

Laser Diagnostics of Particles in Gas Flames

Peter N. Langenkamp Combustion Technology ESRIG Symposium 2018 university of groningen

What kind of particles?

N

 k_0

 R_g

a

 D_{f}

- Soot (fuel-rich hydrocarbon flames)
- Silica (e.g. from trace compounds in biogas)

Number of clusters in aggregate Proportionality constant

Radius of Gyration =

Radius of monomers Fractal dimension

Fractal dimension

Magnification : ×3 Number of cubes: ×27 $\Rightarrow 3^{D_f} = 27 \Rightarrow D_f = 3$

Magnification (scale of outer dimensions): ×3 Number of cubes: ×20 $\Rightarrow D_f = 20 \Rightarrow D_f = 2.7$

Growth of particles

- Aggregates agglomerate into 1 10 µm particles
- Clusters collide, forming larger
 (≈ 100 nm) fractal-like aggregates
- SiO₂ particles collide, forming 1 10 nm clusters
 - In combustion Si containing compounds rapidly form SiO₂

Why are we interested?

- Improve models
- Particles are harmful to
 - Health
 - Environment
 - Combustion equipment
- Possible applications
 - Aerogel
 - Catalyst
 - Filter

Investigating particles formed in flame

- Evolution in time (range of heights above burner)
- Effect of hydrogen fraction in fuel
- Different flame conditions (flame T, equivalence ratio)

Why Laser Diagnostics?

• Transmission electron microscopy (TEM)

- Individual particles
- Time consuming
- Sampling disturbs system

Laser light scattering (LLS)

- Average of particles
- Immediate information
- No disturbance of the flame

From flame to temperature

Measuring particle size

Angle dependent light scattering

Guinier analysis

• Challenge: small differences for small particles

Measuring soot volume fraction

- Laser Light Extinction
 - Decrease in laser
 intensity → volume
 fraction
 - Laser-Induced incandescence (LII)
 - Laser heats up particles
 - Signal from hot particles proportional to volume fraction

Extinction vs. LII

Laser Light Extinction

- No need for calibration
- Low sensitivity

Laser-Induced Incandescence

- Requires calibration
- High sensitivity

Measurements

- Fuel-rich ethylene flames produce a lot of soot
- Investigate impact of H₂ addition to fuel
- Different fuel fractions
 γ of H₂, compare at
 - equal fuel equivalence ratio (ϕ = 2.3) and
 - equal temperature (T = 1740 K)

Results

Volume fraction

Radius of gyration

Questions?

