Matrices, Graphs and Convexity

Faculteit Economie en Bedrijfskunde
Jaar 2018/19
Vakcode EBB073A05
Vaknaam Matrices, Graphs and Convexity
Niveau(s) bachelor, uitwisseling
Voertaal Engels
Periode semester I a
Rooster rooster

Uitgebreide vaknaam Matrices, Graphs and Convexity
Leerdoelen Upon completion of the course the student is able to:
1. Compute the Kronecker product, a Singular Value Decomposition, all left/right/generalized inverses and the Moore-Penrose inverse
2. Check, prove and apply certain properties of (un)directed graphs
3. Check and prove a non-negative matrix is irreducible/primitive
4. Check and prove a set is convex and determine extreme points
5. Check and prove a function is (quasi-)convex
6. Compute the cone of all supporting/separating hyper-planes
7. Master the theory by solving problems (A-Practice), test themselves (B-practice)
Omschrijving The students will acquire knowledge and skills of mathematical methods used in econometric. Topics: Kronecker product, singular value decomposition, one-sided inverse and generalized inverses of matrices, the Moore-Penrose inverse (un)directed graphs, irreducible non-negative matrices, convex sets, convex and quasi-convex functions, supporting of a convex set and seperating hyper-planes of two convex sets.
Uren per week 6
Onderwijsvorm hoorcolleges, practica
(lectures, practices)
Toetsvorm schriftelijk tentamen
Vaksoort bachelor
Coördinator dr. J. Alonso-García
Docent(en) dr. J. Alonso-García ,dr. H.E. Nusse , student-assistants
Verplichte literatuur
Titel Auteur ISBN Prijs
Matrices, Graphs, and Convexity
Nusse, H.E.
Lecture notes (info during first lecture)
Entreevoorwaarden The contents of: Mathematics I for EOR, Mathematics II for EOR, Multivariate Calculus, Linear algebra for EOR
Opmerkingen Secr: Martine Geerlings-Koolman, phone: +31(0)50 36 37018, e-mail:
Opgenomen in
Opleiding Jaar Periode Type
BSc Econometrics and Operations Research/EOR 2 semester I a verplicht
Courses open to Exchange Students (BSc)  ( Courses open to Exchange Students (BSc) without limited access) 2 semester I a keuze