Hamiltonian mechanics

Faculteit Science and Engineering
Jaar 2019/20
Vakcode WIYHM-12
Vaknaam Hamiltonian mechanics
Niveau(s) master
Voertaal Engels
Periode semester II a
ECTS 5
Rooster rooster.rug.nl

Uitgebreide vaknaam Hamiltonian mechanics
Leerdoelen At the end of the course, the student is able to:
1. understand classical mechanics from the Newtonian, the Lagrangian and Hamiltonian point of view in terms calculus on manifolds.
2. deal with concrete mechanical examples in this way.
3. deepening the mathematical background.
Omschrijving Mathematical aspects of classical mechanics will be developed via Newtonian and Lagrangian systems to the world of Hamiltonian systems, which most naturally live on symplectic manifolds. The entire theory, including the benefits of the symplectic formalism is illustrated with many examples, eventually touching on current research.
Uren per week
Onderwijsvorm Hoorcollege (LC), Werkcollege (T)
Toetsvorm Opdracht (AST), Schriftelijk tentamen (WE)
(The written exam counts for 80%. The assignment 20%. Practical grade needs to be higher than 5.5)
Vaksoort master
Coördinator dr. M. Seri
Docent(en) dr. M. Seri
Verplichte literatuur
Titel Auteur ISBN Prijs
Mathematical Principles of Classical Mechanics. GTM 60, 2nd ed. Springer-Verlag 1989 V.I. Arnold
Entreevoorwaarden Good knowledge of ordinary differential equations and being acquinted with analysis on manifolds, against a general bachelor background in mathematics. Mechanics is not required, but is of course useful.
Opmerkingen
Opgenomen in
Opleiding Jaar Periode Type
MSc Courses for Exchange Students: Mathematics & Applied Mathematics - semester II a
MSc Mathematics and Physics (double degree)  (Mathematics and Complex Dynamical Systems (45 ects)) - semester II a keuzegroep
MSc Mathematics: Mathematics and Complex Dynamical Systems - semester II a keuzegroep
MSc Mathematics: Science, Business and Policy  (Science, Business and Policy: Mathematics and Complex Dynamical Systems) - semester II a keuzegroep
MSc Physics: Quantum Universe  (Optional Courses) - semester II a keuze