

Appendices to the Teaching and Examination Regulations of the Master's degree programme in Mechanical Engineering (2021-2022)

# Appendix I Learning outcomes of the degree programme

# (art. 3.1)

After the completion of a master's degree programme in Mechanical Engineering, the graduate is expected to attain the following learning outcomes.

## On knowledge and understanding

The graduate:

- 1.1 has knowledge of the underlying concepts of mechanical engineering, including the necessary physics, mathematics and computer science, at a level that permits admission to a higher level post-graduate programme
- 1.2 is familiar with the quantitative character of mechanical engineering and with the relevant research methods
- 1.3 has operational knowledge and design skills in the field of mechanical engineering
- 1.4A has a thorough understanding of advanced instrumentation (For Advanced Instrumentation Track)
- 1.4B has a thorough understanding of smart processes and products (For Smart Factories Track)
- 1.4C has a thorough understanding of process design (For Process Design for Energy Systems Track)
- 1.4D has a thorough understanding of engineering materials (For Materials for Mechanical Engineering Track)
- 1.5 has knowledge in the field of business and management

## On the synthesis and application of knowledge and understanding

The graduate:

- 2.1 is able to carry out research in order to understand phenomena that are usable in developing mechanical engineering applications
- 2.2 is able to analyse a (new) complex applied problem, and develop a structured and well-planned approach to search for a solution
- 2.3 is able to apply his/her mechanical engineering knowledge and skills in his/her own and related subject areas
- 2.4 is able to seek new applications for mechanical engineering concepts
- 2.5 is able to use advanced instrumentation and/or advanced programming tools
- 2.6 is able to apply mechanical engineering concepts in an industrial environment or in an international mechanical engineering research environment
- 2.7 is able to collaborate in a (multi-disciplinary) international research and design team

## On reasoning and judgement

The graduate:

- 3.1 is able to obtain relevant information using modern information channels, and interprets this information critically for specific use in mechanical engineering research
- 3.2 judges his/her and others' actions within a scientific context, taking societal and ethical aspects into account
- 3.3 is able to draw conclusions on the basis of limited or incomplete information, and realizes and formulates the limitations of such conclusions

## On communication skills

The graduate:

4.1 is able to communicate clearly, verbally and in writing, on his/her subject and relevant applications, at different levels understandable to experts and non-experts using relevant communication tools

## **On learning skills**

The graduate:

- 5.1 is able to address issues inside as well as outside his/her main subject area, therefore and thereby gaining new knowledge and skills
- 5.2 is able to familiarize him/herself with recent advances in science and engineering and use them in mechanical engineering applications

## Appendix II Tracks of the degree programme (art. 3.5 and 3.6)

The degree programme has four tracks: 1. Advanced Instrumentation

- 2. Smart Factories
- 3. Process Design for Energy Systems
- 4. Materials for Mechanical Engineering

# Appendix III Content of the degree programme (art. 3.7)

### **Advanced Instrumentation Track:**

| Course unit name                                  | Course code | EC<br>TS | Entry<br>requirements                                       |
|---------------------------------------------------|-------------|----------|-------------------------------------------------------------|
| Basic Detection Techniques                        | WMAS002-05  | 5        |                                                             |
| Introduction to Data Science                      | WMME027-05  | 5        |                                                             |
| Computational Mechanics                           | WMME017-05  | 5        |                                                             |
| Advanced Instrumentation and Extreme Environments | WMME006-05  | 5        |                                                             |
| Analysis and Control of Smart Systems             | WMIE015-05  | 5        |                                                             |
| Experimental Design                               | WMME012-05  | 5        |                                                             |
| Course in Business, Management and Society        |             | 5        |                                                             |
| Elective courses                                  |             | 25       |                                                             |
| Master Design Project Mechanical<br>Engineering   | WMME901-20  | 20       | Passed 45 ECTS of<br>the master degree<br>programme courses |
| Master Research Project Mechanical<br>Engineering | WMME902-40  | 40       | Passed 45 ECTS of<br>the master degree<br>programme courses |

## **Smart Factories Track:**

| Course unit name                                  | ne Course code |    | Entry<br>requirements                                       |
|---------------------------------------------------|----------------|----|-------------------------------------------------------------|
| Introduction to Data Science                      | WMME027-05     | 5  |                                                             |
| Robotics for IEM                                  | WMIE005-05     | 5  |                                                             |
| Advanced Processing for Complex<br>Materials      | WMME007-05     | 5  |                                                             |
| <b>Computational Mechanics</b>                    | WMME017-05     | 5  |                                                             |
| Analysis and Control of Smart Systems             | WMIE015-05     | 5  |                                                             |
| Experimental Design                               | WMME012-05     | 5  |                                                             |
| Course in Business, Management and Society        |                | 5  |                                                             |
| Elective courses                                  |                | 25 |                                                             |
| Master Design Project Mechanical<br>Engineering   | WMME901-20     | 20 | Passed 45 ECTS of<br>the master degree<br>programme courses |
| Master Research Project Mechanical<br>Engineering | WMME902-40     | 40 | Passed 45 ECTS of<br>the master degree<br>programme courses |

| 1 I UCESS DESIGN IUI LINEI GY SYSTEMS I I ACK. |
|------------------------------------------------|
|------------------------------------------------|

| Course unit name                                  | Course code | EC<br>TS | Entry<br>requirements                                       |
|---------------------------------------------------|-------------|----------|-------------------------------------------------------------|
| Introduction to Data Science                      | WMME027-05  | 5        |                                                             |
| Computational Mechanics                           | WMME017-05  | 5        |                                                             |
| Thermodynamics of Energy<br>Conversion            | WMME018-05  | 5        |                                                             |
| Analysis and Control of Smart Systems             | WMIE015-05  | 5        |                                                             |
| Advanced Process and Energy<br>Technologies       | WMCE012-05  | 5        |                                                             |
| Experimental Design                               | WMME012-05  | 5        |                                                             |
| Course in Business, Management and Society        |             | 5        |                                                             |
| Elective courses                                  |             | 25       |                                                             |
| Master Design Project Mechanical<br>Engineering   | WMME901-20  | 20       | Passed 45 ECTS of<br>the master degree<br>programme courses |
| Master Research Project Mechanical<br>Engineering | WMME902-40  | 40       | Passed 45 ECTS of<br>the master degree<br>programme courses |

## Materials for Mechanical Engineering Track:

| Course unit name                                  | Course code | EC<br>TS | Entry<br>requirements                                       |
|---------------------------------------------------|-------------|----------|-------------------------------------------------------------|
| Introduction to Data Science                      | WMME027-05  | 5        |                                                             |
| Micromechanics                                    | WMPH012-05  | 5        |                                                             |
| Computational Mechanics                           | WMME017-05  | 5        |                                                             |
| Surface Engineering and Coating<br>Technology     | WMIE013-05  | 5        |                                                             |
| Smart materials for Engineering                   | WMME021-05  | 5        |                                                             |
| Experimental Design                               | WMME012-05  | 5        |                                                             |
| Course in Business, Management and Society        |             | 5        |                                                             |
| Elective courses                                  |             | 25       |                                                             |
| Master Design Project Mechanical<br>Engineering   | WMME901-20  | 20       | Passed 45 ECTS of<br>the master degree<br>programme courses |
| Master Research Project Mechanical<br>Engineering | WMME902-40  | 40       | Passed 45 ECTS of<br>the master degree<br>programme courses |

The assessment method of the courses can be found in the assessment plan of the degree programme and on <u>www.rug.nl/ocasys</u>. The teaching method of the courses can be found on <u>www.rug.nl/ocasys</u>.

## **Courses in Business, Management and Society**

| Course unit name                  | Course code | EC<br>TS | Entry<br>requirements |
|-----------------------------------|-------------|----------|-----------------------|
| Technology Based Entrepreneurship | WMIE006-05  | 5        |                       |
| Global Change                     | WMEE008-05  | 5        |                       |
| Sustainability for Engineers      | WMIE020-05  | 5        |                       |

| Joint project options for obtaining a master's degree in a closely related |             |      |                    |  |
|----------------------------------------------------------------------------|-------------|------|--------------------|--|
| programme                                                                  |             |      |                    |  |
| Course unit name                                                           | Course code | ECTS | Entry requirements |  |

| Course unit name          | Course code | ECTS | Entry requirements                                           |
|---------------------------|-------------|------|--------------------------------------------------------------|
| Master Research Project   | 147:11 £-11 |      | - Passed 45 ECTS of courses of<br>both the IEM and ME master |
| IEM-ME*                   | WIII IOIIOW | 55   | - Passed Research                                            |
|                           |             |      | Methodology (IEM)                                            |
| Master Design Project     |             |      | - Passed 45 ECTS of courses of<br>both the IEM and ME master |
| IFM**                     | WMIE901-25  | 25   | programmes                                                   |
|                           |             |      | - Passed Research                                            |
|                           |             |      | Methodology (IEM)                                            |
| Master's Research Project | WMEE000-FO  | 50   | - Passed 45 ECTS of courses of                               |
| ME-EES***                 | WWEE1909-50 | 50   | the ME master programmes                                     |

\*The joint Master Research Project IEM-ME is available only to students enrolled in both the Mechanical Engineering and Industrial Engineering and Management master programmes. This joint project replaces, and cannot be combined with, the regular Research Projects in both programmes.

\*\*The IEM Design Project is available to students enrolled in both the Mechanical Engineering and Industrial Engineering and Management master programmes. This project may substitute, or be followed in addition to, the Master Design Project Mechanical Engineering.

\*\*\* The joint Master Research Project ME-EES is available only to students enrolled in both the ME and EES master programmes. This joint project replaces, and cannot be combined with, the regular ME Research Projects. For the entry requirements of EES, check the EES TER appendices.

## Appendix IV Electives (art. 3.8)

#### **Electives for Advanced Instrumentation Track**

| Course unit name                                                  | Course code | ECTS |
|-------------------------------------------------------------------|-------------|------|
| Multibody and Nonlinear Dynamics                                  | WMME009-05  | 5    |
| Robotics for IEM                                                  | WMIE005-05  | 5    |
| Space Mission Technology                                          | WBAS003-05  | 5    |
| Advanced Bio-Signal Processing for Human Machine<br>Interaction   | Will follow | 5    |
| Microfluidics                                                     | WMME020-05  | 5    |
| Advanced Detection Techniques                                     | WMME005-05  | 5    |
| MEMS, NEMS and Nanofabrication                                    | WMIE010-05  | 5    |
| Fitting Dynamical Models to Data                                  | WMIE007-05  | 5    |
| Surface Engineering and Coating Technology                        | WMIE013-05  | 5    |
| Structure at Macro, Meso and Nano Scale                           | WMPH020-05  | 5    |
| Multiscale Contact Mechanics and Tribology                        | WMIE011-05  | 5    |
| Applied Optics                                                    | WMME010-05  | 5    |
| Characterisation of Materials                                     | WMPH021-05  | 5    |
| Scientific Visualisation                                          | WMCS018-05  | 5    |
| Finite Element Methods for Fluid Dynamics                         | WMMA016-05  | 5    |
| Modelling and Control of Complex Nonlinear Engineering<br>Systems | WMMA020-05  | 5    |
| Product Design by the Finite Element Method                       | WMIE003-05  | 5    |
| Medical Imaging Instrumentation                                   | WMME014-05  | 5    |
| Opto-Mechatronics                                                 | WMME015-05  | 5    |
| Systems Engineering                                               | WMIE021-05  | 5    |
| Data-Driven Optimization                                          | WMME011-05  | 5    |

## **Electives for Smart Factories Track**

| Course unit name                                       | Course code  | ECTS |
|--------------------------------------------------------|--------------|------|
| Multibody and Nonlinear Dynamics                       | WMME009-05   | 5    |
| Basic Detection Techniques                             | WMAS002-05   | 5    |
| Convex Optimization                                    | WMMA006-05   | 5    |
| Advanced Bio-Signal Processing for Human Machine       | TAT'II ( 11  |      |
| Interaction                                            | Will follow  | 5    |
| Advanced Detection Techniques                          | WMME005-05   | 5    |
| Fitting Dynamical Models to Data                       | WMIE007-05   | 5    |
| Structure at Macro, Meso and Nano Scale                | WMPH020-05   | 5    |
| Multiscale Contact Mechanics and Tribology             | WMIE011-05   | 5    |
| MEMS, NEMS and Nanofabrication                         | WMIE010-05   | 5    |
| Surface Engineering and Coating Technology             | WMIE013-05   | 5    |
| Robotics for AI                                        | WMAI011-05   | 5    |
| Modelling and Control of Complex Nonlinear Engineering | WMMAcco of   | _    |
| Systems                                                | W MINA020-05 | 5    |
| Characterisation of Materials                          | WMPH021-05   | 5    |
| Scientific Visualisation                               | WMCS018-05   | 5    |
| Finite Element Methods for Fluid Dynamics              | WMMA016-05   | 5    |
| Product Design by the Finite Element Method            | WMIE003-05   | 5    |
| Smart Materials for Engineering                        | WMME021-05   | 5    |
| Finite Element Modelling for Advanced Processing       | WMME013-05   | 5    |
| Data-Driven Optimization                               | WMME011-05   | 5    |
| Opto-Mechatronics                                      | WMME015-05   | 5    |
| Polymer Physics                                        | WMCH025-05   | 5    |
| Systems Engineering                                    | WMIE021-05   | 5    |

## Electives for Process Design for Energy Systems Track

| Course unit name                                 | Course code | ECTS |
|--------------------------------------------------|-------------|------|
| Multibody and Nonlinear Dynamics                 | WMME009-05  | 5    |
| Advanced Reactor Technologies                    | WMME016-05  | 5    |
| Interfacial Engineering                          | WMCE003-05  | 5    |
| Hydrogen, Fuels and Electrolysers                | WMME019-05  | 5    |
| Microfluidics                                    | WMME020-05  | 5    |
| MEMS, NEMS and Nanofabrication                   | WMIE010-05  | 5    |
| Surface Engineering and Coating Technology       | WMIE013-05  | 5    |
| Finite Element Methods for Fluid Dynamics        | WMMA016-05  | 5    |
| Fuel Cell Systems                                | WMEE015-05  | 5    |
| Product design by the Finite Element Method      | WMIE003-05  | 5    |
| Processes, Energy and Materials Modeling         | WMEE016-05  | 5    |
| Advanced Polymer Processing                      | WMCE006-05  | 5    |
| Compressible Flows                               | WMCE008-05  | 5    |
| Finite Element Modelling for Advanced Processing | WMME013-05  | 5    |
| High- and Low-Temperature Fuel Cells             | WMME026-05  | 5    |
| CFD for Engineers                                | WMCE013-05  | 5    |

| Course unit name                                 | Course code | ECTS |
|--------------------------------------------------|-------------|------|
| Multibody and Non-Linear Dynamics                | WMME009-05  | 5    |
| Interfacial Engineering                          | WMCE003-05  | 5    |
| Computational Physics                            | WMPH007-05  | 5    |
| Advanced Processing for Complex Materials        | WMME007-05  | 5    |
| Microfluidics                                    | WMME020-05  | 5    |
| MEMS, NEMS and Nanofabrication                   | WMIE010-05  | 5    |
| Multiscale Contact Mechanics and Tribology       | WMIE011-05  | 5    |
| Structure at Macro, Meso and Nano Scale          | WMPH020-05  | 5    |
| Fracture of Materials                            | WMME023-05  | 5    |
| Finite Element Methods for Fluid Dynamics        | WMMA016-05  | 5    |
| Characterisation of Materials                    | WMPH021-05  | 5    |
| Product Design by the Finite Element Method      | WMIE003-05  | 5    |
| Compressible Flows                               | WMCE008-05  | 5    |
| Finite Element Modelling for Advanced Processing | WMME013-05  | 5    |
| Systems Engineering                              | WMIE021-05  | 5    |
| Polymer Physics                                  | WMCH025-05  | 5    |
| CFD for Engineers                                | WMCE013-05  | 5    |

**Electives for Materials for Mechanical Engineering Track** 

The assessment method of the courses can be found in the assessment plan of the degree programme and on <u>www.rug.nl/ocasys</u>.

The teaching methods and entry requirements of the courses can be found on www.rug.nl/ocasys.

# Appendix V Entry requirements and compulsory order of examinations (art. 4.4)

A student is allowed to start with either the Design- or Research project if at least 45 ECTS of first year courses have been passed.

# Appendix VI Admission to the degree programme and different specializations (art. 2.1)

Holders of the following Bachelor's degrees from Universities in the Netherlands will be admitted to the Master's degree programme:

- 1. BSc Mechanical Engineering
- 2. BSc Aerospace Engineering

Holders of the following Bachelor's degrees from the University of Groningen are considered to have sufficient knowledge and skills and will be admitted to the Master's degree programme in Mechanical Engineering on that basis:

\* BSc Applied Physics:

Requirements:

1. Computer Aided Design and Manufacturing

\* BSc Physics

Requirements:

- 1. Computer Aided Design and Manufacturing
- 2. Mechanics for IEM
- 3. Control Engineering

\* BSc Astronomy, minor Instrumentation and Informatics Requirements:

1. Computer Aided Design and Manufacturing

\* BSc Applied Mathematics

Requirements:

1. Computer Aided Design and Manufacturing

\* BSc Industrial Engineering and Management Requirements:

- 1. Computer Aided Design and Manufacturing
- 2. Mechanics for IEM
- 3. Control Engineering

## **Appendix VII Transitional provisions (art 7.1)** The transitional arrangement is an arrangement that students can use if they wish to replace a

The transitional arrangement is an arrangement that students can use if they wish to replace a course that is part of their Teaching and Examination Regulations, but either no longer exists or has been changed to a different course in a later set of Teaching and Examination Regulations. In some cases, an arrangement can consist of multiple courses. If a transition is not in the list of transitional arrangements, students will need permission of the Board of Examiners first.

| Discontinue      | Discontinued course units       |      |                      |                  | Substitute course units |      |                                                  |                      |  |
|------------------|---------------------------------|------|----------------------|------------------|-------------------------|------|--------------------------------------------------|----------------------|--|
| Course unit code | Course unit name                | ECTS | Final exam<br>period | Course unit code | Course unit<br>name     | ECTS | Explanation                                      | Equivalent<br>Yes/No |  |
| WMME024-05       | Advanced Powder<br>Technologies | 5    | 2020-<br>2021*       | -                | -                       | -    | course has been<br>removed from the<br>programme | -                    |  |

\*Course was not taught in 2020-2021 due to no participants

## Additional transitional arrangement (2019-2020)

| Discontinued course units |                                               |      |                      | Substitute course units |                                 |      |                                                       |                      |
|---------------------------|-----------------------------------------------|------|----------------------|-------------------------|---------------------------------|------|-------------------------------------------------------|----------------------|
| Course unit code          | Course unit name                              | ECTS | Final exam<br>period | Course unit code        | Course unit<br>name             | ECTS | Explanation                                           | Equivalent<br>Yes/No |
| WMME19001                 | Computational<br>Mechanics 1                  | 5    | -                    | WMME017-05              | Computational<br>Mechanics      | 5    | Course has been<br>renamed                            | Yes                  |
| WMME19005                 | Computational<br>Mechanics 2                  | 5    | 2020-2021            | -                       | -                               | -    | Course has been<br>removed from the<br>programme      | -                    |
| EBM051B05                 | Strategic<br>Management of<br>Inf. Technology | 5    | 2019-2020            | -                       | -                               | -    | Course has been<br>removed from the                   | -                    |
| WMCS16002                 | Introduction to<br>Data Science               | 5    | 2020-2021            | WMME027-05              | Introduction to<br>Data Science | -    | Course had been<br>replaced by ME-<br>specific course | Yes                  |

## Appendix VIII Application and decision deadlines for admission (art 2.6) and Open Degree Programme (art 5.6)

| Degree programme                                                       | Application<br>deadline | Decision<br>deadline |  |
|------------------------------------------------------------------------|-------------------------|----------------------|--|
| Artificial Intelligence                                                | 01 May 2021             | 15 June 2021         |  |
| Behavioural and Cognitive Neurosciences -<br>Research (selective)      | 01 May 2021             | 15 June 2021         |  |
| Biology                                                                | 01 May 2021             | 15 June 2021         |  |
| Biomedical Engineering                                                 | 01 May 2021             | 15 June 2021         |  |
| Biomedical Sciences                                                    | 01 May 2021             | 15 June 2021         |  |
| Biomolecular Sciences (selective)                                      | 01 May 2021             | 15 June 2021         |  |
| Chemistry (selective)                                                  | 01 May 2021             | 15 June 2021         |  |
| Ecology and Evolution (selective)                                      | 01 May 2021             | 15 June 2021         |  |
| Energy and Environmental Sciences                                      | 01 May 2021             | 15 June 2021         |  |
| Computational Cognitive Science (formerly Human-Machine Communication) | 01 May 2021             | 15 June 2021         |  |
| Marine Biology (selective)                                             | 01 May 2021             | 15 June 2021         |  |
| Mechanical Engineering                                                 | 01 May 2021             | 15 June 2021         |  |
| Industrial Engineering and Management                                  | 01 May 2021             | 15 June 2021         |  |
| Medical Pharmaceutical Sciences                                        | 01 May 2021             | 15 June 2021         |  |
| Nanoscience Dutch/EU/EEA (selective)                                   | 01 May 2021             | 15 June 2021         |  |
| Nanoscience non-EU/EEA (selective)                                     | 01 February 2021        | 15 June 2021         |  |
| Science Education and Communication                                    | 01 May 2021             | 15 June 2021         |  |

#### **Programmes starting on 1 September 2021**

#### Programmes starting on 1 September 2021 and 1 February 2022

| Degree programme                    | Application<br>deadline 1<br>September | Decision<br>deadline 1<br>September | Application<br>deadline 1<br>February | Decision<br>deadline 1<br>February |
|-------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|------------------------------------|
| Applied Mathematics                 | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Applied Physics                     | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Astronomy                           | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Chemical Engineering                | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| <b>Computing Science</b>            | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Teacher Education (post-<br>master) | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Mathematics                         | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Pharmacy                            | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Physics                             | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |
| Water Technology (joint degree)     | 01 May 2021                            | 15 June 2021                        | 15 October 2021                       | 15 November 2021                   |

## **Open degree programme**

In exceptional circumstances students wishing to pursue an open degree programme may file a request with the Board of Examiners. The Board of Examiners will evaluate whether the proposed curriculum meets the learning outcomes of the degree programme and can determine further conditions in their Rules and Regulations.