Causal Inference Illustrated via Simpson's paradox

Ofer Engel

DAAAS Become a Member

Sex Bias in Graduate Admissions: Data from Berkeley

P. J. Bickel ${ }^{1}$, E. A. Hammel ${ }^{1}$, J. W. O'Connell ${ }^{1}$

+ See all authors and affiliations
Science 07 Feb 1975:
Vol. 187, Issue 4175, pp. 398-404
DOI: 10.1126/science. 187.4175.398

Article

Info \& Metrics

Abstract
Examination of aggregate data on graduate admissions to the University of California, Berkeley, for fall 1973 shows a clear but misleading pattern of bias against female applicants.
Examination of the disaggregated data reveals few decision-making units that show statistically significant departures from expected frequencies of female admissions, and about as manv units annear th favor women as to favor men If the data are nronerlv nonled

f Sex Bias in Graduate Admissions: Data from Berkeley	ARTICLES Sex Bias in Graduate Admissions: Data from Berkeley							
0		Department	Men			Women		
(in)			Applicants	Admitted		Applicants	Admitted	
		A	825	512.00	62\%	108	89	82\%
	Articl	B	560	353	63\%	25	17	68\%
		C	325	108	33\%	593	202	34\%
	Ab:	D	417	138	33\%	375	131	35\%
	Exar	E	191	48	25\%	393	98	25\%
	Exar	F	373	22	6\%	341	24	7\%
	${ }_{\text {stait }}$	SUM	2691	1181	43.9\%	1835	561	30.6\%

Did apply sun screen
Did not apply sun screen

Exposure to the Sun	Cancer	No cancer	\% of patients with cancer	Cancer	No cancer	\% of patients with cancer
a little	1	19	5.0%	3	37	7.5%
A LOT	12	28	30.0%	8	12	40.0%
Total	13	47	$\mathbf{2 1 . 7 \%}$	11	49	18.3%

| | Heart attack | No heart attack | \% of patients
 with heart
 attacks | Heart attack | No heart attack\% of patients
 with heart
 attacks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female | 1 | 19 | 5.0% | 3 | 37 | 7.5% |
| Male | 12 | 28 | 30.0% | 8 | 12 | 40.0% |
| Total | 13 | 47 | 21.7% | 11 | 49 | 18.3% |

Two drugs are tested on patients with a heart condition. The table shows the results of an experiment on a perfectly representative sample of patients. Which is correct (more than one)?
A. Males are less at risk when taking drug A (rather than B)
B. Females are less at risk when taking drug B (rather than A)
C. Overall, patients are less at risk when taking drug A (rather than B)
D. Overall, patients are less at risk when taking drug B (rather than A)

| | Heart attack | No heart attack | \% of patients
 with heart
 attacks | Heart attack | No heart attack | \% of patients
 with heart
 attacks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Female | 1 | 19 | 5.0% | 3 | 37 | 7.5% |
| Male | 12 | 28 | 30.0% | 8 | 12 | 40.0% |
| Total | $\mathbf{1 3}$ | $\mathbf{4 7}$ | $\mathbf{2 1 . 7 \%}$ | $\mathbf{1 1}$ | $\mathbf{4 9}$ | $\mathbf{1 8 . 3} \%$ |

Men more at risk

Type of drug

Controlling for gender,
Heart $\operatorname{drug} B \rightarrow$ more risk

	Drug A					Drug B	
Heart attack	No heart attack	\% of patients with heart attacks	Heart attack	No heart attack	\% patients with heart attacks		
Low blood pressure	1	19	5.0%	3	37	7.5%	
High blood pressure	12	28	30.0%	8	12	40.0%	
Total	13	47	21.7%	11	49	18.3%	

Two drugs are tested on patients with a heart condition. The table shows the results of an experiment on a perfectly representative sample of patients. Which is correct (more than one)?
A. Drug A is associated with lower blood pressure than B
B. Drug B is associated with lower blood pressure than A
C. Overall, patients are less at risk when taking drug A (rather than B)
D. Overall, patients are less at risk when taking drug B (rather than A)

| | Heart attack | No heart attack | \% of patients
 with heart
 attacks | Heart attack | No heart attack | \% of patients
 with heart
 attacks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Low blood
 pressure | 1 | 19 | 5.0% | 3 | 37 | 7.5% |
| High blood
 pressure | 12 | 28 | 30.0% | 8 | 12 | 40.0% |
| Total | $\mathbf{1 3}$ | $\mathbf{4 7}$ | $\mathbf{2 1 . 7 \%}$ | $\mathbf{1 1}$ | $\mathbf{4 9}$ | $\mathbf{1 8 . 3} \%$ |

Blood pressure

High blood pressure \rightarrow more risk

Controlling for blood pressure, drug $B \rightarrow$ more risk

Heart attack

Simpson's Paradox:
a trend observed in a population disappears when partitioned to subgroups

OR Ov®n reverses

