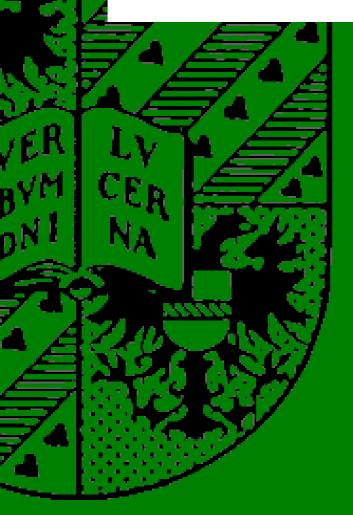
University of Groningen


Groningen Growth and Development Centre

RuG

Productivity in a Distorted Market: The case of Brazil's Retail Sector

Research Memorandum GD-112

Gaaitzen J. de Vries

RESEARCH MEMORANDUM

Productivity in a Distorted Market: The Case of Brazil's Retail Sector¹

Gaaitzen J. de Vries University of Groningen and GGDC E-mail: g.j.de.vries@rug.nl

April 2009

Abstract

In the Hsieh and Klenow (2009) [Hsieh, C., Klenow, P., 2009. Misallocation and Manufacturing TFP in China and India. Quarterly Journal of Economics 124:4] model of monopolistic competition with heterogeneous firms, distortions create a wedge between the opportunity cost and marginal revenue product of factor inputs. For Brazil's retail sector, we use census data to study implications for aggregate productivity and relate distortions with regional variation in regulation using a differences-in-differences approach. We find large potential productivity gains from the reallocation of resources toward the most efficient retailers. These potential gains have gone unexploited during the 1996-2006 period, which provides an explanation for the disappointing economic performance after services liberalization in the 1990s. Relating distortions to regulation, we show the importance of distinguishing effects by firm size and type of distortion. Difficulty in access to credit creates distortions to capital for small firms. Difficulty in access to credit has no discernible effects on medium and large-size firms. Taxes on gross profits create distortions to output for large firms, but do not significantly affect small and medium-size firms. Regulation in national markets may have prevented improvements in allocative efficiency.

Keywords: Resource allocation, Productivity, Retail sector, Brazil JEL Classification: D24, L50, O12

¹I thank the team at IBGE, the national statistical office of Brazil, for their hospitality and providing me access to the firm level data. IBGE ensures confidentiality of responses by requiring researchers to work on site at CDDI with output checked before leaving the premises. This paper benefited greatly from comments by Marcel Timmer, Carmen Pagés, and seminar participants at the University of Groningen, the IARIW conference, and the Inter-American Development Bank.

1 Introduction

Latin America's disappointing economic performance after market-oriented reforms in the 1990s is receiving widespread attention. According to an increasingly dominant view, the limited role of allocative efficiency is the main culprit of low growth in Latin America.¹ Allocative efficiency is the market condition whereby resources are allocated in such a way that maximum aggregate output is attained through their use. Pages et al. (2009) find the contribution of resource reallocation to growth was negative in the manufacturing industries of Latin America during the period after regulatory reforms. For Brazil's manufacturing sector, Menezes-Filho and Muendler (2007) find labor is flowing away from comparative-advantage industries and away from exporters because their labor productivity increases faster than their production so that output shifts to more productive firms while labor does not. Hence, reforms can be related with efficiency gains at the firm level², but not in the aggregate where idle resources result.

The role of the services sector in explaining Latin America's economic performance has been largely neglected so far. This is surprising, because the sector accounts for over two-thirds of GDP and employment in these economies (Timmer and de Vries, 2009). Given the size of the services sector, insight in the functioning of the services sector is crucial for understanding aggregate economic performance. Evidence suggests that reallocation marginally contributes to growth in the services sector as well (de Vries, 2008). This raises the question that if low growth is due to limited improvements in the use of resources, what is preventing the reallocation of resources toward the most efficient firms? This paper studies allocative efficiency in the retail sector of Brazil, and explore the relation between regulation and resource misallocation.

Brazil opened up its retail sector in the World Trade Organization's 1995 General Agreement on Trade in Services, but also within MERCOSUL,³ and between the MERCOSUL members and the European Union. Furthermore, the participation of foreign capital in Brazilian retail firms was freed from restrictions in the Sixth Constitutional Amendment of 1995 (World Bank,

¹See for example Cole et al. (2005); Mukand and Rodrik (2005); Menezes-Filho and Muendler (2007); Pages et al. (2009).

 $^{^{2}}$ Studies typically find strong firm-level productivity improvements after trade liberalization. For the manufacturing sector in Brazil see: Hay (2001); Cavalcanti Ferreira and Rossi (2003); López-Córdova and Mesquita Moreira (2003); Muendler (2004); Schor (2004).

³Mercado Comum do Sul, the regional trade block consisting of Argentina, Brazil, Paraguay, and Uruguay.

2004). It was expected that these reforms would result in a retail revolution: productive reallocation through the expansion of modern retail chains and the growth of small successful retail businesses (Reardon et al., 2003).

This retail revolution happened in other countries. For example, in the US average annual labor productivity growth of 11 percent in the retail sector during the 1987-1997 period is for 90 percent due to new establishments from retail chains replacing independent mom-and-pop stores (Foster et al., 2006).⁴

The available evidence for Brazil's retail sector suggests a different development pattern. In Brazil, retail chains did not replace mom-and-pop stores during the period following reforms (de Vries, 2008). Instead, large chains typically acquired other (smaller-sized) chains. The limited role of reallocation in Brazil's retail sector may explain its low labor productivity growth, averaging 1 percent during 1996-2004 (de Vries, 2008). Pro-competitive reforms contradict limited reallocation of resources in Brazil's retail sector.

Various policies and institutions contribute to resource misallocation. Despite the reforms, regulation in labor and product markets may have prohibited the start of a retail revolution in Brazil. For example, taxes are high and reach over 200 percent of gross profits in Rio de Janeiro (World Bank, 2006), reducing incentives for retail firms in other states to enter the market in Rio de Janeiro by opening up new establishments. Also, difficulties in access to credit and strict labor market regulations may prevent the growth of successful small retailers and worsen their competitiveness relative to informal retailers. Consistent with the idea that regulation in labor and product markets may forestall growth in Brazil's retail sector, Restuccia (2008) calibrated the implications of taxes and entry costs for the misallocation of resources in Latin American countries. He found that taxes and entry costs can easily generate the misallocation of resources and hence the lower observed aggregate total factor productivity level in Latin America as compared to the US. Stringent regulations may prevent allocative efficiency improvements in Brazil's retail sector, and thereby impede growth.

Recent models follow Banerjee and Duflo (2005) by comparing marginal revenue products with the costs of factor inputs to examine the (mis)use of resources. This paper applies the Hsieh-Klenow (Hsieh and Klenow (2009), HK hereafter) model to study changes in resource allocation in Brazil's retail

⁴In a similar vein, Haskel and Sadun (2007) argue that lower growth in the UK retail sector relative to the US is due to retail chains opening up smaller new establishments because of size restrictions. In other words, growth in UK's retail sector originates from resource reallocation, but occurs at a slower pace because scale economies cannot be fully exploited by retail chains.

sector during the period from 1996 to 2006. Distortions to output and capital are inferred from residuals in first-order conditions in a model of monopolistic competition with heterogeneous firms. Wedges are measured if there is a difference between the opportunity cost and the marginal revenue product of factor inputs. In turn, these wedges are used to derive implications for aggregate productivity. HK developed the model to examine allocative efficiency in the manufacturing sector of the US, China, and India. They found an optimal allocation of resources would boost aggregate manufacturing productivity by 86-115 percent in China, 100-128 percent in India, and around 30-43 percent in the US.

We apply the HK model to a dataset of retail firms in Brazil. The principal data source is the annual census of wholesale and retail trade firms from 1996 to 2006. This dataset offers detailed information on output, inputs, and location of retail firms (and their establishments). The findings suggest there are large potential output gains from the reallocation of resources to the most efficient retailers. The gains in the retail sector appear much larger than that in the manufacturing sector: allocating resources efficiently may boost total factor productivity (TFP) by more than 200 percent. These results may be overstated because measurement error, and 'non-neoclassical' features such as markups, adjustment costs, returns to scale, and fixed and sunk costs will be reflected in the measure of distortions. Also, they are not strictly comparable to results for manufacturing. The results await further comparisons to potential TFP gains in the services sector of other developed and developing countries.

More importantly, the potential aggregate productivity gains from resource reallocation have gone largely unexploited during the post-liberalization period. We find no allocative efficiency improvements for the total retail sector and for most Federal states of Brazil separately. These results are consistent with the view that allocative efficiency is the main culprit of low productivity growth in Latin America.

After obtaining measures of distortions and examining their implications for aggregate productivity, we relate these distortions to regional variation in regulation using a differences-in-differences approach. Selective policy implementation and enforcement may create implicit or *de facto* differences in the business environment small and large firms face. For example, governments often find it impractical to collect taxes from small firms. Instead, governments are likely to set higher tax rates and enforce compliance only among larger firms (Tybout, 2000). In contrast, capital market imperfections might be a bigger constraint for smaller firms that lack collateral. Therefore, we allow the coefficients in our econometric model to vary by firm size. A novel aspect of the empirical approach is that we examine distortions to output and capital separately. HK examined the combination of distortions to output and capital. We show that separating both distortions is important to relate regulation with distortions due to opposing effects of regulation across size class and type of distortion.

We find that difficulty in access to credit results in distortions to capital for small and medium firms, but not for large firms. In contrast, taxes on gross profits create distortions to output for large firms, but do not significantly affect the output of small and medium firms. Hence, the results suggest that regulation results in distortions to output and capital, but the effects differ by firm size.

The remainder of this paper is organized as follows. Section 2 sketches the HK model and derives measures and implications of distortions for aggregate productivity. Section 3 describes the dataset. Potential gains and changes over time from productive resource reallocation are estimated in section 4. Thereafter, section 5 examines the relation between regulation and distortions to output and capital. Finally, section 6 provides concluding remarks.

2 Theoretical framework

This section illustrates the relation between aggregate productivity and the allocation of resources. Implications of the misuse of resources for aggregate productivity can be studied in a model of monopolistic competition with heterogeneous firms.⁵ The model originated from Melitz (2003). HK introduced distortions to this model.⁶ Here, we only discuss the core elements and present the (competitive equilibrium of the) model in a format which suits our empirical analysis.

Two firm-specific distortions are considered. First, a capital distortion τ_{Ksi} , which changes the marginal revenue product of capital relative to the marginal revenue product of labor. Second, an output distortion τ_{Ysi} , which distorts the marginal revenue product of capital and labor in equal proportions. The former leads firms to substitute labor for capital, while the latter

⁵Firms are heterogeneous with respect to marginal costs.

⁶Various authors focused on specific mechanisms that could result in resource misallocation. For example, Lagos (2006) studied the impact of labor market regulation on allocative efficiency; Buera and Shin (2008) examined implications of financial frictions, and Guner et al. (2008) developed a model to examine resource misallocation as a result of size restrictions.

results in a suboptimal size of the firm.

Following HK, assume aggregate output Y is the combination of goods Y_s in s retail industries under perfect competition in both the output and input market:

$$Y = \prod_{s=1}^{S} Y_s^{\theta_s}.$$
 (1)

where the sum of industry shares $\sum_{s=1}^{S} \theta_s = 1.^7$ Throughout, quantities will be denoted by capital letters, and prices by lower-case letters. Output Y_s in industry s, is the combination of N_s differentiated products sold by firms *i*, which face a constant elasticity of substitution σ :⁸

$$Y_s = \left(\sum_{i=1}^{N_s} Y_{si}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}.$$
(2)

The Cobb-Douglas production function of each retailer selling a differentiated good in industry s is given by:

$$Y_{si} = A_{si} K_{si}^{\alpha_s} L_{si}^{1-\alpha_s}, \tag{3}$$

where Y_{si} denotes the retailer's value added, A_{si} productivity, K capital, and L labor. To minimize measurement error, the capital share α_s and labor share $(1 - \alpha_s)$ are only allowed to vary across industries. Costs C_{si} for a retailer are given by:

$$C_{si} = wL_{si} + (1 + \tau_{Ksi})rK_{si},\tag{4}$$

where w is the wage rate, r is the rental cost of capital, and the capital distortion τ_{Ksi} raises the cost of capital relative to that of labor. Cost minimization results in the optimal capital-labor ratio:

$$\frac{K_{si}}{L_{si}} = \left(\frac{\alpha_s}{1 - \alpha_s}\right) \left(\frac{w}{r}\right) \left(\frac{1}{1 + \tau_{Ksi}}\right).$$
(5)

Retailer's profits are given by:

⁷Under cost minimization $p_s Y_s = \theta_s p Y$, where p_s is the price of sales Y_s in industry s and $p \equiv \prod_{s=1}^{S} \left(\frac{p_s}{\theta_s}\right)^{\theta_s}$ is the price of the final good sold (which is set the numéraire, so p = 1).

⁸Firms sell a single type of good or variety. These varieties are symmetrically differentiated, with a common elasticity of substitution σ between any two variables. In addition, we assume the elasticity of substitution is time-invariant and does not differ across goods.

$$\Pi_{si} = (1 - \tau_{Ysi}) p_{si} Y_{si} - w L_{si} - (1 + \tau_{Ksi}) r K_{si}, \tag{6}$$

where p_{si} is the price of the good sold by firm *i* in industry *s*, and τ_{Ysi} is the output distortion which affects the marginal products of capital and labor in equal proportions. Profit maximization results in the mark-up price over marginal cost, which is fixed because we assumed constant returns to scale in production, and is given by:

$$p_{si} = \left(\frac{\sigma}{\sigma - 1}\right) \left(\frac{w}{1 - \alpha_s}\right)^{1 - \alpha_s} \left(\frac{r}{\alpha_s}\right)^{\alpha_s} \left(\frac{(1 + \tau_{Ksi})^{\alpha_s}}{A_{si}(1 - \tau_{Ysi})}\right).$$
(7)

Maximizing retail industry output Y_s , we obtain the allocation of capital, labor, and firm output. The allocation of labor is (see HK for details):⁹

$$L_{si} = c_1 \cdot \frac{(1 - \tau_{Ysi})^{\sigma} A_{si}^{\sigma - 1}}{(1 + \tau_{Ksi})^{\alpha_s(\sigma - 1)}}.$$
(8)

The allocation of capital is:

$$K_{si} = c_2 \cdot \frac{(1 - \tau_{Ysi})^{\sigma} A_{si}^{\sigma - 1}}{(1 + \tau_{Ksi})^{\alpha_s (\sigma - 1 + \frac{1}{\alpha_s})}}.$$
(9)

And retailer's output is:

$$Y_{si} = c_3 \cdot \frac{(1 - \tau_{Ysi})^{\sigma} A_{si}^{\sigma}}{(1 + \tau_{Ksi})^{\alpha_s \sigma}}.$$
 (10)

In equation 10, output across firms within industries may differ because of heterogeneity in productivity A_{si} (as in Melitz (2003)), and because of firm-specific output and capital distortions. Absent distortions, relative to other firms in the industry a more productive firm will be larger. If a firm faces higher tax (enforcement) on profits, its size will be smaller than in the absence of distortions. This might be particularly binding for large firms,

⁹The parameter
$$c_1$$
, c_2 , and c_3 are constant within industries and given by:
 $c_1 = \left(\frac{\sigma-1}{\sigma}\right)^{\sigma} \left(\frac{(1-\alpha_s)}{w}\right)^{\sigma(1-\alpha_s+\frac{\alpha_s}{\sigma})} \left(\frac{\alpha_s}{r}\right)^{\alpha_s(\sigma-1)} I^{\sigma-1}\theta_s Y;$
 $c_2 = \left(\frac{\sigma-1}{\sigma}\right)^{\sigma} \left(\frac{(1-\alpha_s)}{w}\right)^{\sigma(1-\alpha_s+\frac{\alpha_s}{\sigma}-\frac{1}{\sigma})} \left(\frac{\alpha_s}{r}\right)^{\alpha_s(\sigma-1+\frac{1}{\alpha_s})} I^{\sigma-1}\theta_s Y;$
 $c_3 = \left(\frac{\sigma-1}{\sigma}\right)^{\sigma} \left(\frac{(1-\alpha_s)}{w}\right)^{\sigma(1-\alpha_s)} \left(\frac{\alpha_s}{r}\right)^{\alpha_s\sigma} I^{\sigma-1}\theta_s Y;$
where $I = \left(\sum_{i=1}^{N} p_{si}^{1-\sigma}\right)^{\frac{1}{1-\sigma}}.$

since collecting taxes may involve fixed costs inducing authorities to enforce taxes on larger firms for which the effort has a positive payoff.¹⁰

To the extent resource allocation in an industry is driven by distortions alongside firm productivity, this will result in differences in the marginal revenue products of capital and labor across firms. The marginal revenue product of labor is:

$$MRPL_{si} = \frac{p_{si}Y_{si}}{L_{si}} = \frac{w}{(1-\tau_{Ysi})} \left(\frac{\sigma}{\sigma-1}\right) \left(\frac{1}{1-\alpha_s}\right).$$
 (11)

The marginal revenue product of capital is:

$$MRPK_{si} = \frac{p_{si}Y_{si}}{K_{si}} = \frac{r(1+\tau_{Ksi})}{(1-\tau_{Ysi})} \left(\frac{\sigma}{\sigma-1}\right) \left(\frac{1}{\alpha_s}\right).$$
(12)

Thus, the after-tax marginal revenue products of capital and labor are equalized across firms within industries. But before-tax marginal revenue products may differ depending on the distortions the firm faces. This has important implications for the firm's revenue productivity, which is an input share-weighted combination of the marginal product of capital and labor.

Solving for the equilibrium allocation of resources across industries, aggregate output can be expressed as (see HK for details):

$$Y = \prod_{s=1}^{S} \left(TFP_s K_s^{\alpha_s} L_s^{1-\alpha_s} \right)^{\theta_s}.$$
 (13)

Next, to determine industry productivity TFP_s , it is useful to distinguish between the firm's revenue productivity, $TFPR_{si}$, and the firm's physical productivity, $TFPQ_{si}$. The use of a firm-specific deflator yields a 'pure' measure of productivity, termed physical productivity $TFPQ_{si}$. In contrast, if an industry deflator is used, firm-specific differences in prices are not taken into account. Using an industry deflator gives a 'contaminated' measure of productivity, which is termed revenue productivity $TFPR_{si}$. Both firm productivity measures ($TFPR_{si}$ and $TFPQ_{si}$) are relative to the industry average. Following Foster et al. (2008), physical and revenue productivity are defined as:¹¹

¹⁰Similarly, SMEs may face lower corporate tax rates, which is common in OECD countries (OECD, 2002).

¹¹The parameters $c_4 = \frac{w^{1-\alpha_s}(p_s Y_s)^{-\frac{1}{\sigma-1}}}{p_s}$ and $c_5 = \left(\frac{\sigma}{\sigma-1}\right) \left(\frac{1-\alpha_s}{1}\right)^{\alpha_s-1} \left(\frac{r}{\alpha_s}\right)^{\alpha_s}$ are constant within industries.

$$TFPR_{si} \equiv p_{si}A_{si} \equiv \frac{(p_{si}Y_{si}/\overline{p_sY_s})}{(rK_{si}/\overline{rK_s})^{\alpha_s}(wL_{si}/\overline{wL_s})^{1-\alpha_s}}$$
(14)
$$= c_5 \cdot \frac{(1+\tau_{Ksi})^{\alpha_s}}{(1-\tau_{Ysi})}.$$

$$TFPQ_{si} \equiv A_{si} \equiv \frac{(Y_{si}/\overline{Y_s})}{(rK_{si}/\overline{rK_s})^{\alpha_s}(wL_{si}/\overline{wL_s})^{1-\alpha_s}}$$
(15)
$$= c_4 \cdot \frac{(p_{si}Y_{si}/\overline{p_sY_s})}{(rK_{si}/\overline{rK_s})^{\alpha_s}(wL_{si}/\overline{wL_s})^{1-\alpha_s}}.$$

In comparison to HK, we slightly improve the productivity estimates for $TFPR_{si}$ and $TFPQ_{si}$ by making them unit invariant (that is, dividing output and inputs by the industry averages for output and inputs). From equation 14, it follows that revenue productivity $TFPR_{si}$ only varies across firms within industries if firms face output and capital distortions. Firms with higher physical productivity $TFPQ_{si}$ demand more capital and labor up to the point where the higher output results in a lower price and thus the same $TFPR_{si}$ as the other firms.

Industry TFP_s can be shown to be:

$$TFP_s = \left(\sum_{i=1}^{N_s} \left\{ A_{si} \cdot \frac{\overline{TFPR_s}}{TFPR_{si}} \right\}^{\sigma-1} \right)^{\frac{1}{\sigma-1}}.$$
 (16)

An important aspect of the expression for industry productivity is that if all firms face the same distortions, industry TFP_s will be unaffected. That is, if $\tau_{Ysi} = \tau_{Ys}$ and $\tau_{Ksi} = \tau_{Ks}$ for all *i*, the distortions disappear from the expressions for equilibrium industry TFP_s , and TFP_s is given by $\overline{A_s} = \left(\sum_{i=1}^{N_s} A_{si}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$. This property of the model allows us to isolate the effects of policies on TFP through resource misallocation. The property is due to inelastic factor demand with respect to the distortions. A change in average taxes only changes factor prices, such that the first-order conditions of all firms are satisfied with the same allocations.

Firm-level distortions cannot be observed and must be identified. Distortions to output and capital are estimated from:

$$(1 - \tau_{Ysi}) = \frac{\sigma}{\sigma - 1} \frac{(wL_{si}/\overline{wL_s})}{(1 - \alpha_s)(p_{si}Y_{si}/\overline{p_sY_s})}.$$
(17)

$$(1+\tau_{Ksi}) = \frac{\alpha_s}{1-\alpha_s} \frac{(wL_{si}/wL_s)}{(rK_{si}/rK_s)}.$$
(18)

Firm-specific output distortions are inferred from equation 17, when the firm's labor share is low compared to the industry elasticity of output with respect to labor.¹² Capital distortions are inferred from equation 18 when the firm's ratio of labor compensation to capital services is high relative to what one expects from the output elasticities of capital and labor of the industry.

An important parameter in inferring distortions to output and their implications for aggregate productivity is the elasticity of substitution between firm value added. Aggregate productivity gains from the removal of distortions are increasing in σ . HK assume a common σ across goods equal to $\sigma = 3$. Initially, we use $\sigma = 3$ as well, but the sensitivity of the results to the choice of σ will be considered.

To estimate the firm's productivity and its distortions to capital and output, a choice has to be made on the capital share α_s . Because the average capital distortion and the capital production elasticity in each industry cannot be separately identified, we use the industry shares for the Federal district Brasilia as the benchmark. HK use industry shares for the United States as the benchmark. We are unable to use the US as the undistorted benchmark, because of data unavailability. Furthermore, US industry characteristics might not match those in the states of Brazil due to differences in market characteristics and relative costs of inputs. Therefore, we assume Brasilia is comparatively undistorted. Our benchmark choice is motivated by the observations that GDP per capita is highest, overall business regulation is least restrictive (see next section), and state-specific estimates of the substitution elasticity σ (explained in the sensitivity analysis in section 4) suggests competition is strongest in Brasilia. Deviations of the firm's input shares from the median shares in that particular industry for Brasilia will show up as a distortion to output and or capital for the firm.

3 Data

To derive measures of productivity and distortions, we use the annual census of retailers for the 10 year period from 1996-2006. The measures of distor-

¹²Output subsidies or taxes are not included in the firm's value added, because pre-tax TFPR is equal to one if distortions are absent in the model.

tions will be related with indicators of regulation in section 5. This section describes the regulatory indicators and retail census data.

3.1 Regulation: Taxes and Access to Credit

Information on regulation is provided by the World Bank's Doing Business in Brazil report for 13 out of 27 Federal states in 2006 (World Bank, 2006). The indicators we use are paying taxes and getting credit. Taxes are considered, because the complex and burdensome tax system potentially distorts output. Getting credit is considered, because it has been identified as one of the most important constraints on growth in Brazil (Rodrik, 2007). Small firms are constrained the most (World Bank, 2006), which may result in relatively larger distortions to capital for these firms.¹³

The indicator of paying taxes records all taxes paid by a medium-size firm, which produces and sells consumer goods within the second year of operation. Taxes are measured at all levels of government, resulting in more than 25 different public, state, and municipal taxes. These taxes include among others corporate income taxes, turnover taxes, and value-added taxes. Importantly, labor taxes (such as payroll taxes and social security contributions) are not included. Hence, the indicator of paying taxes can be used to examine distortions to output (that is, taxes are expected to proportionally affect the marginal revenue product of labor and capital).

The indicator on getting credit measures the time and cost to create and register collateral. The collateral agreement must be registered with the Registry of Deeds and Documents in the city of the debtor. These registries are not linked across regions, and often paper-based. The cost to register a security includes official duties and notary fees.

Information on taxes and access to credit is provided in table 1. The cost of registering collateral (as a percent of loan value) ranges from 0.2 in Rio de Janeiro to 3.8 in Ceará. In comparison, the cost of registering collateral is 0.01 percent of loans in Canada and the United Kingdom. Taxes range from 89 percent of gross profits in the Amazone to 208 percent in Rio de Janeiro. Taxes in the United States are 45 percent of gross profits. Hence, although taxes and collateral registration procedures are essential for an economy to function, both appear burdensome in Brazil.

The first row of table 1 shows the final ranking of states in terms of business regulation (1 for the least regulated state, 13 for the most regulated

 $^{^{13}}$ Cross-state information is not available to study the effects of labor regulation. See Lagos (2006); Almeida and Carneiro (2007); and Petrin and Levinsohn (2008) for firm-level analysis of the effects of labor regulation in Latin America.

state). This final ranking is a simple average of the ranking of a state on each indicator.¹⁴ The ranking suggests business regulation is least restrictive in Brasilia, while most restrictive in Ceará.

3.2 Retail-firm data

The principal data source of retail trade firms is the annual survey of distribution (Pesquisa Anual de Comercio, PAC) from 1996 to 2006. Firms registered in the Cadastro Nacional da Pessoa Jurídica (CNPJ) from the ministry of Economic Affairs and classified as wholesale and retail trade firms in the Cadastro Central de Empresas (CEMPRE) of the national statistical office (IBGE) are surveyed in PAC. The PAC dataset consists of two groups, namely a group of firms which surpass the threshold and are included by census, and another group of firms below the threshold included by sample only. The empirical analysis focuses on firms included by census, because we do not have appropriate weights to assure the sample reflects the population. Implications of excluding small (often informal) retailers will be discussed in section 6.

Firms with more than 20 employees or firms with less than 20 employees but with establishments in more than one Federal State are included in PAC by census.¹⁵ For 1996 this amounts to 14,445 firms included by census. In 2006, the number of firms included by census has risen to 19,346. While firms included by census constitute a fairly small share of the total population of retail firms, they represent the major part of the sector in terms of sales (about 60 percent). Firms are linked across years using their identification numbers from the tax registry.

The census includes detailed information on output and inputs. Gross value added is obtained by subtracting purchases of goods sold and the costs of intermediate inputs from sales. Value added consists of compensation for labor and capital inputs. Labor input is measured by the firm's wage bill, which crudely controls for differences in human capital and hours worked (Hsieh and Klenow, 2009). Consistent with the flow measures of output and labor input, we measure capital services in stead of capital stocks.

PAC reports information on investment, depreciation, and renting and

¹⁴A wider set of indicators is considered for the final ranking, also including starting a business, registering property, and enforcing contracts.

¹⁵Firms in several northern states located outside the Federal States' capital are not included in the survey because of the high costs involved in collecting information for these firms. These states are: Rondônia, Acre, Amazonas, Roraima, Pará, Amapá, and Tocantins.

leasing expenditures. This information is combined to estimate firm's capital services. First, the services flows from the firm's own capital stock are estimated. The booked depreciation method is used to construct a 'guesstimate' of the initial capital stock in 1995. Essentially, the booked depreciation method assumes that firms linearly depreciate their capital, and combines the reported depreciation and investment to construct an initial capital stock in constant prices.¹⁶ Subsequent values of the firm's capital stock were estimated using the perpetual inventory method where a geometric depreciation rate ($\delta = 0.05$) is used. Multiplying the capital stock by the rental price (the sum of depreciation, the rate of return, and the price change of the capital asset) results in the annual services flows from the firm's own capital stock. Second, renting and leasing expenditures are added to the own-capital services flows. On average, own-capital services flows account for 66 percent of the firm's capital services, renting expenditures for 32 percent, and leasing expenditures for 1 percent.

The median share of the firm's capital services in value added is 19 percent, whereas that of remuneration is 78 percent. Hence, capital as a share of value added is of relatively limited importance for productivity estimates. So results will be rather insensitive to the way in which capital is measured.

Table 2 shows descriptive statistics for selected states and all states combined. Estimates of TFPR and TFPQ using equations 14 and 15 are close to one, because output and inputs are measured relative to the industry's average. Distortions to output are estimated from equation 17. Output distortions are negative on average, thus labor's share is high compared to what one would expect from the industry elasticity of output with respect to labor. The positive values for distortions to capital (estimated using equation 18) indicate that the ratio of labor compensation to the capital stock is high relative to what one would expect from the output elasticities with respect to capital and labor. Hence, both distortions suggest a relatively intensive use of labor compared to the benchmark. Distortions to capital are high in Ceará, where access to credit is also most restrictive (see table 1), suggesting a positive relation between the two. Output and input data suggest that firm size in Rio de Janeiro is below average, which might be related with higher

¹⁶See Broersma et al. (2003) for details on the method. We assume firms linearly depreciate their capital in 15 years. Alternatively, we estimate the initial capital stock from the equilibrium conditions in a neoclassical growth model (Easterly and Levine, 2002). The correlation between both estimates is high (0.80) and the results do not appear sensitive to the choice of method, but we prefer the booked depreciation method because it combines information on both investment and depreciation, whereas the neoclassical method uses investment data only.

taxes distorting output more in this state. We will formally examine the relation between regulation and distortions to output and capital in section 5.

Correlations are shown in table 3. The relation between value added and productivity is positive suggesting larger firms are more productive, which is consistent with core models of the size-productivity distribution of firms (Melitz, 2003). The correlation between employment and distortions to output is positive. This may reflect larger firms facing larger distortions to output. In contrast, the relation between employment and distortions to capital is negative suggesting that smaller firms face larger distortions to capital, although the relation is not significant. Hence, distortions may differ with firm-size, which is why the relation between regulation and distortions is allowed to vary across firm size in section 5. Before relating distortions with regulation, we examine the implications of distortions for aggregate productivity.

4 Allocative efficiency in Brazil's retail sector

We consider the productivity distribution and the gains in aggregate productivity if distortions were to disappear. If there were no distortions (or all distortions were the same across firms within industries), the TFPR distribution would be equal to one, and there would be no potential gains in productivity from resource reallocation. Hence, the variance of the TFPR distribution reflects firm-specific distortions across states. One can estimate potential aggregate productivity gains, by hypothetically removing these idiosyncratic distortions.

4.1 The revenue productivity distribution

Table 4 shows statistics for the revenue productivity distribution. We estimated the distribution of TFPR for each Federal state separately and for all states combined. Output and factor inputs are relative to the industry mean, so the mean and median of the TFPR distribution approximate one. The dispersion of TFPR varies considerably across states. The variance ranges from 0.22 in Rondônia to 1.35 in Espíritu Santo. If we correlate the variance in TFPR with the ranking of states on the strictness of business regulation we find a positive but insignificant relation, which suggests a weak positive relation between regulation and dispersion in marginal revenue products across firms within states. Obviously, these results are indicative at best.¹⁷

The variance of the TFPR distribution has important implications for aggregate productivity gains, because TFPR reflects wedges between the opportunity cost and marginal product of inputs (Hsieh and Klenow, 2009). Figure 1 shows respectively the (log-TFPR) distribution for Ceará, Rio de Janeiro, and Brasilia (descriptive statistics for these states are in table 2). A kernel density distribution is shown. The distributions are approximately bell-shaped, and tails are similar for the states considered. However, the TFPR distribution for Rio de Janeiro is stronger centered around 0 as compared to Brasilia. Given the variance of the TFPR distribution, potential productivity gains from resource reallocation will be larger in Brasilia as compared to Rio de Janeiro.

4.2 Potential gains from resource reallocation

Potential gains in aggregate productivity across states are estimated by hypothetically removing distortions. If marginal products are equal across firms, industry TFP is $\overline{A_s} = \left(\sum_{i=1}^{N_s} A_{si}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$. Potential gains are estimated from:

$$\frac{Y}{Y_{efficient}} = \prod_{s=1}^{S} \left[\sum_{i=1}^{N_s} \left\{ \frac{A_{si}}{\overline{A_s}} \cdot \frac{\overline{TFPR_s}}{\overline{TFPR_{si}}} \right\}^{\sigma-1} \right]^{\frac{\theta_s}{(\sigma-1)}}.$$
 (19)

For each industry, we calculate the ratio of actual TFP_s (equation 16) to the efficient level of TFP_s ($\overline{A_s} = \left(\sum_{i=1}^{N_s} A_{si}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$), and then aggregate this ratio across industries using the Cobb-Douglas aggregator (equation 1). Table 5 provides percentage TFP gains by state from fully equalizing TFPR across firms in each industry for the years 1996, 2001, and 2006. The potential gains are large. For 2006, removing distortions may increase aggregate TFP by 204 percent in Rondônia to 274 percent in Rio Grande do Sul (potential gains in Brasilia and Rio de Janeiro are 250 and 223 percent respectively).

An open question is how the estimated TFP loss from distortions compares to the observed TFP difference with retail in the United States. Examining this question requires information on distortions in US retailing. Improvements in allocative efficiency to the extent in US retailing could be

¹⁷The number of firms differs considerably across states. The limited number of observations for several states may result in incorrectly measured TFPR distributions. In section 5 we consider the sensitivity of the relation between regulation and distortions to dropping states one at a time.

used as a proxy for potential TFP improvement in Brazil from resource reallocation. Estimates indicate that productivity levels in Brazilian retailing are between 14 and 28 percent of the US productivity level (Mulder (1999); Lagakos (2009); McKinsey (1998)).¹⁸ Preliminary evidence, based on differences in the size-productivity composition between the US and Brazil, suggests that resource allocation improvements may account for half of this retail TFP gap (Lagakos, 2009). Our estimates of the large potential TFP gains from resource reallocation are in line with this finding.

Changes in the opportunity for increasing aggregate productivity by removing distortions are examined by comparing the potential gains between 1996 and 2006. Figure 2 presents results for Brasilia, Ceará, Rio de Janeiro, and all states combined. The figure suggests potential gains from resource reallocation have gone largely unexploited despite liberalization of the retail sector since 1995. In fact, in most states allocative efficiency worsened, although it improved in São Paulo and Rio de Janeiro (see table 5). Given the relative weight of the latter states in the total economy, overall resource allocation improved. However, gains are modest. During the ten years following liberalization, only 7 percent of the potential gains from allocative efficiency improvements have been realized.¹⁹

Our finding of limited resource reallocation is consistent with earlier research attributing Latin America's disappointing performance after marketoriented reforms in the 1990s to the slow reallocation of inputs toward more efficient firms (e.g. Cole et al. (2005); Mukand and Rodrik (2005); Menezes-Filho and Muendler (2007); Pages et al. (2009); de Vries (2008)). In particular, de Vries (2008) finds limited evidence of improvements in allocative efficiency after reforms in the retail sector of Brazil.²⁰

¹⁸Mulder (1999) finds that the relative productivity level dropped from 28 to 14 percent during the period from 1975-1995. This finding is consistent with the 14 percent level for food retailing in 1995 obtained by McKinsey (1998).

¹⁹The last column in table 5 shows the β -coefficient from an OLS regression where % TFP gains are regressed against time. A significant negative value indicates improvements in allocative efficiency. In most states, the coefficient is positive and insignificant.

²⁰An alternative for considering the efficient allocation of resources is by focusing on the productivity distribution using the Olley and Pakes (OP) (Olley and Pakes, 1996) method. This method does not weight input movements using differences in the gaps between marginal revenue products and input prices, but measures whether resources are allocated efficiently in the cross section of firms by looking at the differences between weighted and unweighted productivity at a given moment in time. If distortions are present, the difference between unweighted productivity and cross-sectional efficiency is smaller. Applying this method to the retail sector in Brazil, we find the difference between weighted and unweighted log(TFPR) is 0.26 log points in 1996. This implies that aggregate productivity would be around 26 percent lower if resources were allocated randomly. We

Estimates of potential gains in retailing are higher than estimated productivity gains from equalizing TFP within manufacturing industries. For China and India, gains in manufacturing range from 86 to 128 percent (Hsieh and Klenow, 2009). Estimates for the manufacturing sector in Latin America are not yet available, but preliminary evidence for Bolivian manufacturing suggests that it is roughly in the same ballpark as Chinese and Indian manufacturing (Machicado and Birbuet, 2008). However, competition might be lower in retailing as compared to manufacturing, since location plays a more important role in retailing. In other words, the elasticity of substitution might be lower in retailing as in manufacturing, reducing the difference in potential gains from resource reallocation between the two.²¹ To better understand distortions in Brazil's retail sector, results should be compared to that in the retail sector of other developed and developing countries when these results become available.

We examined the sensitivity of estimated potential aggregate TFP gains in various ways. The sensitivity analysis suggests that various adjustments affect the magnitude of potential TFP gains. However, changes over time in the opportunity for increasing aggregate productivity by removing distortions are hardly affected.

First, potential gains are increasing in σ , and HK argue that the 'estimated gains are highly sensitive to this elasticity' (p. 19).²² Therefore, we examined the sensitivity of TFP gains to the elasticity of substitution. Hopenhayn and Neumeyer (2008) show $\sigma = 3$ is a low value relative to what has been used in the literature. In the absence of firm-specific distortions, there is an equivalence between aggregate productivity in the decreasing returns perfect competition economy (Restuccia and Rogerson, 2008) and the constant returns monopolistic competition economy (the HK model). Without distortions (or equal distortions across firms), TFP is:

$$TFP_s^{RR} = \left(\sum_{i=1}^{N_s} A^{\frac{1}{\nu}}\right)^{\nu} \tag{20}$$

do not find an improvement in the OP cross term over time. Hence, the OP method suggests allocative efficiency did not improve, which is consistent with the findings using the HK model.

²¹In the sensitivity analysis below, we find that potential productivity gains are increasing in σ . Therefore, a higher elasticity of substitution in manufacturing relative to retailing translates into a smaller difference in potential TFP gains.

 $^{^{22}}$ We considered other common elasticities of substitution (e.g. 5 and 7) as well. In general, gains increase in σ .

$$TFP_s^{HK} = \left(\sum_{i=1}^{N_s} A_{si}^{\sigma-1}\right)^{\frac{1}{\sigma-1}}$$
(21)

Hence, for the parameter $\nu = 1/(\sigma - 1)$, aggregate productivity is similar in both models. The parameter ν is usually calibrated taking a value $\nu = 0.15 - 0.2$, which implies $\sigma = 6 - 7\frac{2}{3}$ (e.g. Atkeson and Kehoe (2005); Buera and Shin (2008); Guner et al. (2008)). In addition to the assumption of a low elasticity of substitution in HK ($\sigma = 3$ implies $\nu = 0.5$), the assumption of a common elasticity may not reflect differences in market circumstances.

More in line with calibration analysis of models with decreasing returns to scale and perfect competition (e.g. Restuccia and Rogerson (2008)), we let the elasticity of substitution vary between 3 and 7. Further, we relax the assumption of a common elasticity of substitution by allowing it to vary across states in Brazil. Substantial differences in market characteristics across the states of Brazil motivate this approach. The elasticity of substitution by state is estimated using indicators that capture the degree of substitutability between firm's value added in each state. Population and retail-firm density, in combination with demand factors are likely to increase competition. The variables considered are: population per km^2 , number of retail firms per 1000 inhabitants, GDP per capita, female labor force participation (shifting preferences toward one-stop shopping), and the share of households with a car. An unweighted average for the normalized values of these indicators determines the elasticity of substitution. Appendix table A.1 shows the indicators and the resulting σ . The elasticity of substitution between the output of firms is highest for Brasilia, and lowest for Pará.

The potential gains using state-specific σ 's are shown in figure 3. The overall gains are larger, which is mainly due to the higher estimates for São Paulo. This suggests that potential TFP gains from resource reallocation are sensitive to the choice of σ . However, more important is the tendency in allocative efficiency improvements across states, which shows no particular pattern.

Second, we examined the influence of the tails of the TFPR distribution, because measurement error could influence the potential gains. We trimmed the 2.5 percent tails of TFPQ and the output and capital distortions.²³ We allow the elasticity of substitution to vary across states. Figure 3 shows these results as well. Hypothetical TFP gains fall, from 318 to 237 percent

 $^{^{23}}$ In the benchmark estimations of TFP gains, we trimmed the 0.5 tails of TFPQ and the output and capital distortions.

for all states combined. Hence, measurement error in the remaining 2 percent tails could matter, but if so it only partially accounts for the big gains from removing distortions. Changes in allocative efficiency are similar, and again suggest a limited role of resource reallocation to productivity growth.

Third, the results may be influenced by the firm-size distribution across states if distortions differ by firm type. As a final robustness check, we excluded firms with establishments in multiple states before estimating potential gains. TFP gains are only slightly smaller (316 instead of 318 percent for all states), suggesting the overall gains are insensitive to the inclusion of firms with establishments in multiple states (see figure 3). However, the limited sensitivity of the results could be due to the opposing relation between distortions to output and firm size (positive) and between distortions to capital and firm size (negative), we found in the explorative data analysis (see tables 2 and 3). We explore the relation between regulation and distortions further in the next section.

5 Regulation and distortions to output and capital

Regulation and distortions are related using a particular form of a differencesin-differences (DD) approach, popularized by Rajan and Zingales (1998).²⁴ This approach makes predictions about within-country differences between industries based on an interaction between a country and industry characteristic. For example, Rajan and Zingales (1998) considered whether industrial sectors that are relatively more in need of external finance developed faster relative to sectors with less need of external finance within countries with more developed financial markets. In our case, we will consider within-state differences rather than within-country differences.

The substantial variation in regulation across states (see table 1) allows us to examine the distortionary effects of regulations in a differences-indifferences approach. We examine how taxes and access to credit impact on distortions to output and capital. For taxes, we examine whether retail industries with higher commercialization margins will be more affected by higher taxes.²⁵ For example, commercialization margins in the retail sale of household appliances, articles and equipment (CNAE 1.0 industry 5233) are higher than in specialized bakery and diary stores (CNAE 1.0 industry

²⁴For recent applications, see Aghion et al. (2007), and Bruno et al. (2008).

²⁵Commercialization margins are defined as resale revenues minus the cost of goods sold, remuneration, and intermediate expenditures, over sales.

5221) (IBGE, 2006).²⁶ Therefore, retailers selling household appliances will be more affected by taxes as compared to retailers selling food, beverages, and tobacco. In turn, this will translate into higher distortions for high-margin firms in states with high taxes relative to low-margin firms in the same state.

For access to credit, we examine whether retail industries that depend more on external financing are more affected by difficulty in access to credit (Rajan and Zingales, 1998). Our measure for external financial dependence is expenditures related to outstanding debt (e.g. interest payments on loans). This measure should reflect the amount of desired investment that cannot be financed through internal cash flows generated by the same firm. Using this proxy suggests that the relative dependence on external finance is higher in more capital-intensive retail industries. For example, dependence on external finance is highest in hypermarkets (CNAE 1.0 industry 5211) and lowest in stores selling candy and chocolates (CNAE 1.0 industry 5222).

The differences-in-differences approach requires a ranking of industries in an undistorted economy. Usually the United States is chosen (e.g. Rajan and Zingales (1998); Aghion et al. (2007)). We are unable to use the US as the undistorted benchmark, because of data unavailability. Furthermore, US industry characteristics might not match those in the state of Brazil due to differences in market characteristics and relative costs of inputs. Instead, we use Brasilia as the comparatively undistorted benchmark. Obviously, distortions are present in Brasilia as well, as suggested by the potential gains from resource reallocation we found in section 4. However, what matters is that the rank ordering of commercialization margins and external financial dependence in Brasilia corresponds to the rank ordering of natural commercialization margins and natural external financial dependence across industries, and that these rank orderings carry over to other states in Brazil (Klapper et al., 2006).

5.1 Model specification

For 2006, we regress distortions to output and capital on regulation interacted with an industry-specific indicator. Initially, we do not allow effects to vary by firm size (z), and therefore exploit three dimensions: (i) firm; (s) industry; and (r) region. If we label the regulatory variable (taxes or access to credit) as 'policy' and the related industry-specific factor as 'industry factor', the estimated specification is as follows:

²⁶CNAE is Classificação Nacional de Atividades Econômicas, the national industry classification, which closely maps the International Standard Industrial Classification.

$$\gamma_{i,s,r,z} = \delta(policy_r \cdot industry factor_s) + \sum_{r=1}^R \sum_{z=1}^Z \beta_{r,z} D_{r,z} \qquad (22)$$
$$+ \sum_{s=1}^S \sum_{z=1}^Z \beta_{s,z} D_{s,z} + \epsilon_{i,s,r,z}.$$

The dependent variable, $\gamma_{i,s,r,z}$, is either a measure of the distortion to output (τ_{Ysi}) or capital (τ_{Ksi}) , or a combination of both $(TFPR_{si})$. Regionsize dummies, $D_{r,z}$, and industry-size dummies, $D_{s,z}$, are included to control for other market, technological, or regulatory factors not included in the regressions. This specification allows us to relate regulation with idiosyncratic distortions. For example, for taxes we may examine whether differences in distortions to output between firms in industries with high or low commercialization margins are smaller in regions with lower taxes.

In the introduction, it is argued that the effects of taxes and difficulty in access to credit are likely to vary by firm size. The descriptive analysis in section 3 suggests that distortions may vary with firm size as a result of regulation. Furthermore, Bartelsman et al. (2008) use the World Bank Investment Climate Surveys to examine the differential impact of policy factors on performance and growth prospects of firms of different size in Latin America. They present descriptive evidence that medium-size and, especially, large firms are more affected by high taxes and cumbersome tax administration than small firms. Medium and large businesses tend to be relatively less affected by lack of access to, and the cost of, financing. To allow for differential effects of policies, in a second specification we allow the effect to vary by firm size z:

$$\gamma_{i,s,r,z} = \sum_{z=1}^{Z} \delta_z(policy_r \cdot industry factor_s) + \sum_{r=1}^{R} \sum_{z=1}^{Z} \beta_{r,z} D_{r,z} \quad (23)$$
$$+ \sum_{s=1}^{S} \sum_{z=1}^{Z} \beta_{s,z} D_{s,z} + \epsilon_{i,s,r,z}.$$

The employment-size categories distinguished are z1 < 50 employees, z2 = 51-100 employees, z3 = 101-249 employees, z4 > 250 employees.

A clear advantage of the DD approach compared to standard crossstate/cross-industry studies is that it allows to control for state and industry effects, thereby reducing problems with model misspecification and omitted variable bias. However, recent research has highlighted some disadvantages of the DD approach as well. Bertrand et al. (2004) argue that standard errors are biased due to autocorrelation if a long time series is considered. In our model set up, a single cross-section is considered, which is not susceptible to serial correlation problems. Donald and Lang (2007) show potential problems with grouped error terms, because the dependent variable differs across individuals while the policies being studied are constant among all members of a group. Failure to account for the presence of common group errors can generate biased standard errors as well. Therefore, we correct the standard errors using a robust covariance estimator, where state-industries are clustered. The large number of groups (13 states \times 20 industries) is expected to result in an asymptotically normally distributed t-statistic.

5.2 Results

Table 6 shows results from estimating equation 22. Results show the average impact of regulation without differentiating by size. In the uneven columns, regional taxes on gross profits are interacted with the industry's commercialization margin. For the even columns, difficulty in access to credit is interacted with the industry's financial dependence. In column (1)-(4), we consider the effects on revenue $(TFPR_{si})$ and physical $(TFPQ_{si})$ productivity. Recall that revenue productivity is a composite measure reflecting distortions to output and capital, whereas physical productivity measures 'true' productivity of the firm (see equations 14 and 15). Therefore, regulations are expected to be related with revenue productivity, and not with physical productivity.

Results in column (1)-(4) suggest that taxes and access to credit are positively related with distortions (higher revenue productivity) in industries with higher commercialization margins and dependence on external finance, although the relation is significant for access to credit only. However, a similar relation is observed between regulation and physical productivity (columns 3 and 4). This creates doubts on the accurateness of distinguishing TFPR and TFPQ, because distortions should solely be reflected in revenue productivity. Both productivity measures are highly correlated and therefore may reflect true productivity and distortions to output and capital to some extent. Furthermore, revenue productivity is a composite measure of distortions, which may obscure channels by which regulation affects resource misallocation. Therefore, examining distortions to output and capital separately appears more appropriate.

Regressions for distortions to output and capital are shown in columns

(5)-(8). Results suggest taxes are negatively related with distortions to output and positively related with distortions to capital. The opposing effects may explain why taxes are not significantly related with revenue productivity. Access to credit is positively related with both distortions to output and capital, which may explain why is it significantly related with revenue productivity.

A single coefficient for all firms may hide opposing affects across firm size. For example, distorting effects of difficulty in access to credit may be particular severe for small firms lacking collateral. Therefore, we allow the impact of regulation to vary by firm size. Results from estimating equation 23 are shown in table 7. Our interest centers on the relation between regulation and distortions to output and capital separately.

Results in table 7 suggest different patterns across firm size. In relative terms, taxes on gross profits act as an output subsidy for small firms (because of the negative coefficient), have ambiguous effects for medium firms, and distort output of large firms (because of the positive coefficient, see column 1). Output distortions for large firms are higher in regions with higher taxes and in industries with higher commercialization margins. This finding is consistent with earlier literature (e.g. Gollin (2006);Guner et al. (2008)) and recent findings from interviews with CEO's of retail chains in Argentina (Sánchez and Butler, 2008). It may be due to lower taxes for small firms (e.g. because of the SIMPLES tax system for small firms)²⁷ or higher enforcement for large firms if tax collection involves fixed costs, or a combination of both.

To explore the estimated impact of taxes on distortions to output we follow the approach outlined in Aghion et al. (2007). We estimate the difference in distortions to output between firms in industries with high commercialization margins (90^{th} percentile of distribution in Brasilia) and firms in industries with low commercialization margins (10^{th} percentile of the same distribution) in the region with the highest taxes compared to the region with the lowest taxes:

$$\delta_{z}[(Margin_{90th} - Margin_{10th})(Taxes_{max} - Taxes_{min})].$$
(24)

Using the coefficients in column (1), the impact of taxes on distortions to output is -0.02 for small firms and 0.19 for large firms. The differential impact is 0.21, which is about 12 percent of the sample mean distortion to output, suggesting that taxes have a modest but non-negligible impact on output distortions.

²⁷The introduction of the SIMPLES program in Brazil in 1996 lowered taxes for small firms and simplified procedures for becoming formal.

Difficulty in access to credit results in distortions to capital for small and medium firms, but not for large firms (column 4). In other words, difficulties in access to credit induce small and medium firms to substitute labor for capital. Smaller firms are more likely to face borrowing constraints because of limited liability and imperfections in the enforcement of debt repayment (Albuquerque and Hopenhayn, 2004). Therefore, small firms in industries that depend relatively more on external finance are more likely to employ labor instead of capital.²⁸ In a similar fashion as for the effect of taxes, we examine the estimated impact of access to credit on distortions to capital. The differential impact between small and large firms is 0.57, suggesting that difficulty in access to credit has a substantial impact on distortions to capital at the sample mean.

5.3 Sensitivity of the results

The sensitivity of the main result, namely that the effects of regulations differ by firm size and type of distortion, are examined along different dimensions. Overall, the results are robust, but the sensitivity analysis uncovers several other interesting findings. First, regressions might be affected by the hierarchical setup of the model specification. That is, distortions measured at the firm-level are related with region-industry indicators. Although regionindustry clusters were used to adjust the standard errors, a potential better approach might be to include firm-specific variables as explanatory variables (also using clustered standard errors). In columns (1) and (2) of table 8, regressions are shown where the firm's employment is included. Employment was considered, because it proxies for firm size. Therefore, we examine whether the results are driven by differences in profit margins and dependence on external finance between industries across size classes and not by independent size effects. Including a firm-specific variable does not change the distortionary effects of taxes and access to credit across firm size.

Second, we noted in section 3 the difficulty in constructing capital stocks. The baseline regressions use the booked depreciation method to construct an initial capital stock. Alternatively, we estimated the initial capital stock from the equilibrium conditions in a neoclassical growth model (Easterly and Levine, 2002). Using this initial capital stock, capital services are estimated following the approach outlined previously (see section 3). Results from estimating the model with the alternative capital services estimates are shown in columns (3) and (4). The relation between distortions and regulation across

²⁸Related, Amaral and Quintin (2003) show these borrowing constraints increase demand for low-skilled workers in informal firms if capital and skills are complementary.

firm size is similar. The impact is larger though, as suggested by the higher coefficients.

Third, we considered the sensitivity of the results to the elasticity of substitution varying by firm size. It may be argued that the elasticity of substitution is higher for small firms, perhaps because of customer-binding marketing strategies and the broader assortment of large firms, and less fixed costs in small firms. As a crude proxy, we allow the elasticity to vary between 7 and 3 for the different size groups instead of letting it vary between states. Results from regressing the different measures of distortions to output and capital are shown in columns (5) and (6). For difficulties in access to credit, the relation with distortions to capital is similar. However, for taxes we no longer find a significant distortionary influence on output for large firms. This suggests the negative effects of taxes for retail chains may be mitigated by strategies and firm characteristics that lock-in customers.

Finally, we examined the sensitivity of the results to changes in the sample. We re-estimated the main regression of interest (columns (5) and (8) in table 6) removing one region at a time from the sample. This approach is motivated by substantial differences in the number of observations between states. Appendix figure A.1 and A.2 present the estimated coefficients differentiated by size classes. The first set of results (figure A.1) suggests the amplitude of the coefficient for taxes interacted with commercialization margins is insensitive to the regions included in the sample. In particular, the distorting effect of taxes for large firms is stable across the different regressions, although the effect is at the 5 percent border of significance if Rio Grande do Sul (UF 43) is excluded from the sample. The second set of results (figure A.2) indicates that the results for difficulty in access to credit interacted with financial dependence are affected by the exclusion of certain regions. In particular, excluding Minas Gerais, the state where access to credit is least difficult, affects the coefficient for large firms. Nevertheless, the sensitivity analysis still indicates substantial different effects across size classes irrespective of the exclusion of regions one at a time.

6 Concluding remarks

An increasingly dominant view holds the limited role of allocative efficiency as the main culprit of low growth following reforms in Latin America since the 1990s. So far, this view has been largely based on evidence from the manufacturing sector. In this paper, we extended the analysis by examining allocative efficiency in the retail sector of Brazil. A novel methodological approach, which uses the gaps between marginal revenue products and input prices to measure resource allocation, was followed. This approach is theoretically a preferable measure of aggregate productivity with firm-level data (Petrin and Levinsohn, 2008). However, the approach is not without limitations, because 'non-neoclassical' features such as markups, adjustment costs, returns to scale, and fixed and sunk costs are also reflected in the gaps.

We applied the HK model to a detailed census dataset of retail firms. Wedges between the opportunity cost and marginal product of factor inputs were measured and implications for aggregate productivity were imputed. The results indicate large potential productivity gains from the reallocation of resources toward the most efficient retailers. The potential TFP gains appear larger for the retail sector than that of the manufacturing sector, although comparative evidence for the manufacturing sector in Brazil and the retail sector of other countries is still missing. Not including the informal sector in our estimates of potential productivity gains may hide even more gains from resource reallocation.

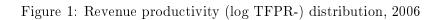
Importantly, we find limited evidence for improvements in allocative efficiency. Only 7 percent of the potential output gains from resource reallocation have been realized during the 1996 to 2006 period. This finding is in line with the view that the absence of productive reallocation is underlying low growth in Latin America following reforms.

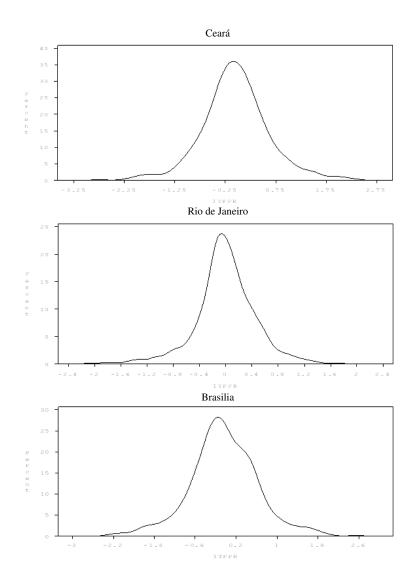
After obtaining measures of distortions and examining its implications for aggregate productivity, we related these distortions with regional variation in regulation using a differences-in-differences approach. Selective policy implementation and enforcement may create implicit or *de facto* differences in the business environment small and large firms face. Therefore, we allowed the coefficients in our econometric model to vary by firm size. We find that difficulty in access to credit results in distortions to capital for small and medium firms, but not for large firms. In contrast, taxes on gross profits create distortions to output for large firms, but do not significantly affect the output of small and medium firms. Hence, the results suggest that regulation results in distortions to output and capital, but the effects differ by firm size.

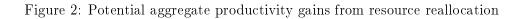
Despite liberalization of the services sector in the 1990s, allocative efficiency did not improve. Our results suggest that regulation related to taxes and access to credit prevented productive reallocation from taking place. Although regulation is necessary and regulatory reforms should carefully be examined, excesses with respect to taxes for large firms and difficulty in access to credit by small firms distort the functioning of the retail sector, and may have prevented improvements in allocative efficiency.

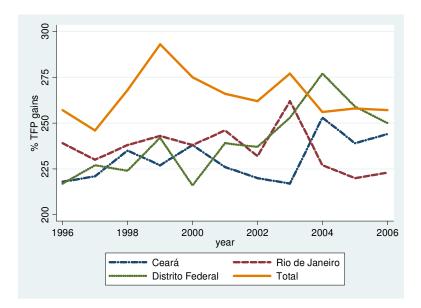
References

- Aghion, P., T. Fally, and S. Scarpetta (2007). Credit Constraints as a Barrier to the Entry and Post-Entry Growth of Firms. *Economic Policy* 22, 731– 779.
- Albuquerque, R. and H. A. Hopenhayn (2004). Optimal Lending Contracts and Firm Dynamics. The Review of Economic Studies 71, 285–315.
- Almeida, R. and P. Carneiro (2007). Inequality and Employment in a Dual Economy: Enforcement of Labor Regulation in Brazil. IZA Working Paper 3094.
- Amaral, P. S. and E. Quintin (2003). The Implications of Capital-Skill Complementarities in Economies with Large Informal Sectors. *mimeo*, *Federal Reserve Bank of Dallas*.
- Atkeson, A. G. and P. J. Kehoe (2005). Modeling and Measuring Organization Capital. Journal of Political Economy 113, 1026–1053.
- Banerjee, A. and E. Duflo (2005). Growth Theory Through the Lens of Development Economics. In P. Aghion and S. Durlauf (Eds.), Handbook of Economic Growth, pp. 473–552. Amsterdam: Elsevier.
- Bartelsman, E., J. Haltiwanger, and S. Scarpetta (2008). Cross Country Differences in Productivity: The Role of Allocative Efficiency. *mimeo*, VU University Amsterdam.
- Bertrand, M., E. Duflo, and S. Mullainathan (2004). How Much Should We Trust Differences-In-Differences Estimates. Quarterly Journal of Economics 119, 249–275.
- Broersma, L., R. H. McGuckin, and M. P. Timmer (2003). The Impact Of Computers On Productivity In The Trade Sector: Explorations With Dutch Microdata. *De Economist* 151, 53–79.
- Bruno, R. L., M. Bytchkova, and S. Estrin (2008). Institutional Determinants of New Firm Entry in Russia: A Cross Regional Analysis. *IZA discussion* paper 3724.
- Buera, F. J. and Y. Shin (2008). Financial Frictions and the Persistence of History: A Quantitative Exploration. *mimeo*, Northwestern University.


- Cavalcanti Ferreira, P. and J. L. Rossi (2003). New Evidence From Brazil on Trade Liberalization And Productivity Growth. International Economic Review 44, 1383-1405.
- Cole, H. L., L. E. Ohanian, A. Riascos, and J. A. Schmitz (2005). Latin America In The Rearview Mirror. Journal of Monetary Economics 52, 69–107.
- de Vries, G. J. (2008). Did Services Liberalization Start A Retail Revolution in Brazil? GGDC research memorandum 105.
- Donald, S. G. and K. Lang (2007). Inference with Difference-In-Differences and other Panel Data. The Review of Economics and Statistics 89, 221– 233.
- Easterly, W. and R. Levine (2002). It's Not Factor Accumulation: Stylized Facts and Growth Models. *World Bank Economic Review 15*, 177–219.
- Foster, L., J. Haltiwanger, and C. J. Krizan (2006). Market Selection, Restructuring And Reallocation In The Retail Trade Sector In The 1990s. *Review of Economics and Statistics* 88, 748–758.
- Foster, L., J. Haltiwanger, and C. Syverson (2008). Reallocation, Firm Turnover, And Efficiency: Selection On Productivity Or Profitability? *American Economic Review 98*, 394–425.
- Gollin, D. (2006). Do Taxes on Large Firms Impede Growth? Evidence From Ghana. *mimeo*, *Williams College*.
- Guner, N., G. Ventura, and Y. Xu (2008). Macroeconomic Implications of Size-Dependent Policies. *Review of Economic Dynamics* 11, 721–744.
- Haskel, J. and R. Sadun (2007). Entry, Exit, And Labour Productivity In UK Retailing: Evidence From Micro Data. *mimeo University of London*.
- Hay, D. (2001). The Post-1990 Brazilian Trade Liberalisation and the Performance of Large Manufacturing Firms: Productivity, Market Share and Profits. *Economic Journal* 111, 620–641.
- Hopenhayn, H. and A. Neumeyer (2008). Productivity and Distortions. mimeo University of California, Los Angeles.
- Hsieh, C. T. and P. J. Klenow (2009). Misallocation and Manufacturing TFP in China and India. Quarterly Journal of Economics 124:4.


IBGE (2006). Pesquisa Anual De Comércio. Rio de Janeiro: IBGE.


- Klapper, L., L. Laeven, and R. Rajan (2006). Entry Regulation as a Barrier to Entrepreneurship. *Journal of Financial Economics* 82, 591–629.
- Lagakos, D. (2009). Superstores or Mom and Pops? Technology Adoption and Productivity Differences in Retail Trade. *mimeo Federal Reserve Bank* of Minneapolis.
- Lagos, R. (2006). A Model of TFP. Review of Economic Studies 73, 983– 1007.
- López-Córdova, E. and M. Mesquita Moreira (2003). Regional Integration and Productivity: The Experiences of Brazil and Mexico. INTAL-ITD-STA Working paper 14.
- Machicado, C. G. and J. C. Birbuet (2008). Misallocation and Manufacturing TFP in the Market Liberalization Period of Bolivia. *mimeo Institute for Advanced Development Studies*.
- McKinsey (1998). Productivity: The Key To An Accelerated Development Path For Brazil. São Paulo, Washington: McKinsey and Company.
- Melitz, M. J. (2003). The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. *Econometrica* 71, 1695–1725.
- Menezes-Filho, N. A. and M. A. Muendler (2007). Labor Reallocation in Response to Trade Reform. *mimeo University of California, San Diego*.
- Muendler, M. A. (2004). Trade, Technology, and Productivity: A Study of Brazilian Manufacturers, 1986-1998. CESifo working paper 1148.
- Mukand, S. W. and D. Rodrik (2005). In Search of the Holy Grail: Policy Convergence, Experimentation, and Economic Performance. American Economic Review 95, 374–383.
- Mulder, N. (1999). The Economic Performance of the Service Sector in Brazil, Mexico, and the USA: A Comparative Historical Perspective. Groningen: Groningen Growth and Development Center Monograph Series, No. 4.
- OECD (2002). Small and Medium Enterprise Outlook. Paris: OECD publications.


- Olley, G. S. and A. Pakes (1996). The Dynamics of Productivity in the Telecommunications Equipment Industry. *Econometrica* 64, 1263–1297.
- Pages, C., G. Pierre, and S. Scarpetta (2009). Job Creation in Latin America and the Caribbean: Recent Trends and the Policy Challenges. Palgrave Macmillan.
- Petrin, A. and J. Levinsohn (2008). Measuring Aggregate Productivity Growth Using Plant-level Data. *mimeo University of Minnesota*.
- Rajan, R. G. and L. Zingales (1998). Financial Dependence and Growth. American Economic Review 88, 559–586.
- Reardon, T., P. Timmer, C. Barrett, and J. Berdegué (2003). The Rise of Supermarkets in Africa, Asia, and Latin America. American Journal of Agricultural Economics 85, 1140–1146.
- Restuccia, D. (2008). The Latin American Development Problem. University of Toronto working paper 318.
- Restuccia, D. and R. Rogerson (2008). Policy Distortions And Aggregate Productivity With Heterogeneous Establishments. *Review of Economic Dynamics* 11, 707–720.
- Rodrik, D. (2007). One Economics, Many Recipes: Globalization, Institutions, and Economic Growth. Princeton: Princeton University Press.
- Schor, A. (2004). Heterogeneous Productivity Response to Tariff Reduction. Evidence From Brazilian Manufacturing Firms. Journal of Development Economics 75, 373–396.
- Sánchez, G. and I. Butler (2008). Understanding Productivity Levels, Growth and Dispersion in Argentina: The Case of Supermarkets. *mimeo*, Institute for the Study of the Argentine and Latin American Reality.
- Timmer, M. P. and G. J. de Vries (2009). Structural Change and Growth Accelerations in Asia and Latin America: A New Sectoral Data Set. Cliometrica, forthcoming.
- Tybout, J. R. (2000). Manufacturing Firms in Developing Countries: How Well Do They Do and Why? *Journal of Economic Literature* 37, 11–44.
- World Bank (2004). Brazil Trade Policies To Improve Efficiency, Increase Growth, And Reduce Poverty. World Bank report 24285-BR.

World Bank (2006). Doing Business in Brazil. Publication of the International Finance Corporation.

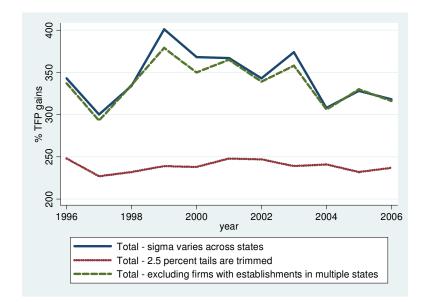


Figure 3: Potential aggregate productivity gains from resource reallocation

Federal		Federal	Amazonas	Minas	Rondônia	Maranhão	Rio Grande	Mato Grosso
state		district		Gerais			do Sul	do Sul
UF		53	13	31	11	21	43	50
Final Rank		1	2	3	4	5	6	7
Getting credit	Time to create collateral	45	6	2	30	4	25	30
Paying taxes	Cost to create collateral	0	2	1	2	1	1	1
	Total tax payable	149	89	150	146	147	153	146
	Number of payments	12	23	23	12	12	12	12
Federal		Rio de	Santa	Bahia	São	Mato	Ceará	
state		Janeiro	Catarina		Paulo	Grosso		
UF		33	42	29	35	51	23	
Final Rank		8	9	10	11	12	13	
Getting credit	Time to create collateral	27	25	26	na	23	40	
Paying taxes	Cost to create collateral	0	3	2	na	3	4	
	Total tax payable	208	144	144	148	146	137	
	Number of payments	12	23	12	23	23	23	

Table 1: Business regulations across the Federal states of Brazil

Notes: Time to create collateral in days, cost to create collateral in percentage of loan value, total tax payable as percentage

of gross profits. Source: Doing Business in Brazil (World Bank, 2006).

	All states	Ceará	Rio de Janeiro	Brasilia
		$(\mathrm{UF}{=}23)$	$(\mathrm{UF}{=}33)$	$(\mathrm{UF}{=}53)$
Sales	14.44	14.70	13.91	14.75
	1.55	1.63	1.38	1.60
Value added	12.96	12.95	12.75	13.28
	1.25	1.47	1.15	1.38
Remuneration	12.67	12.49	12.47	12.85
	1.11	1.29	1.05	1.19
Capital services	11.24	11.25	11.23	11.69
	1.36	1.60	1.29	1.49
TFPR	1.16	1.22	1.11	1.23
	0.81	1.11	0.59	1.10
TFPQ	1.04	1.08	0.98	1.14
	1.00	1.37	0.75	1.15
$ au_{Ysi}$	-1.71	-2.29	-1.32	-1.65
	2.61	3.57	1.63	2.56
$ au_{Ksi}$	0.15	0.15	-0.09	0.11
	1.70	1.40	1.08	1.58
Observations	19346	396	2607	413

Table 2:	Descriptive	statistics for	retail firms,	2006

Notes: The mean values (in natural logarithmic form) for Sales, Value added, Remuneration, and Capital services are in current Reais. The standard deviation is below in italics. TFPR is estimated using equation 14, TFPQ is estimated using equation 15, output distortions are estimated from equation 17, and capital distortions are estimated from equation 18. Source: Pesquisa Anual de Comercio (IBGE, 2006).

	Value added	Employment	Capital services	TFPR	TFPQ	$ au_{Ysi}$	$ au_{Ksi}$
Value added	1						
Employment	0.94	1					
	<.0001						
Capital services	0.84	0.82	1				
	<.0001	<.0001					
TFPR	0.02	-0.01	-0.01	1			
	0.0022	0.223	0.0862				
TFPQ	0.13	0.09	0.05	0.89	1		
	<.0001	<.0001	<.0001	<.0001			
$ au_{Ysi}$	0.04	0.02	0.02	0.42	0.37	1	
	<.0001	0.0109	0.0219	<.0001	<.0001		
$ au_{Ksi}$	-0.02	-0.01	-0.03	0.25	0.14	-0.22	1
	0.0025	0.2012	0.0002	<.0001	<.0001	<.0001	

Note: Pearson correlation coefficients, p-values in italics

		TTTTC	istibu	1011, 2000	
Federal state	\mathbf{UF}	n	mean	median	variance
Rondônia	11	69	1.06	1.02	0.22
Acre	12	51	1.06	0.97	0.29
Amazonas	13	198	1.04	0.72	1.03
Roraima	14	31	1.00	0.88	0.26
Pará	15	182	1.08	0.90	0.56
Amapá	16	45	1.04	0.91	0.50
Tocantins	17	37	1.28	1.00	1.11
Maranhão	21	193	1.11	0.90	1.02
Piauí	22	163	1.10	0.87	0.77
Ceará	23	396	1.22	0.94	1.22
Rio Grande do Norte	24	265	1.18	1.04	0.55
Paraíba	25	185	1.22	0.97	0.83
Pernambuco	26	573	1.20	0.96	1.11
Alagoas	27	165	1.07	0.75	1.21
Sergipe	28	157	1.12	1.00	0.47
Bahia	29	917	1.17	0.91	1.04
Minas Gerais	31	2148	1.16	0.99	0.53
Espírito Santo	32	499	1.20	0.96	1.35
Rio de Janeiro	33	2607	1.11	0.99	0.35
São Paulo	35	5451	1.24	1.10	0.53
Paraná	41	1432	0.98	0.91	0.29
Santa Catarina	42	821	1.25	1.01	0.94
Rio Grande do Sul	43	1104	1.11	0.97	0.61
Mato Grosso do Sul	50	299	1.04	0.90	0.66
Mato Grosso	51	394	1.23	1.01	0.80
Goiás	52	551	1.15	0.93	1.06
Distrito Federal	53	413	1.23	0.94	1.21
All		19346	1.16	1.00	0.65

Table 4: TFPR distribution, 2006

All 19346 1.16 1.00 0.65 Notes: TFPR is estimated using equation 14, TFPQ is estimated using equation 15, output distortions are estimated from equation 17, and capital distortions are estimated from equation 18.

Federal state	UF	1996	2001	2006	β -coefficient
Rondônia	11	190	196	204	-1.524
Acre	12	231	187	214	1.909
Amazonas	13	188	216	235	2.933^{**}
Roraima	14	212	236	229	0.722
Pará	15	204	212	218	1.190
Amapá	16	226	216	217	1.730
Tocantins	17	239	262	238	-0.481
Maranhão	21	179	196	238	2.829
Piauí	22	204	220	230	1.573^{*}
Ceará	23	218	226	244	1.971^{*}
Rio Grande do Norte	24	211	221	227	3.153^{**}
Paraíba	25	224	227	237	1.561
Pernambuco	26	233	262	235	1.066
Alagoas	27	197	228	250	4.125^{***}
Sergipe	28	203	223	206	0.567
Bahia	29	245	255	264	1.893
Minas Gerais	31	237	243	257	1.750
Espírito Santo	32	242	239	274	2.332^{*}
Rio de Janeiro	33	239	246	223	-1.127
São Paulo	35	244	246	242	-1.121
Paraná	41	243	231	235	-1.397
Santa Catarina	42	235	247	254	1.842
Rio Grande do Sul	43	237	250	274	2.930
Mato Grosso do Sul	50	232	251	260	2.523
Mato Grosso	51	241	248	267	2.651*
Goiás	52	229	243	269	3.814^{***}
Distrito Federal	53	217	239	250	4.454***
	all	257	266	257	-0.257

Table 5: TFP Gains from equalizing TFPR within industries

Notes: TFP Gains from equalizing TFPR within industries, elasticity of substitution is 3. The last column shows the β -coefficient from an OLS regression where % TFP gains are regressed against time. A significant negative value indicates improvements in allocative efficiency. * significant at 10%; ** significant at 5%; *** significant at 1%.

Dependent variable=	TFPR	TFPR	TFPQ	TFPQ	τ_{Ysi}	τ_{Ysi}	τ_{Ksi}	$ au_{Ksi}$
	tax	credit	tax	credit	tax	credit	tax	credit
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Taxes * Commercialization margins	0.094		0.037		-0.007		0.667	
	(1.09)		(0.60)		(0.05)		$(2.74)^{***}$	
Credit * Financial dependence		0.144		0.180		0.126		0.131
		(1.98)**		(2.57)**		(1.14)		(1.29)
Observations	15010	9559	15010	9559	15010	9559	15010	9559
R-squared	0.05	0.04	0.08	0.08	0.06	0.07	0.16	0.11

Table 6: Productivity and distortions regressions, no allowance for size effects of regulation

Notes: OLS regressions, robust standard errors in brackets, size-specific region and industry dummies are included (not shown), clusters by region-industry. Number of observations for regressions where access to credit is interacted with financial dependence is smaller because no information on access to credit is available for São Paulo. * significant at 10%, ** significant at 5%, *** significant at 1%.

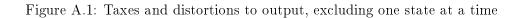
Dependent variable =	$ au_{Ysi}$	$ au_{Ysi}$	$ au_{Ksi}$	$ au_{Ksi}$
	tax	credit	ax	credit
	(1)	(2)	(3)	(4)
Taxes * Commercialization margins * z1	-0.041		0.606	
	(0.30)		(2.51)**	
Taxes * Commercialization margins * z2	0.147		1.019	
	(0.69)		(3.36)***	
Taxes * Commercialization margins * z3	-0.175		0.748	
	(0.87)		(2.89)***	
Taxes * Commercialization margins * z4	0.350		0.484	
	(2.29)**		(2.04)**	
Credit * Financial dependence * z1		0.368		0.304
		(1.54)		(1.37)
Credit * Financial dependence * $z2$		0.153		0.546
-		(0.56)		$(1.77)^{*}$
Credit * Financial dependence * z3		-0.161		0.077
-		(0.95)		(0.49)
Credit * Financial dependence * z4		0.016		-0.068
-		(0.42)		(1.99)**
Observations	15010	9559	15010	9559
R-squared	0.06	0.07	0.16	0.11

Table 7: Productivity and distortions regressions, allowance for size effects of regulation

Notes: OLS regressions, robust standard errors in brackets, size specific region and industry dummies are included (not shown), clusters by region-industry. Number of observations for regressions where access to credit is interacted with financial dependence is smaller because no information on access to credit is available for São Paulo. * significant at 10%, ** significant at 5%, *** significant at 1%.

	$ au_{Ysi}$	$ au_{Ksi}$	$ au_{Ysi}$	$ au_{Ksi}$	$ au_{Ysi}$	$ au_{Ksi}$
	tax	credit	tax	credit	tax	credit
	(1)	(2)	(3)	(4)	(5)	(6)
Taxes * Commercialization margins * z1	-0.041		-0.184		-0.067	
	(0.30)		(1.18)		(0.51)	
Taxes * Commercialization margins * z2	0.147		0.173		0.099	
	(0.69)		(0.77)		(0.49)	
Taxes * Commercialization margins * z3	-0.175		-0.275		-0.305	
	(0.87)		(1.22)		(1.44)	
Taxes * Commercialization margins * z4	0.350		0.409		0.090	
	(2.29)**		(2.22)**		(0.51)	
Credit * Financial dependence * z1		0.301		1.308		0.353
		(1.36)		(1.56)		(1.51)
Credit * Financial dependence * z2		0.545		1.175		0.590
		(1.77)*		(2.13)**		$(1.84)^*$
Credit * Financial dependence * z3		0.078		-0.385		0.113
		(0.49)		(1.38)		(0.70)
Credit * Financial dependence * z4		-0.070		-0.198		-0.060
_		(2.52)**		(2.35)**		(1.70)*
Observations	15010	9559	15723	10024	15041	9581
R-squared	0.06	0.11	0.06	0.08	0.04	0.11

Table 8: Productivity and distortions regressions, sensitivity analysis


Notes: OLS regressions, robust standard errors in brackets, size-specific region and industry dummies are included (not shown), clusters by region-industry. Number of observations for regressions where access to credit is interacted with financial dependence is smaller because no information on access to credit is available for São Paulo. * significant at 10%, ** significant at 5%, *** significant at 1%.

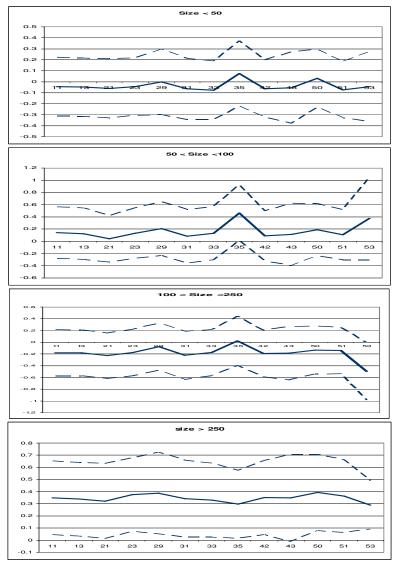
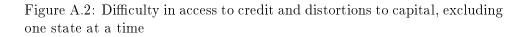
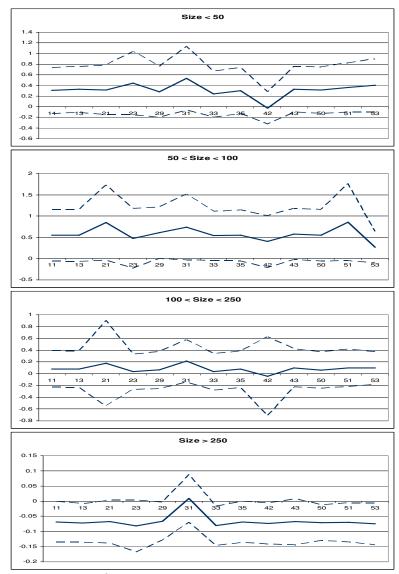

Appendix table and figures Α

Table A.1		sticities of sul	bstitution by l	Federal s	tate		
$\operatorname{Federal}$	\mathbf{UF}	$\operatorname{population}$	retail firms	GDP	female labor	share of	
State		$per \ km2$	per 1000	per	force	households	
			inhabitants	capita	participation	with a car	σ
Acre	12	3.66	1.86	3.91	0.40	14.13	3.37
Alagoas	27	101.46	3.22	2.80	0.39	13.51	3.64
Amazonas	13	1.79	1.38	6.02	0.42	12.40	3.50
Amapá	16	3.34	2.77	5.15	0.42	15.66	3.62
Bahia	29	23.16	3.64	3.76	0.44	15.37	3.82
Ceará	23	51.00	4.99	3.10	0.39	15.56	3.75
Distrito Federal	53	353.53	6.45	21.37	0.54	52.05	7.00
Espírito Santo	32	67.26	5.25	6.86	0.48	31.22	4.78
Goiás	52	14.71	5.60	5.88	0.46	34.37	4.58
Maranhão	21	17.03	2.69	2.19	0.38	7.79	3.16
Minas Gerais	31	30.50	7.13	5.73	0.45	32.98	4.71
Mato Gr. do Sul	50	5.82	5.15	5.81	0.46	33.13	4.46
Mato Grosso	51	2.77	4.84	6.58	0.43	28.24	4.24
Pará	15	4.96	0.49	3.25	0.38	9.93	3.00
Paraíba	25	61.12	3.94	2.94	0.39	17.62	3.66
Pernambuco	26	80.37	3.44	3.59	0.41	18.37	3.81
Piauí	22	11.31	4.01	2.11	0.39	13.74	3.43
Paraná	41	47.99	6.92	7.43	0.48	43.35	5.14
Rio de Janeiro	33	328.59	4.97	9.58	0.45	33.79	5.42
Rio Gr. do Norte	24	52.32	4.06	3.52	0.38	20.33	3.71
Rondônia	11	5.81	0.99	4.45	0.42	19.72	3.51
Roraima	14	1.45	4.32	5.41	0.49	24.90	4.36
Rio Gr. do Sul	43	37.90	9.38	8.35	0.51	45.72	5.65
Santa Catarina	42	56.21	7.22	8.28	0.51	51.73	5.55
Sergipe	28	81.25	3.11	4.20	0.42	17.53	3.86
São Paulo	35	149.22	7.09	11.01	0.48	49.61	5.73
Tocantins	17	4.17	0.66	3.80	0.43	17.25	3.47


Table A 1. Els atiaiti f substitution by Federal stat


Notes: population per km^2 in 2000, GDP per capita in 2006, female labor force participation in 2000, and the share of households with a car in 2000 from IPEA (www.ipeadata.gov.br). Number of retail firms per 1000 inhabitants from Pesquisa de Comercio (IBGE, 2006). The elasticity of substitution σ is obtained as the unweighted average of the normalized values from these variables and allowed to range between 3 and 7.

Note: solid line shows $\beta\text{-coefficient},$ while dotted lines are the 95 % confidence intervals.

Note: solid line shows β -coefficient, while dotted lines are the 95 % confidence intervals.

Papers issued in the series of the Groningen Growth and Development Centre

All papers are available in pdf-format on the internet: http://www.ggdc.net/

- 536 (GD-1) Maddison, Angus and Harry van Ooststroom, The International Comparison of Value Added, Productivity and Purchasing Power Parities in Agriculture (1993)
- 537 (GD-2) Mulder, Nanno and Angus Maddison, The International Comparison of Performance in Distribution: Value Added, Labour Productivity and PPPs in Mexican and US Wholesale and Retail Trade 1975/7 (1993)
- 538 (GD-3) Szirmai, Adam, Comparative Performance in Indonesian Manufacturing, 1975-90 (1993)
- 549 (GD-4) de Jong, Herman J., Prices, Real Value Added and Productivity in Dutch Manufacturing, 1921-1960 (1993)
- 550 (GD-5) Beintema, Nienke and Bart van Ark, Comparative Productivity in East and West German Manufacturing before Reunification (1993)
- 567 (GD-6) Maddison, Angus and Bart van Ark, The International Comparison of Real Product and Productivity (1994)
- 568 (GD-7) de Jong, Gjalt, An International Comparison of Real Output and Labour Productivity in Manufacturing in Ecuador and the United States, 1980 (1994)
- 569 (GD-8) van Ark, Bart and Angus Maddison, An International Comparison of Real Output, Purchasing Power and Labour Productivity in Manufacturing Industries: Brazil, Mexico and the USA in 1975 (1994) (second edition)
- 570 (GD-9) Maddison, Angus, Standardised Estimates of Fixed Capital Stock: A Six Country Comparison (1994)
- 571 (GD-10) van Ark, Bart and Remco D.J. Kouwenhoven, Productivity in French Manufacturing: An International Comparative Perspective (1994)
- 572 (GD-11) Gersbach, Hans and Bart van Ark, Micro Foundations for International Productivity Comparisons (1994)
- 573 (GD-12) Albers, Ronald, Adrian Clemens and Peter Groote, Can Growth Theory Contribute to Our Understanding of Nineteenth Century Economic Dynamics (1994)
- 574 (GD-13) de Jong, Herman J. and Ronald Albers, Industrial Output and Labour Productivity in the Netherlands, 1913-1929: Some Neglected Issues (1994)
- 575 (GD-14) Mulder, Nanno, New Perspectives on Service Output and Productivity: A Comparison of French and US Productivity in Transport, Communications Wholesale and Retail Trade (1994)
- 576 (GD-15) Maddison, Angus, Economic Growth and Standards of Living in the Twentieth Century (1994)
- 577 (GD-16) Gales, Ben, In Foreign Parts: Free-Standing Companies in the Netherlands around the First World War (1994)
- 578 (GD-17) Mulder, Nanno, Output and Productivity in Brazilian Distribution: A Comparative View (1994)
- 579 (GD-18) Mulder, Nanno, Transport and Communication in Mexico and the United States: Value Added, Purchasing Power Parities and Productivity (1994)

- 580 (GD-19) Mulder, Nanno, Transport and Communications Output and Productivity in Brazil and the USA, 1950-1990 (1995)
- 581 (GD-20) Szirmai, Adam and Ren Ruoen, China's Manufacturing Performance in Comparative Perspective, 1980-1992 (1995)
- GD-21 Fremdling, Rainer, Anglo-German Rivalry on Coal Markets in France, the Netherlands and Germany, 1850-1913 (December 1995)
- GD-22 Tassenaar, Vincent, Regional Differences in Standard of Living in the Netherlands, 1800-1875, A Study Based on Anthropometric Data (December 1995)
- GD-23 van Ark, Bart, Sectoral Growth Accounting and Structural Change in Postwar Europe (December 1995)
- GD-24 Groote, Peter, Jan Jacobs and Jan Egbert Sturm, Output Responses to Infrastructure in the Netherlands, 1850-1913 (December 1995)
- GD-25 Groote, Peter, Ronald Albers and Herman de Jong, A Standardised Time Series of the Stock of Fixed Capital in the Netherlands, 1900-1995 (May 1996)
- GD-26 van Ark, Bart and Herman de Jong, Accounting for Economic Growth in the Netherlands since 1913 (May 1996)
- GD-27 Maddison, Angus and D.S. Prasada Rao, A Generalized Approach to International Comparisons of Agricultural Output and Productivity (May 1996)
- GD-28 van Ark, Bart, Issues in Measurement and International Comparison of Productivity -An Overview (May 1996)
- GD-29 Kouwenhoven, Remco, A Comparison of Soviet and US Industrial Performance, 1928-90 (May 1996)
- GD-30 Fremdling, Rainer, Industrial Revolution and Scientific and Technological Progress (December 1996)
- GD-31 Timmer, Marcel, On the Reliability of Unit Value Ratios in International Comparisons (December 1996)
- GD-32 de Jong, Gjalt, Canada's Post-War Manufacturing Performance: A Comparison with the United States (December 1996)
- GD-33 Lindlar, Ludger, "1968" and the German Economy (January 1997)
- GD-34 Albers, Ronald, Human Capital and Economic Growth: Operationalising Growth Theory, with Special Reference to The Netherlands in the 19th Century (June 1997)
- GD-35 Brinkman, Henk-Jan, J.W. Drukker and Brigitte Slot, GDP per Capita and the Biological Standard of Living in Contemporary Developing Countries (June 1997)
- GD-36 de Jong, Herman, and Antoon Soete, Comparative Productivity and Structural Change in Belgian and Dutch Manufacturing, 1937-1987 (June 1997)
- GD-37 Timmer, M.P., and A. Szirmai, Growth and Divergence in Manufacturing Performance in South and East Asia (June 1997)
- GD-38 van Ark, B., and J. de Haan, The Delta-Model Revisited: Recent Trends in the Structural Performance of the Dutch Economy (December 1997)
- GD-39 van der Eng, P., Economics Benefits from Colonial Assets: The Case of the Netherlands and Indonesia, 1870-1958 (June 1998)
- GD-40 Timmer, Marcel P., Catch Up Patterns in Newly Industrializing Countries. An International Comparison of Manufacturing Productivity in Taiwan, 1961-1993 (July 1998)

GD-41	van Ark, Bart, Economic Growth and Labour Productivity in Europe: Half a Century of East-West Comparisons (October 1999)
GD-42	Smits, Jan Pieter, Herman de Jong and Bart van Ark, Three Phases of Dutch Economic
CD 42	Growth and Technological Change, 1815-1997 (October 1999)
GD-43	Fremdling, Rainer, Historical Precedents of Global Markets (October 1999)
GD-44	van Ark, Bart, Lourens Broersma and Gjalt de Jong, Innovation in Services. Overview of Data Sources and Analytical Structures (October 1999)
GD-45	Broersma, Lourens and Robert McGuckin, The Impact of Computers on Productivity in the Trade Sector: Explorations with Dutch Microdata (October 1999, Revised version June 2000)
GD-46	Sleifer, Jaap, Separated Unity: The East and West German Industrial Sector in 1936 (November 1999)
GD-47	Rao, D.S. Prasada and Marcel Timmer, Multilateralisation of Manufacturing Sector
	Comparisons: Issues, Methods and Empirical Results (July 2000)
GD-48	Vikström, Peter, Long term Patterns in Swedish Growth and Structural Change, 1870- 1990 (July 2001)
GD-49	Wu, Harry X., Comparative labour productivity performance in Chinese manufacturing, 1952-1997: An ICOP PPP Approach (July 2001)
GD-50	Monnikhof, Erik and Bart van Ark, New Estimates of Labour Productivity in the Manufacturing Sectors of Czech Republic, Hungary and Poland, 1996 (January 2002)
GD-51	van Ark, Bart, Robert Inklaar and Marcel Timmer, The Canada-US Manufacturing Gap Revisited: New ICOP Results (January 2002)
GD-52	Mulder, Nanno, Sylvie Montout and Luis Peres Lopes, Brazil and Mexico's Manufacturing Performance in International Perspective, 1970-98 (January 2002)
GD-53	Szirmai, Adam, Francis Yamfwa and Chibwe Lwamba, Zambian Manufacturing Performance in Comparative Perspective (January 2002)
GD-54	Fremdling, Rainer, European Railways 1825-2001, an Overview (August 2002)
GD-55	Fremdling, Rainer, Foreign Trade-Transfer-Adaptation: The British Iron Making Technology on the Continent (Belgium and France) (August 2002)
GD-56	van Ark, Bart, Johanna Melka, Nanno Mulder, Marcel Timmer and Gerard Ypma, ICT Investments and Growth Accounts for the European Union 1980-2000 (September 2002)
GD-57	Sleifer, Jaap, A Benchmark Comparison of East and West German Industrial Labour Productivity in 1954 (October 2002)
GD-58	van Dijk, Michiel, South African Manufacturing Performance in International Perspective, 1970-1999 (November 2002)
GD-59	Szirmai, A., M. Prins and W. Schulte, Tanzanian Manufacturing Performance in Comparative Perspective (November 2002)
GD-60	van Ark, Bart, Robert Inklaar and Robert McGuckin, "Changing Gear" Productivity, ICT and Services: Europe and the United States (December 2002)
GD-61	Los, Bart and Timmer, Marcel, The 'Appropriate Technology' Explanation of Productivity Growth Differentials: An Empirical Approach (April 2003)
GD-62	Hill, Robert J., Constructing Price Indexes Across Space and Time: The Case of the European Union (May 2003)

GD-63	Stuivenwold, Edwin and Marcel P. Timmer, Manufacturing Performance in Indonesia, South Korea and Taiwan before and after the Crisis; An International Perspective, 1980- 2000 (July 2003)
GD-64	Inklaar, Robert, Harry Wu and Bart van Ark, "Losing Ground", Japanese Labour Productivity and Unit Labour Cost in Manufacturing in Comparison to the U.S. (July 2003)
GD-65	van Mulligen, Peter-Hein, Alternative Price Indices for Computers in the Netherlands using Scanner Data (July 2003)
GD-66	van Ark, Bart, The Productivity Problem of the Dutch Economy: Implications for Economic and Social Policies and Business Strategy (September 2003)
GD-67	Timmer, Marcel, Gerard Ypma and Bart van Ark, IT in the European Union, Driving Productivity Divergence?
GD-68	Inklaar, Robert, Mary O'Mahony and Marcel P. Timmer, ICT and Europe's Productivity Performance, Industry-level Growth Accounts Comparisons with the United States (December 2003)
GD-69	van Ark, Bart and Marcin Piatkowski, Productivity, Innnovation and ICT in Old and New Europe (March 2004)
GD-70	Dietzenbacher, Erik, Alex Hoen, Bart Los and Jan Meist, International Convergence and Divergence of Material Input Structures: An Industry-level Perspective (April 2004)
GD-71	van Ark, Bart, Ewout Frankema and Hedwig Duteweerd, Productivity and Employment Growth: An Empirical Review of Long and Medium Run Evidence (May 2004)
GD-72	Edquist, Harald, The Swedish ICT Miracle: Myth or Reality? (May 2004)
GD-73	Hill, Robert and Marcel Timmer, Standard Errors as Weights in Multilateral Price Indices (November 2004)
GD-74	Inklaar, Robert, Cyclical productivity in Europe and the United States, Evaluating the evidence on returns to scale and input utilization (April 2005)
GD-75	van Ark, Bart, Does the European Union Need to Revive Productivity Growth? (April 2005)
GD-76	Timmer, Marcel and Robert Inklaar, Productivity Differentials in the US and EU Distributive Trade Sector: Statistical Myth or Reality? (April 2005)
GD-77	Fremdling, Rainer, The German Industrial Census of 1936: Statistics as Preparation for the War (August 2005)
GD-78	McGuckin, Robert and Bart van Ark, Productivity and Participation: An International Comparison (August 2005)
GD-79	Inklaar, Robert and Bart van Ark, Catching Up or Getting Stuck? Europe's Troubles to Exploit ICT's Productivity Potential (September 2005)
GD-80	van Ark, Bart, Edwin Stuivenwold and Gerard Ypma, Unit Labour Costs, Productivity and International Competitiveness (August 2005)
GD-81	Frankema, Ewout, The Colonial Origins of Inequality: Exploring the Causes and Consequences of Land Distribution (July 2006)
GD-82	Timmer, Marcel, Gerard Ypma and Bart van Ark, PPPs for Industry Output: A New Dataset for International Comparisons (March 2007)
GD-83	Timmer, Marcel and Gerard Ypma, Productivity Levels in Distributive Trades: A New ICOP Dataset for OECD Countries (April 2005)

GD-85	Ypma, Gerard, Productivity Levels in Transport, Storage and Communication: A New ICOP 1997 Data Set (July 2007)
GD-86	Frankema, Ewout, and Jutta Bolt, Measuring and Analysing Educational Inequality: The Distribution of Grade Enrolment Rates in Latin America and Sub-Saharan Africa (April 2006)
GD-87	Azeez Erumban, Abdul, Lifetimes of Machinery and Equipment. Evidence from Dutch Manufacturing (July 2006)
GD-88	Castaldi, Carolina and Sandro Sapio, The Properties of Sectoral Growth: Evidence from Four Large European Economies (October 2006)
GD-89	Inklaar, Robert, Marcel Timmer and Bart van Ark, Mind the Gap! International Comparisons of Productivity in Services and Goods Production (October 2006)
GD-90	Fremdling, Rainer, Herman de Jong and Marcel Timmer, Censuses compared. A New Benchmark for British and German Manufacturing 1935/1936 (April 2007)
GD-91	Akkermans, Dirk, Carolina Castaldi and Bart Los, Do 'Liberal Market Economies' Really Innovate More Radically than 'Coordinated Market Economies'? Hall & Soskice Reconsidered (March 2007)
GD-93	Frankema, Ewout and Daan Marks, Was It Really "Growth with Equity" under Soeharto? A Theil Analysis of Indonesian Income Inequality, 1961-2002 (July 2007)
GD-94a	Fremdling, Rainer, (Re)Construction Site of German Historical National Accounts: Machine Building: A New Benchmark before World War I (July 2007)
GD-94b	Fremdling, Rainer, (Re)Construction Site of German Historical National Accounts: German Industrial Employment 1925, 1933, 1936 and 1939: A New Benchmark for 1936 and a Note on Hoffmann's Tales (July 2007)
GD-94c	Fremdling, Rainer, (Re)Construction Site of German Historical National Accounts: German Agricultural Employment, Production and Labour Productivity: A New Benchmark for 1936 and a Note on Hoffmann's Tales (January 2008)
GD-95	Feenstra, Robert C., Alan Heston, Marcel P. Timmer and Haiyan Deng, Estimating Real Production and Expenditures Across Nations: A Proposal for Improving the Penn World Tables (July 2007)
GD-96	Erumban, Abdul A, Productivity and Unit Labor Cost in Indian Manufacturing A Comparative Perspective (October 2007)
GD-97	Wulfgramm, Melike, Solidarity as an Engine for Economic Change: The impact of Swedish and US political ideology on wage differentials and structural change (June 2007)
GD-98	Timmer, Marcel P. and Gaaitzen J. de Vries, A Cross-country Database For Sectoral Employment And Productivity in Asia and Latin America, 1950-2005 (August 2007)
GD-99	Wang, Lili and Adam Szirmai, Regional Capital Inputs in Chinese Industry and Manufacturing, 1978-2003 (April 2008)
GD-100	Inklaar, Robert and Michael Koetter, Financial dependence and industry growth in Europe: Better banks and higher productivity (April 2008)
GD-101	Broadberry, Stephen, Rainer Fremdling and Peter M. Solar, European Industry, 1700-1870 (April 2008)
GD-102	Basu, Susanto, Robert Inklaar and J. Christina Wang, The Value of Risk: Measuring the Service Output of U.S. Commercial Banks, (May 2008)

- GD-103 Inklaar, Robert, The Sensitivity of Capital Services Measurement: Measure all assets and the cost of capital, (May 2008)
- GD-104 Inklaar, Robert and Marcel P. Timmer, GGDC Productivity Level Database: International Comparisons of Output, Inputs and Productivity at the Industry Level (September 2008)
- GD-105 De Vries, Gaaitzen J., Did Liberalization Start A Retail Revolution In Brazil? (October 2008)
- GD-106 Fremdling, Rainer and Reiner Stäglin, An Input-Output Table for Germany and a New Benchmark for German Gross National Product in 1936 (January 2009)
- GD-107 Smits, Jan-Pieter, Pieter Woltjer and Debin Ma, A Dataset on Comparative Historical National Accounts, ca. 1870-1950: A Time-Series Perspective (March 2009)
- GD-108 De Jong, Herman and Pieter Woltjer, A Comparison of Real Output and Productivity for British and American Manufacturing in 1935 (March 2009)
- GD-109 Inklaar, Robert and Marcel Timmer, Productivity Convergence Across Industries and Countries: The Importance of Theory-based Measurement (March 2009)
- GD-110 Timmer, Marcel and Andries Richter, Estimating Terms of Trade Levels Across OECD countries (February 2009)
- GD-111 Inklaar, Robert and Marcel Timmer, Measurement error in cross-country productivity comparisons: Is more detailed data better? (March 2009)