Figure 7B), supporting the observation that pro-

tein levels uncouple from their transcript levels.

Being built of fewer genes (1494 proteins versus 4904 transcripts), the high-level directional net-

work of the proteome was less revealing than that of the transcriptome (Figure 7—figure supple-

ment 4). The most causal cluster of the proteome network was enriched for chaperone proteins,

reflecting a cellular response to internally changing conditions. Such conditions could include meta-

bolic restructuring in response to an increased cell size or to aggregating proteins that are

Figure 7. Loss of stoichiometry in protein complexes is a consequence during aging. (A) Illustrative representation of loss of stoichiometry within a

protein complex during aging. Changing levels of proteins may be coordinated (left) or uncoordinated and result in a loss of complex stoichiometry

(right). (B) Stoichiometry loss (for a single complex defined as the InterQuartile Range (IQR) of the distribution of fold changes of the components) is

plotted for all complexes in proteome and transcriptome datasets as bean plots during aging. Thick horizontal line represents the mean of the

distribution of all complexes, thin colored lines the individual complexes’ stoichiometry loss, and the outline the distribution of all complexes. The

genes in common between the proteome and transcriptome datasets are used. (C) Illustration of the loss of stoichiometry of protein complexes during

aging for the proteome (gray lines), with specific examples highlighted (colored lines). (D) Illustration of the loss of protein stoichiometry in proteasome

(left panel) and the vacuolar proton transporting V-type adenosine triphosphatase (ATPase), V1 domain (right panel). The protein abundance changes

(log2 scale) of the complex’ components are plotted in time. The degree of stoichiometry loss is indicated with a box plot.

DOI: 10.7554/eLife.08527.039

The following figure supplements are available for Figure 7:

Figure supplement 1. Proteome data of distribution of changes within complexes in the cell.

DOI: 10.7554/eLife.08527.040

Figure supplement 2. Transcriptome data of distribution of changes within complexes in the cell.

DOI: 10.7554/eLife.08527.041

Figure supplement 3. Loss of stoichiometry occurring in the protein complexes.

DOI: 10.7554/eLife.08527.042

Figure supplement 4. The proteome network.

DOI: 10.7554/eLife.08527.043
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accumulating due to altered protein complex stoichiometry. Furthermore, we found that the causal

clusters of the proteome network tended to be expressed according to their transcriptional message

(i.e. coupled expression; Q1, Q3), while the responsive clusters represented increasingly uncoupled

expression (Q2, Q4) (Figure 6—figure supplement 2C). This both confirmed the response of the

cell to the accumulating changes occurring during aging and indicated that the effects of uncoupled

protein expression are progressive over time. We see the clear downstream consequences during

aging emerging in the proteome, including metabolic shifts, stoichiometric loss, aggregating pro-

teins, and protein overproduction. All of these point to pathways and processes that may become

dysfunctional with aging, any of which may ultimately result in cell death.

Discussion
Using our newly developed culturing and computational methods and state-of-the-art proteomics

and transcriptomics analyses, we generated the first systems-level molecular phenotype of replica-

tively aging yeast. The comprehensiveness of the data allowed us to discover that protein biogenesis

machinery genes, including ribosome, tRNA synthesis, and translation regulation genes, have their

protein levels uncoupled from their mRNA levels during aging (Figure 5B). Furthermore, the

dynamic nature of the data allowed us to pinpoint the transcripts of these genes as having the stron-

gest ability to predict the behavior of others transcripts during aging (Figure 6B). Finally, we

observed metabolic changes, protein stress responses, and changes in the stoichiometry of many

protein complexes (Figure 3B,4,7B).

Based on these analyses, we propose a model whereby the uncoupling of protein levels of bio-

genesis-related genes from their transcript levels is causal for the changes occurring in aging yeast.

The model proposes that proteins of the translation machinery that are uncoupled from transcript

levels accumulate in cells with age (Figure 5B). As the biogenesis genes are themselves involved in

translation, their uncoupling might contribute to further uncoupling of the proteome from the tran-

scriptome as a whole. This general uncoupling has degenerative effects (i.e. cell size increase, pro-

tein aggregations and loss of stoichiometry in protein complexes), that stimulate transcriptional

responses in the cell (i.e. metabolic changes and activated stress responses), which further contrib-

utes to changes in the proteome. Although we cannot exclude the possibility of other causes even

further upstream, the uncoupling of the protein biogenesis machinery is likely an early driver of repli-

cative aging in yeast.

A question remains as to why the biogenesis-related class of proteins we identified as having pro-

tein levels uncoupled from their transcript levels become over-represented in replicatively aging

yeast in the first place. Ribosome footprinting has shown these proteins to be highly translated

(Ingolia et al., 2009), and protein turnover experiments have shown them to be highly stable

(Belle et al., 2006); thus, it is possible that their overabundance may result from the combination of

the dynamics of protein biogenesis, protein turnover, and mRNA stability. Interestingly, the ribo-

somal proteins themselves showed a low degree of loss of stoichiometry at the protein complex

level in our data (Figure 7C), supporting the idea that they are still active and contributing to uncou-

pling in the cell. In any case, the uncoupling of protein and transcript levels has downstream conse-

quences for the cell that may explain many phenotypes of aging. First, cell size may increase due to

protein overproduction and result in metabolic changes. Second, proteins being overproduced at

different rates will alter protein complex stoichiometry. Many documented phenotypes of aging may

result from this, including the formation of protein aggregates (Erjavec et al., 2007), increased reac-

tive oxygen species formation by a dysfunctional mitochondrial transport chain (Laun et al., 2001),

and loss of gene silencing (Hu et al., 2014). The sum of these may ultimately lead to system failure

for the organism.

Directly targeting certain failing protein complexes or downstream deleterious effects results in

replicative lifespan extension, but we suggest that many of these effects will prove to be cell type-

and growth condition-specific. Our model predicts that a more robust extension of lifespan may be

possible in many organisms by targeting the causal factor in aging, protein biogenesis. Indeed, alter-

ing the rates of protein production (i.e. translation) or degradation (i.e. autophagy) have repeatedly

been shown to influence longevity across a wide range of organisms (see (Wasko and Kaeberlein,

2014; Johnson et al., 2013; Cuervo, 2008). The translation activators, target of

rapamycin (TOR) and S6 kinase, fall into this category, and decreases in their activity result in
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increased lifespan in yeast (Fabrizio et al., 2001; Kaeberlein et al., 2005), worms (Vellai et al.,

2003; Pan et al., 2007), flies (Kapahi et al., 2004), and mice (Lamming et al., 2012; Selman et al.,

2009), as does calorie restriction and drugs such as rapamycin, which are also modulators of protein

biogenesis pathways (Johnson et al., 2013). Likewise, deletions in ribosomal subunit components

have positive effects on lifespan in both yeast (Steffen et al., 2008) and worms (Hansen et al.,

2007). Our model suggests why these interventions and mutations have a lifespan-extending effect

in a broad spectrum of organisms, namely because protein biogenesis machinery is itself a driver of

aging.

Materials and methods

Aging yeast

Strains and medium
The prototrophic Saccharomyces cerevisiae strain YSBN6 (MATa) was used for the phenotyping of

yeast replicative aging (Canelas et al., 2010). The cells were grown in yeast nitrogen base (YNB)

without amino acids (ForMedium, Norfolk, UK) supplemented with 2% glucose at a temperature of

30˚C, unless indicated differently. Precultures in flasks were shaken at 300 revolutions per minute

(RPM).

Samples not processed by the steps involving biotinylation and the attachment of beads (termed

‘unprocessed samples’) were precultured in the above medium for minimum 24 hr in mid-exponen-

tial growth phase and were immediately pelleted (5 min, 2500 � g) and snap frozen in liquid

nitrogen.

Preparing the cells for column captured culturing in aging columns
Prior to loading the cells onto the aging columns, the cells were biotinylated and labeled with iron

beads (Figure 1—figure supplement 1) in a manner adapted from (Smeal et al., 1996), as follows:

The yeast YSBN6 was pre-cultured for minimum 24 hr in a mid-exponential growth phase, having an

optical density below 1. Cells were harvested and concentrated by gentle centrifugation, 10 min

2500 �g. For one column, 3 � 109 cells were resuspended in 1 ml 2� phosphate buffered saline

(PBS), immediately mixed with 14 mg Sulfo-NHS-LC-Biotin (Thermo Scientific, Rockford, IL) dissolved

in 1 ml cold (4˚C) water and incubated in a shaker (800 RPM) at room temperature for 20 min. The

biotinylated cells were washed twice with 1�PBS at room temperature and were resuspended in 100

ml pre-warmed YNB plus 2% glucose and incubated for 90 min at 30˚C shaken at 300 RPM. At room

temperature, the cells were pelleted by gentle centrifugation (5 min, 2500 �g), washed with

1� PBS, resuspended in 4 ml 1� PBS, mixed with 750 ml of streptavidin coated BioMag beads (Qia-

gen, Germantown, MD) and incubated for 30 min on a lab rocker. The bead-labeled cells were con-

centrated in ~~0.5 ml PBS by gentle centrifugation (5min, 2500 �g) and 2 � 109 cells were loaded

onto the magnetized aging column.

The aging columns setup
The aging column setup is a closed system, where cells are cultivated on a magnetized iron mesh-

work under a constant flow of medium (Figure 1—figure supplement 1B and C). The setup was

designed to ensure a sterile environment within the system, continuous removal of daughter cells,

and constant oxygen and nutrient concentrations in the medium. Table S1 (Figure 1—source data 1

shows materials used for its construction and operation.

The core of the setup for column-captured cell cultivation is the 0.3" Negative Selection Column

combined with a 3-way stopcock (Stemcell Technologies Inc., Vancouver, Canada; Figure 1—source

data 1, Table S1), which is placed in a magnetic field. Four magnets (StemSep Red Magnet, Stemcell

Technologies) were placed in a stand (custom made, Figure 1—figure supplement 1), and four

stands with magnets were connected in a row to run 16 columns simultaneously. The rim at the top

of the column was cut with a sharp scalpel, to enable connection with 15 cm long silicone tubing (Si,

inner diameter (id) 8 mm, outer diameter (od) 11 mm, Si 8-11, Figure 1—figure supplement 1C,

Figure 1—source data 1 Table S1). Silicone tubing was chosen, as it is air permeable. The T-
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connector (od 10 mm, C T-10) on top serves to connect the column with the inlet tubing from the

side and a 6 cm long tubing closed with a clamp (C. II).

The pump (BVP standard motor, MS/CA4-12 + 3 � MS/CA4-12 extensions; Ismatec, Wertheim,

Germany) provided a constant medium flow over the column. The pump tubing (BPT Tubing, 1.52

mm ID, 400 mm length, Pharmed, Ismatec, Wertheim, Germany) connected the 20 l medium jar (20 l

round high density polyethylene [HDPE] bottle, Nalgene, Rochester, NY) to the column via two long

pieces of 2 m silicone tubing (id 2 mm, od 4 mm, Si 2-4). The Silicone tubing between pump and col-

umn could be closed with clamp C. II. The flow rate of medium over the column was set at 170 ml/h.

The medium jar was closed with a 5-layered aluminum foil top prior to autoclaving. 5 syringes

with their plungers removed were punched through the aluminum foil and 4 were connected inside

the jar to a 60 cm long silicone tubing (id 6 mm, od 8 mm, Si 6-8). The end of the tubing was

weighted down with a glass pipet, in order to have the inlet remain at the bottom of the jar. The

syringe barrels at the top of the jar were closed with small pieces of aluminum foil during autoclaving

and attached to the Si 2-4 silicon inlet tubing prior to the start of the column run. The fifth syringe

without its plunger and without silicon tubing was attached on the outside to Si 2-4 silicone tubing,

with pressurized sterile air, to provide an overpressure of sterile air in the medium jar. The medium

jar was filled with 20 l autoclaved YNB without amino acids prior to autoclaving and was subse-

quently supplemented with 2% filter-sterilized glucose.

The effluent of the column went down via silicone Si 2-4 tubing, passing a quick release connec-

tor, and went up via silicone Si 4-6 tubing to an air chamber. The tubing could be closed with a

clamp (C. III). The air chamber breaked the laminar medium flow, allowing the liquid to drip down

via silicone Si 4-6 tubing into a waste jar (20 l round HDPE bottle, Nalgene). The air chamber con-

sisted of a T-connector (od 10 mm, C T-10) connected at all the three sides with 6 cm silicone Si 8-

11 tubing and a tube connector.

Loading the aging columns
Prior to loading the columns with the biotinylated yeast cells, the system was primed with sterile

medium for about 1 hr, having clamp C. I and C. III open. The medium flow was then stopped on

the pump and clamps C. I and C. III were closed and clamp C. II opened. The quick release was

opened and clamp C. III was shortly opened to lower the medium level to the iron meshwork. The

column was detached from the tubing and the magnet and 2 � 109 cells were pipetted onto the col-

umn and gently sucked into the meshwork by a 5 ml syringe attached to the stopcock below the col-

umn. The stopcock was closed, ~2ml fresh medium was pipetted on top of the column and the

column was reattached to the tubing and placed in the magnet. Clamp C. I was opened and the

medium flow was restarted. After some medium was collected on top of the column, clamp C. III

was opened. Clamp C. II was kept open until the medium level above the column stabilized halfway

in the tubing above the column. This level could be adjusted by the height of the air chamber in the

effluent tubing (Figure 1—figure supplement 1B). The cells were kept surrounded by liquid media

throughout all cultivation time.

Harvesting aged yeast cells
In order to harvest the mother cells, the pump was stopped, clamps C. I and C. III were closed and

clamp C. II opened. Only the specific pump tubing was disconnected from the pump, and the pump

was restarted. The quick release was disconnected and through the shortly opening clamp C. III, the

medium level was lowered to just above the meshwork. The tubing on top of the column was

detached and a 20 ml syringe was connected to the stopcock below the column. While keeping the

column at the magnet, 15 ml fresh medium was provided on top of the column, while the column

effluent was collected by the syringe. This step was repeated 2 or 3 times, until the effluent was

clear. This combined column effluent sample was kept on ice (effluent fraction, sample: Mix 3, Fig-

ure 2—figure supplement 1). The column was detached from the magnet and again 15 ml fresh

medium was provided on top of the column and the effluent was collected by a new syringe. This

was repeated 2 or 3 times, until the medium was clear. This combined column fraction (column frac-

tion, later to be split into Mix 1 and 2, Figure 2—figure supplement 3A) was also kept on ice.

After harvesting, the samples consisted of mixes of aged mother cells, dead cells, and daughter

cells. In order to obtain a higher purity of aged mother cells, an enrichment step was required for
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the column fraction. The cells were gently centrifuged (10 min 2500 �g), resuspended in 7 ml cold

PBS and transferred to a glass test tube. The test tube was placed in a magnet ("The Big Easy"

EasySep Magnet, Stemcell Technologies Inc. Grenoble, France) for 5 min (Figure 2—figure supple-

ment 3A, panel II). The supernatant was removed by pipetting and the magnet-bound cells were

resuspended in fresh and cold PBS. This was repeated two times, until the supernatant was clear.

The supernatant fractions were combined and kept on ice (wash fraction, sample: Mix 1). The cells

that were retained in the magnet were resuspended in 2 ml PBS after removal from the magnet

(mother enriched fraction, sample: Mix 2) (Figure 2—figure supplement 3A, panel III). The samples

were pelleted by gentle centrifugation (4 min, 4˚C, 2500 �g) and immediately snap frozen in liquid

nitrogen. A small aliquot of each of three samples was kept aside to measure the fractions of live

and dead cells, mother and daughter cells, and obtain the cell count per sample.

Harvesting time points
Based on the population viability curves generated from the columns during test campaigns, the

average lifespan of yeast being roughly 20–30 divisions, and the doubling time of the YSBN6 strain

being roughly 2 hr, it was decided to collect aged samples up to 72 hr of aging, with roughly 42% of

viable cells expected in the last sample (Figure 1B). There is cell-to-cell variation in the replication

rates of yeast and so, with time, the distribution of replicative ages per sample increases. These dis-

tributions were modeled based on the variation of the replication rates as quantified from single cell

microfluidic data (unpublished data). In a mathematical model, a start culture of 1000 cells having a

random replication rate, according to a Poisson distribution an average replication rate of 0.5 hr�1,

was allowed to replicate (and age) (Figure 1—figure supplement 4). Consistent with our empirical

observations counting bud scars in the population (Figure 1—figure supplement 2D), with increas-

ing elapsed time, the distributions of the number of replications per cell became wider. Linearly

spaced harvesting in time would cause increasing information overlap between neighboring time

points, thus it was decided to harvest samples exponentially spaced in time (Figure 1—figure sup-

plement 4).

Finally, we performed two replicate runs of the column-captured cell culturing campaigns. Cam-

paign 1 generated an unprocessed sample and 14 column samples and campaign 2 generated

another unprocessed sample and 8 column samples. In total, two unprocessed samples combined

with 16 unique time points were generated (Figure 2—figure supplement 5).

Flow cytometry analysis of sample composition
In each sample, the cells were counted on a BD Accuri C6 flow cytometer (Becton, Dickinson and

Company, Franklin Lakes, NJ). To quantify the fractions of mother cells, dead cells, and daughter

cells in the samples, the cells were stained with dyes and analyzed by flow cytometry using the BD

Accuri C6. From each aliquot, 2 � 106 cells were pelleted and resuspended in 100 ml PBS, and simul-

taneously stained for 30 min at room temperature with 5 ml 5 mg/ml

fluorescein isothiocyanate conjugated Avidin (AvF, Thermo Scientific) and 2 ml 2 mM propidium

iodide (PI, Sigma-Aldrich Co., St. Louis, MO). Biotinylated mother cells (see section Materials and

methods, Preparing the cells for column-captured culturing in aging columns) were stained with AvF,

dead mother or dead daughter cells were stained with PI, live daughter cells remained unstained

(Figure 1—figure supplement 5). The fluorescein was excited by a laser of 488 nm wavelength and

detected in the range of 533 ± 30 nm, PI was excited by a laser of 488 nm and detected in the range

of >670 nm. The beads were excluded from any analysis by gating (Figure 1—figure supplement

5B, left panels). The flow cytometer events that were plotted for their PI and AvF intensities in a

scatter plot, clear clusters for stained and unstained, both in PI and AvF channel, were apparent. The

fractional enrichments were obtained in the BD CS Accuri C6 Software 1.0 (Figure 1—figure supple-

ment 5).

Validations of column captured cultivation
Oxygen concentration in medium: The oxygen concentration was measured by using the Optical

Oxygen Meter Fibox 3 (PreSens Precision Sensing GmbH, Regensburg, Germany). The flow-cell, an

oxygen-sensitive spot glued in a polystyrene tube, was connected to the tubing in front of the aging

column to measure the O2 concentration in fresh medium and connected to the effluent tubing to
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measure the O2 concentration in the column effluent. Each measurement was done within 10 min to

avoid measurements being influenced by the accumulation of yeast cells in the flow-cell, which

would alter readings.

Glucose consumption on the column: The glucose concentration in the medium and the column

effluent was measured with a commercially available enzyme-based assay Enzytec fluid D-Glucose

(Thermo Fisher Scientific GmbH, Dreieich, Germany). The column effluent samples were harvested

by collecting medium from the column outlet, by opening the quick release below the column (Fig-

ure 1—figure supplement 1B and C). The column effluent sample was immediately placed on ice,

shortly centrifuged (30 s, >16 k �g) to remove the cells, and the glucose concentration was

measured.

Bud scar counting: The number of bud scars was counted using microscopy and evaluated from

flow cytometry data.

For microscopy, 1 � 107 cells were resuspended in 0.5 ml PBS supplemented with 25 ml 5 mg/ml

Alexa 633 labeled wheat germ agglutinin (WGA, Life Technologies/Thermo Fisher Scientific Co.,

Carlsbad, CA), 50 ml 5 mg/ml AvF and 20 ml 2 mM PI and incubated for 90 min at room temperature

(see ‘Flow cytometry analysis of sample composition’). The images were taken on a commercial laser

scanning microscope Zeiss LSM710 (Carl Zeiss, MicroImaging, Jena, Germany), using ZEN2010B

software. The dyes were excited with different solid state lasers; PI and AvF were excited with a

wavelength of 488 nm and emission was recorded between 607–797 and 493–564 nm wavelength,

respectively; WGA Alexa 633 was excited, with a wavelength of 633 nm and emission was recorded

between 638–797 nm wavelength in a stack of 10 images with a z-scaling of 0.8 mm (Figure 1D,

inset). Only living mother cells were selected (containing AvF, without PI) and the bud scars were

counted independently by two researchers.

For flow cytometry, 2 � 106 cells were resuspended in 100 ml PBS supplemented with 7 ml 5 mg/

ml WGA Alexa 633 and incubated for 30 min at room temperature. The cells were excited in the

flow cytometer by a laser with 640 nm wavelength and emission was recorded with a filter selecting

for 675 ± 25 nm. The mean fluorescence intensity for R2 was normalized to R1 t = 0 h, to be plotted

on the same scale (Figure 1D).

Lifespan curve: For viability of mother (AvF positive) and daughter (AvF negative) cells at each

time point in the aging column, viability of the mother and daughter cells was assessed in each

mixed-cell sample (derived from proportions of live [PI negative] and dead [PI positive] cells (Fig-

ure 1—figure supplement 5, Figure 2—figure supplement 3B). These scores were weighted based

on the number of cells present in each of these samples (derived from raw numbers as presented in

Figure 1—figure supplement 3). This ensured that the viability of mothers and daughters

(Figure 1C) reflected the entire population, since mothers and daughters in different mixed-cell sam-

ples may have slightly different ratios of live to dead cells. The microfluidic-based lifespan curve was

obtained from authors of Huberts et al., 2014, based on 2641 cells, plotted as viability versus time.

Proteome analysis
15N standards
Protein extracts from isotopically labeled 15N YSBN6 yeast cells were used as an internal standard

for the targeted selected reaction monitoring (SRM) proteomics experiments. For the preparation of

the 15N standards, yeast was cultivated in two 2.5 l fermenters on minimal or synthetic Verduyn

medium (Verduyn et al., 1992), supplemented with 10 g/l glucose and using 15N-labeled (NH4)2SO4

as the sole nitrogen source. Cells were harvested in the different growth phases, namely the log

phase (L), the deceleration phase (D) and the stationary phase (S, Figure 2—figure supplement 1A).

Aliquots from all conditions were mixed (1:1:1) to maximize the coverage of the targeted proteins.

Cell lysis and protein extraction
Cell pellets were resuspended in 1.85 M sodium hydroxide plus 7.4% v/v b-mercapto-ethanol at a

concentration of 1 � 108 cells per 100 ml and incubated for 10 min on ice. An equal volume of 100%

w/v trichloric acid (TCA) was added and was subsequently incubated for 10 min on ice. The precipi-

tated proteins were collected by centrifugation (16 k �g, 10 min, 4˚C). The pellet was washed with

200 ml cold acetone and incubated for 30 min at �20˚C. Finally, the protein pellet was collected by

centrifugation (16 �g, 10 min, 4˚C), and removal of supernatant.
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The precipitated proteins were resuspended in 100 ml 2% w/v sodium deoxycholate plus 100 mM

ammonium bicarbonate per 1�108 cells. For the targeted proteomics, the 15N-labelled protein

extracts were added in a 1:1 ratio, based on the cell counts. Samples were incubated for 5 min at

90˚C to solubilize. Magnetic beads present in a subset of the samples were removed at this stage by

collecting them on the commercially available magnet tube rack DynaMag-2 (Life Technologies/

Thermo Fisher Scientific Co., Waltham, MA, USA).

Digestion and cleanup
The solubilized proteins were reduced with 12 mM dithiothreitol (30 min at 55˚C) and alkylated with

40 mM iodoacetamide (45 min at 30˚C, in the dark). Samples were diluted with 100 mM ammonium

bicarbonate to dilute the sodium deoxycholate to 1% w/v prior to overnight digestion with trypsin

(1:100, sequencing grade modified trypsin V5111, Promega, Madison, WI) at 37˚C. Then, 10% v/v

formic acid (FA) was added to the solution to precipitate the deoxycholate, which was subsequently

removed by centrifugation (16 k �g, 10 minutes). Cleanup prior to liquid chromatography–mass

spectrometry (LC–MS) analysis was done with C18-SPE columns (SPE C18-Aq 50 mg/1ml, Gracepure,

Columbia, MD). This column was conditioned with 3 � 1 ml acetonitrile (ACN) plus 0.1% v/v FA, and

re-equilibrated with 3 � 1 ml 0.1% v/v FA before application of the samples at a total amount of

maximum 1 mg total protein per column. The bound peptides were washed with 2 � 1ml 0.1% v/v

FA and eluted with 3 � 0.4 ml 50% v/v ACN plus 0.1% v/v FA. The eluted fractions were dried under

vacuum and resuspended in 0.1% v/v FA to a final concentration of around 1 mg/ml.

Targeted proteomics (SRM)
SRM analyses were performed on a triple quadrupole mass spectrometer with a nanoelectrospray

ion source (TSQ Vantage, Thermo Fisher Scientific, Waltham, MA). Chromatographic separation of

the peptides was performed by liquid chromatography on a nano ultra-high performance liquid chro-

matography system (UltiMate UHPLC Focused, Dionex, Thermo Fisher Scientific, Waltham, MA)

using a nano column (Acclaim PepMap100 C18, 75 mm x 150 mm 3 mm, 100 Å, Dionex, Thermo

Fisher Scientific, Waltham, MA). Samples were injected at a total amount of 1 mg using the microli-

ter-pickup system using 0.1% v/v FA as transport liquid from a cooled autosampler (5˚C) and loaded

onto a trap column (m-precolumn cartridge, Acclaim PepMap100 C18, 5 mm, 100 Å, 300 mm id, 5

mm Dionex, Thermo Fisher Scientific, Waltham, MA). Peptides were separated on the nano-LC col-

umn using a linear gradient from 3 to 45% v/v ACN plus 0.1% v/v FA in 30 min at a flow rate of 0.3

ml/min. The mass spectrometer was operated in the positive mode at a spray voltage of 1500 V, a

capillary temperature of 270˚C, a half maximum peak width of 0.7 for Q1 and Q3, a collision gas

pressure of 1.2 mTorr and a cycle time of 1.2 ms. The measurements were scheduled in windows of

4 min around the pre-determined retention time, with a maximum of 150 concurrent transitions.

The MS traces were manually curated using the Skyline software (Steffen et al., 2008). The sum

of all transition peak areas for the endogenous and standard (15N labeled) peptide was used to cal-

culate the ratio between the endogenous and standard peptides. Only peptides that were minimally

quantified with two transitions and a peak area of the 15N standard above 10,000 for both technical

replicates were considered for quantification. The ratios on protein level were calculated by averag-

ing the ratio of all peptides per protein. In order to correct for global errors made in the protein con-

centration determination of either the endogenous samples or the 15N labeled standard, the median

of all datasets were normalized to the same value.

Shotgun proteomics
1 mg of peptides of each sample were subjected to LC–MS analysis using a dual pressure LTQ-Orbi-

trap Velos mass spectrometer connected to an electrospray ion source (Thermo Fisher

Scientific, Waltham, MA) as described recently (Sun et al., 1994) with a few modifications. In brief,

peptide separation was carried out using an EASY nLC-1000 system (Thermo Fisher

Scientific, Waltham, MA) equipped with a reversed phase HPLC column (75 mm � 45 cm) packed in-

house with C18 resin (ReproSil-Pur C18–AQ, 1.9 mm resin; Dr. Maisch GmbH, Ammerbuch-Entringen,

Germany) using a linear gradient from 95% solvent A (0.15% FA, 2% acetonitrile) and 5% solvent B

(98% acetonitrile, 0.15% FA) to 28% solvent B over 120 min at a flow rate of 0.2 ml/min. The data

acquisition mode was set to obtain one high resolution MS scan in the Fourier Transform (FT) part of
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the mass spectrometer at a resolution of 60,000 full width at half-maximum (at m/z 400) followed by

MS/MS scans in the linear ion trap of the 20 most intense ions. The charged state screening modus

was enabled to exclude unassigned and singly charged ions and the dynamic exclusion duration was

set to 30 s. The ion accumulation time was set to 300 ms (MS) and 50 ms (MS/MS).

For label-free quantification, the generated raw files were imported into the Progenesis LC-MS

software (Nonlinear Dynamics, Version 4.0) and analyzed using the default parameter settings. MS/

MS-data were exported directly from Progenesis LC–MS in mgf format and searched against a decoy

database the forward and reverse sequences of the predicted proteome from S. cerevisae (SGD,

download date: 15/6/2012, total of 13,590 entries) using MASCOT (version 2.4.0). The search criteria

were set as follows: full tryptic specificity was required (cleavage after lysine or arginine residues);

three missed cleavages were allowed; carbamidomethylation (C) was set as fixed modification; oxi-

dation (M) as variable modification. The mass tolerance was set to 10 ppm for precursor ions and 0.6

Da for fragment ions. Results from the database search were imported into Progenesis and the final

peptide feature list and the protein list containing the summed peak areas of all identified peptides

for each protein, respectively, were exported from Progenesis LC-MS. Both lists were further stati-

cally analyzed using an in-house developed R script (SafeQuant) and the peptide and protein false

discovery rate (FDR) was set to 1% using the number of reverse hits in the dataset (Sun et al., 1994).

Transcriptomics

mRNA extraction
For the extraction of mRNA from yeast, the RiboPure RNA Purification Kit, yeast (Ambion, Life Tech-

nologies/Thermo Fisher Scientific Co.) was used as described by the manufacturer. Frozen cell pel-

lets of 3 � 107 cells were suspended in the lysis mixture. Vortexing was done by using the the

Ambion Vortex Adapter (Ambion, Life Technologies/Thermo Fisher Scientific Co. Waltham, MA).

The mRNA was collected in 70 ml elution solution. The quality and yield of the RNA was checked

with a NanoDrop ND-1000 Spectrophotometer (Thermo Fisher Scientific, Waltham, MA). The sam-

ples were stored as 5 mg mRNA aliquots at �80˚C. 1 ml of 1:10 diluted mixture of 92 polyadenylated

non-yeast transcripts was added as a spike-in for sequencing quality control (ERCC RNA Spike-In

control mix, Life Technologies/Thermo Fisher, Waltham, MA) (Smeal et al., 1996).

mRNA sequencing and mapping
The mRNA was sequenced by ServiceXS (Leiden, The Netherlands). The quality and integrity of the

RNA samples was determined with a Nanodrop ND1000 spectrophotometer and analyzed on a RNA

6000 Lab-on-a-Chip using bioanalyzer (Agilent Technologies, Santa Clara, CA). The complementary

DNA (cDNA) libraries were generated by using the Illumina TruSeq mRNA-Seq Sample Prep Kit v2

(Illumina, San Diego, CA). In short, mRNA was isolated from total RNA using the oligo-dT-magnetic

beads and fragmented and cDNA synthesis was performed. The cDNA was ligated with the

sequencing adapters and amplified by polymerase chain reaction. The quality of the amplified cDNA

was measured with a DNA 1000 Lab-on-a-Chip. The fragment sizes ranged between 300 and 500

bp.

The cDNA was clustered in the flow cell of the sequencer by an Illumina cBot and the sequencing

was done on an Illumina HiSeq 2000. A cDNA concentration of 4.5 pM was used for sequencing, in

two reads of 100 cycles each, controlled by the HiSeq control software HCS v2.0.12.0. Image analy-

sis, base calling, and quality checks were performed with the Illumina data analysis pipeline RTA

v1.13.48 and/or OLB v1.9 and CASAVA v1.8.2. All data consisted of >0.9 Gb read depth and a qual-

ity Q30-score >80% per sample. One time point set, replicate 1 t10 (26.8 hr), was excluded by this

criteria.

Reads were mapped to EF4 genome assembly using TopHat software v2.0.8 and gene annotation

from Ensembl release 71. Per gene expression values were calculated using Cufflinks/Cuffdiff pack-

age v. 2.1.1. Data quality was assessed by principle component analysis on the resulting raw data of

spike-in controls and gene profiles. Outliers resulting from poor sequencing results in the spike-in (i.

e., Figure 2—source data 2 Table S3.1, samples from replicate 1: t2_M_Feb and t7_EW_Feb) or the

full genome profiles (i.e., Figure 2—source data 2 Table S3.1, samples from replicate 2:

t14_M_May, t14_D_May and t14_EW_May) were removed. As a result, three time points were
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omitted: replicate 1 t2 (1 hr), replicate 1 t7 (14 hr), replicate 2 t14 (53 hr). In total, four time points

were omitted from the raw mRNA data.

Data processing

Mathematical un-mixing
Mathematical un-mixing rests on the idea that a system of linear equations can be solved when (i)

the number of equations is equal to the number of unknowns and (ii) these are independent (see

supplemental note 1 in Supplementary file 1 for terminology, explanation, and validation of the

method). In our experiment, this idea was implemented for each time point by means of a weighted

‘un-mixing’ matrix (W) whose rows represented the fractions of cell types (i.e. mothers, dead, and

daughter cells) in the harvested ‘mixed-cell samples’. The fractional composition of each mixed-cell

sample was acquired by using flow cytometry on dye stained cells, using PI and AvF to assess the

amount of live mother cells, dead cells, and daughter cells (see: Materials and methods, Flow cytom-

etry analysis of sample composition, and see Figure 2—source data 1 Table S2.f for each time

point’s matrix).

For the mathematical un-mixing validation experiments, the fractional compositions of the mixed-

cell samples were defined by mixing different pure cell sample types (i.e. log-phase, deceleration-

phase, and stationary-phase cells) in known ratios. Protein and mRNA abundance values for the

mixed-cell samples were measured by targeted (SRM) proteomics (for validation only) and shotgun

proteomics (for validation and aging cells), or RNAseq transcriptomics (for validation and aging

cells). Equation (3), present in the supplemental note 1 in Supplementary file 1, was implemented

using a custom R script for the actual un-mixing procedure. Following the un-mixing of the data,

should the resulting data contained ‘unsolvable’ entries (see supplemental note 1 in

Supplementary file 1), a data quality criteria was applied: at least five time points per time trace (0–

72 hr) should be solvable, otherwise the protein or transcript was removed from the dataset. In cases

that passed this criteria but still contained one or more unsolvable entries in the time series, the

missing data was linearly interpolated by the time points neighboring the data in question using the

‘approx’ interpolation function in R, implemented by the zoo package (Zeileis and Grothendieck,

2005). Datasets were subsequently normalized to 1 million for both the shotgun proteomes and

transcriptomes.

Correction for effect of beads
A simple correction step accommodating for the specific protein losses caused by the presence of

the beads was applied to the relevant data, and is explained in the supplemental note 2 in

Supplementary file 1. The loss was specific for each protein, highly reproducible and independent

of the ratio of beads to cells (Figure 2—figure supplement 4). Briefly, a protein specific correction

factor was calculated for each protein of the proteome from the difference between a sample with

and without beads, averaged over two replicates. The correction was applied to the raw proteome

datasets, prior to mathematical un-mixing, and on all samples that contained beads.

Selection of the young time point reference sample
A young time point to compare aged cells to was selected and processed as described in the sup-

plemental note 3 in Supplementary file 1. Briefly, the time series proteome and transcriptome data

were standardized to the difference between the starting time point (7.8 hr in the column) and an

unprocessed sample, and only data from 7.8 hr and later was considered in the analyses. This was

done to avoid mislabeling any biological recovery from the biotinylation and loading procedure as

being aging related and to maintain quantitative datasets for analysis.

Data fitting and filtering
For both the shotgun proteomes and transcriptomes, replicate datasets were fitted with a locally

weighted scatterplot smoothing by polynomial regression using a standard span value of 0.75

(R Core Development Team, 2014), using the replicates of unprocessed samples, and the replicate

time series of 7.8–72 hr, as input for the regression. Final datasets were generated by resampling

the regression fit at each time point physically sampled in the experiment (including those prior to

7.8 hr, for completeness and consistency). Datasets are available in Table S2.5a and S3.5a for each

Janssens et al. eLife 2015;4:e08527. DOI: 10.7554/eLife.08527 19 of 24

Research article Biochemistry Computational and systems biology

http://dx.doi.org/10.7554/eLife.08527


of the proteome and transcriptome supplementary Tables (Figure 2—source data 1 and 2). A noise

threshold was applied to the time series datasets using the coefficient of variation between repli-

cates with a cutoff of 0.3, corresponding to retention of 90.9 and 84.4% of the most reproducible

data for the proteome and transcriptome, respectively (Figure 2—figure supplement 6) (dataset

available in Figure 2—source data 3 and 4, Table S4 and S5). From this final dataset of 1494 pro-

teins and 4904 transcripts, two proteins and two transcripts contained a negative data point in their

time series profiles, and were removed from both mother and daughter datasets in subsequent anal-

yses. Unless specified otherwise (see network methods), the final datasets used for analyses con-

sisted of the fitted regression data (Figure 2—source data 3 and 4, Table S4 and S5), from 7.8 hr of

cultivation and later.

GO term selection and annotation
Gene functional enrichments were determined by using the DAVID Bioinformatics Resources version

6.7 (Huang et al., 2009). Corresponding background gene lists of indicated size (Figure 3—source

data 1 Table S6) were used for each enrichment analysis. Annotation clusters determined by DAVID

(groupings of related genes based on the agreement of sharing similar annotation terms) having an

enrichment score of >0.5 were selected for consideration, if a GO term was enriched in the cluster

with a p-value <0.1. For larger datasets, a more stringent enrichment score cutoff of either >0.9 or

>1.0 was used, as seen from lowest score cutoffs listed in the table below per analysis. A representa-

tive naming for the enrichment was selected after evaluation of the annotation cluster’s GO terms

(see Figure 3–source data 1 ,Table S6). Visualization of the representative terms in clouds was

made using the R wordcloud package (Fellows, 2014) using the annotation cluster enrichment score

as a size-scaling factor. If duplicate terms were present within a GO term enrichment list, the higher

enrichment was used for visualization purposes. In one instance (the most responsive cluster of the

proteome network) an unclear term (‘BNR repeat’) representing three genes was omitted even

though it passed our criteria for inclusion.

Protein complex deregulation
A curated list of protein complexes derived from the ‘cellular component’ GO was downloaded

from yeastgenome.org (Cherry et al., 2012). Using the fold changes of gene products (i.e. either

proteins or transcripts) at any given time point within a protein complex of interest, the degree of

deregulation was assessed by measuring the interquartile of the distribution of the fold changes of

the complex’s gene products.

Network analysis
To infer the high-level directional networks (Figure 6B, Figure 7—figure supplement 1) and find

causal relations, six data analysis steps (Figure 6—figure supplement 1) were undertaken, as

expanded upon below in the supplemental note 4 in Supplementary file 1. Briefly, these were: (i)

Starting from the replicate datasets, the gene expression time series of both the transcriptome and

proteome were filtered to remove flat and/or noisy profiles using the R package GPREGE

(Zeileis and Grothendieck, 2005). (ii) The gene product networks (i.e transcriptome or proteome)

were generated, based on the gene profiles of the respective time course datasets, using the R

package GeneNet (Opgen-Rhein and Strimmer, 2007; Schaefer et al., 2015). This included gener-

ating an undirected network by calculating the partial correlation among gene profiles (Figure 6—

figure supplement 1B and C, Figure 7—figure supplement 4A). (iii) Following this, a directed net-

work was generated from the undirected network, based on an assessment of a gene profile’s ability

to predict another gene profile (Figure 6—figure supplement 1D and E, Figure 7—figure supple-

ment 4A) (Opgen-Rhein and Strimmer, 2007; Schaefer et al., 2015). (iv) The nodes in the network

were clustered together, using the method in (de Magalhães et al., 2012) using the R package

igraph (Figure 6A, Figure 7—figure supplement 4A) (Csárdi et al., 2015). The causal in/out con-

nections among genes were calculated for all the network clusters and listed in a direction matrix

(listed in Figure 6—source data 1 Table S7). (v) A high-level directional network was generated,

where the clusters were plotted in the order of their causal ranking by drawing the direction matrix

as arrows between the clusters. (vi). A sensitivity analysis was made to determine the optimal sparsity

of the networks and the cut-off for the partial correlation among gene profiles.
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