Mechanical Strength and Stiffness of Biodegradable and Titanium Osteofixation Systems

A Comparison

G.J. Buijs DMD
E.B. van der Houwen MSc
B. Stegenga DMD, MSc, PhD
R.R.M. Bos DMD, PhD
G.J. Verkerke MSc, PhD
Scope (1)

Traumata
Scope (2)

Traumata
Background (1)

- Goals trauma surgery
 - adequate reponation
 - adequate fixation
- Plates and screws are generally used
Background (2)
• Degradable versus non-degradable
• Biodegradable fixation systems
 – great variety in dimensions
 – coarse dimensions
 – co-polymer compositions
• Mechanical characteristics differ substantially
 → hamper surgeons to select fixation system
Objective

To present relevant mechanical data in order to simplify the selection of an osteofixation system
Materials and Methods (2)

- 6 Biodegradable and 2 titanium osteofixation systems
- Plates/screws fixed to 2 PMMA blocks
<table>
<thead>
<tr>
<th>Brand name</th>
<th>Composition</th>
<th>Screw Diameter</th>
<th>Plate Length</th>
<th>Plate Width</th>
<th>Plate Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSorb FX</td>
<td>SR 70L/30DL PLA</td>
<td>2.0</td>
<td>25.5</td>
<td>5.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Resorb X</td>
<td>100 DL-Lactide</td>
<td>2.1</td>
<td>26.0</td>
<td>6.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Inion 2.0</td>
<td>LDL Lactide/TMC/PGA</td>
<td>2.0</td>
<td>28.0</td>
<td>7.0</td>
<td>1.3</td>
</tr>
<tr>
<td>LactoSorb</td>
<td>82 PLLA 18 PGA</td>
<td>2.0</td>
<td>28.5</td>
<td>7.0</td>
<td>1.3</td>
</tr>
<tr>
<td>Polymax</td>
<td>70L/30DL PLA</td>
<td>2.0</td>
<td>28.0</td>
<td>6.0</td>
<td>1.3</td>
</tr>
<tr>
<td>MacroPore</td>
<td>70L/30DL PLA</td>
<td>2.0</td>
<td>25.0</td>
<td>6.7</td>
<td>1.2</td>
</tr>
<tr>
<td>KLS Martin</td>
<td>Titanium (pure)</td>
<td>1.5</td>
<td>18.5</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>KLS Martin</td>
<td>Titanium (pure)</td>
<td>2.0</td>
<td>25.5</td>
<td>5.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

sizes in mm
Materials and Methods (2)

- Statistical analysis
 - SPSS version 12.0
 - One-Way ANOVA
 - Significant p < 0.05

<table>
<thead>
<tr>
<th>Test</th>
<th>Property</th>
<th>Strength</th>
<th>Stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bending</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Torsion</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Materials and Methods (1)

- Subjection to:
 - tensile
 - side bending
 - torsion
Results (1)

Mean Strength Tensile Test

- **Degradability**
 - Degradable
 - Non degradable

- **Systems**
 - BioSorb
 - Resorb
 - Titanium

- **Mean Strength (N)**
 - 0.00
 - 200.00
 - 400.00
 - 600.00
 - 800.00
Results (2)

Mean Stiffness Tensile Test

- **Degradability**
 - Degradable
 - Non degradable
Results (3)
Results (4)
Discussion (1)

- PMMA blocks versus bone
- *In vitro* data versus clinical application
Conclusions

- Tensile test: 1.5 and 2 mm titanium systems significantly stronger and stiffer than biodegradable systems
- Side bending test: 2 mm titanium system significantly stiffer than biodegradable systems
- Torsion test: 2 mm titanium system significantly stiffer than biodegradable systems
- SD of titanium plates larger than of biodegradable plates

Clinical importance
- Large significant differences titanium and biodegradable are clinically relevant
Conclusions

- Conclusions (cont.)
 - BioSorb FX most favorable strength and stiffness
 - Including cross-section Biosorb FX system is superior
 - Resorb X and MacroPore least strong and stiff

- Clinical importance
 - Large significant differences titanium and biodegradable are clinically relevant
Acknowledgements

- Manufacturers
 - Linvatec Biomaterials Ltd.
 - KLS Martin
 - Inion Ltd.
 - Walter Lorenz Surgical Inc.
 - Synthes
 - Macropore Inc.
Thank you for your attention