Linear Algebra 2

Faculteit | Science and Engineering |
Jaar | 2022/23 |
Vakcode | WBMA035-05 |
Vaknaam | Linear Algebra 2 |
Niveau(s) | propedeuse |
Voertaal | Engels |
Periode | semester II a |
ECTS | 5 |
Rooster | rooster.rug.nl |
Uitgebreide vaknaam | Linear Algebra 2 | ||||||||||||||||||||||||
Leerdoelen | At the end of the course, the student is able to: 1. reproduce definitions and give examples of the basic concepts in linear algebra as discussed in the course book. 2. verify if certain basic characteristics or basic concepts in linear algebra are applicable (can a given matrix be diagonalized, etc.) using standard examples. 3. discuss the development of part of a theory in linear algebra (for example, why can symmetrical matrices be diagonalized, or how is the theory of symmetric matrices used when classifying quadric forms). 4. reproduce and apply the theorems in linear algebra discussed in the course book, and reproduce the proofs of the important theorems. 5. reproduce the Cayley-Hamilton theorem and discuss abstract notions such as a dual vector space. |
||||||||||||||||||||||||
Omschrijving | This course provides a deepening of the topics that have already been covered in Linear Algebra 1. The emphasis will be on building a systematic theory rather than on numerical calculations as in Linear Algebra 1. Topics covered in this course include: Inner product spaces and applications (orthogonal, normal, Hermitian, positive definite, positive linear transformations), special polynomials, singular value decomposition, the exponential of a matrix. Some more abstract theory that will be briefly discussed, deals with diagonalization and the Jordan normal form, the Cayley-Hamilton theorem, quadratic forms, and dual vector spaces. |
||||||||||||||||||||||||
Uren per week | |||||||||||||||||||||||||
Onderwijsvorm |
Hoorcollege (LC), Werkcollege (T)
((4 hours of lectures and 4 hours of tutorials per week.)) |
||||||||||||||||||||||||
Toetsvorm |
Schriftelijk tentamen (WE), Tussentoets (IT)
(The grade for this course is determined by the following rules: 1) if ST <4.5 then G=ST. 2) if ST>=4,5 then G=max(ST, 0.3 TT + 0.7 ST) where ST is the mark for the final exam, TT is the mark for the mid-term exam and G is the final grade. The mid-term mark TT does not count for the re-exam.)) |
||||||||||||||||||||||||
Vaksoort | propedeuse | ||||||||||||||||||||||||
Coördinator | prof. dr. J. Top | ||||||||||||||||||||||||
Docent(en) | prof. dr. J. Top ,dr. ir. H.J. van Waarde | ||||||||||||||||||||||||
Verplichte literatuur |
|
||||||||||||||||||||||||
Entreevoorwaarden | The course unit assumes prior knowledge acquired from Linear Algebra 1 | ||||||||||||||||||||||||
Opmerkingen | |||||||||||||||||||||||||
Opgenomen in |
|