Skip to ContentSkip to Navigation
Research ENTEG

defence A. Silani: "Distributed control, optimization, coordination of smart microgrids"

When:Fr 19-02-2021 11:00 - 12:00
Where:Academy Building (online)

Promotors: Prof dr. ir J.M.A. Scherpen (RUG) and Prof M.J. Yazdanpanah

Abstract: Microgrids are power distribution systems which are typically classified by Direct Current (DC) and Alternating Current (AC) networks. Nowadays, renewable generation sources and new loads such as Electric Vehicles (EVs) are largely used in power systems. Thus, due to the increased share of renewable generations and large scale introduction of new loads such as EVs, new control strategies are required to address the uncertainties of power networks.

Due to the random and unpredictable diversity of load patterns, it is more realistic to consider dynamical or stochastic differential load models. In DC networks, in order to guarantee a proper and safe functioning of the overall network, the main goal is the voltage regulation. Thus, we propose controller schemes achieving voltage regulation and ensuring the stability of the overall DC network. Moreover, an important operational objective of AC networks is frequency regulation. Hence, we propose controller schemes achieving frequency regulation and ensuring the stability of the overall AC network.

Furthermore, we propose an Energy Management Strategy (EMS) taking into account the load, power flow, and system operational constraints in a distribution network such that the cost of the Distributed Generations (DGs), Distributed Storages (DSs) and energy purchased from the main grid are minimized and the customers' demanded load are provided where the loads are considered stochastic generated by time-homogeneous Markov chain. Finally, we solve a microgird optimal control problem with taking into account the social behavior of the EV drivers via a corresponding real data set.