

Appendices Master's Degree Programme Computational Cognitive Science (MSc) 2021 – 2022

- I. Learning Outcomes of the Degree Programme
- II. Tracks/Specializations of the Degree Programme
- III. Content of the Degree Programme
- IV. Elective Course Units
- V. Entry Requirements and Compulsory Order of Examinations

1

- VI. Admission to the Degree Programme
- VII. Transitional Provisions
- VIII. Additional Requirements Open Degree Programmes
 - IX. Application Deadlines

Appendix I Learning Outcomes of the Degree Programme (Article 3.1)

- 1. The master demonstrates knowledge, understanding and the ability to evaluate, analyse and interpret relevant data, all on a level that builds on and surpasses the level of the bachelor Artificial Intelligence, in at least three of the research areas below. In one research area of Computational Cognitive Science the master has specialised knowledge at an advanced level.
 - a. Computational theories and models of cognitive processes
 - b. Multivariate statistics
 - c. Cognitive ergonomics
 - d. Application of formal models of cognition in human-computer interaction and education
 - e. Linguistics and language technology
 - f. Cognitive neuroscience
- 2. The master demonstrates knowledge and understanding, on a level that builds on and surpasses the level of the bachelor Artificial Intelligence, in the empirical sciences (Psychology, Biology and Physics) and has experience applying and analysing results thereof.
- 3. The master demonstrates relevant knowledge and the ability to apply methods and techniques from mathematics and logic used in Computational Cognitive Science.
- 4. The master demonstrates relevant knowledge and the ability to use programming languages used in the field of Computational Cognitive Science.
- 5. The master has the ability to, on an international academic level, analyse problems, critically and constructively review both one's own and other scientific results, even if incomplete, and to communicate about this both individually and in a group, both orally and in written form, also in a broader societal context, to both specialists and non-specialists.
- 6. The master has the ability to critically reflect on his/her own working method and knowledge and to recognize the need for continued learning with a high degree of autonomy, and is able to understand the scientific developments within the field of Computational Cognitive Science.

Appendix II Tracks/Specializations of the Degree Programme (Article 3.5)

The Computational Cognitive Science MSc Programme has no tracks.

The programme does make use of specializations. These specializations are a mandatory direction that guarantees a student is able to take a graduation project in the relevant area by the end of the specialization.

Students must choose one of the following specializations:

- a) specialization Cognitive Modelling
- b) specialization Cognitive Engineering
- c) specialization Computational Cognitive Neuroscience
- d) specialization Cognitive Language Modelling

Appendix III Content of the Degree Programme (Article 3.6)

1. The **degree programme** consists of the following mandatory course units:

Mandatory Course Units (30 ECTS credit points) with a study load of 5 ECTS credit points, unless stated otherwise

Advanced Statistical Modelling [WMCC005-05]

Cognitive Modelling: Basic Principles and Methods [WMCC006-05] First-Year Research Project (15 ECTS credit points) [WMCC012-15] Formal Models of Cognition [WMCC002-05]

Final Research Project (45 ECTS credit points)

Final Research Project (45 ECTS credit points) [WMCC901-45] or Final Research Project (30 ECTS credit points) [WMCC901-30] and Internship (15 ECTS credit points) [WMCC902-15]

2. In addition to having to take the fixed mandatory programme, students will also have to take the mandatory course units of one of the four programme **specializations** as referred to in Appendix II. The different specialisations contain the following course units:

Cognitive Modelling

Mandatory Course Units (15 ECTS credit points) with a study load of 5 ECTS credit points, unless stated otherwise

Cognitive Modelling – Complex Behaviour [**WMCC008-05**] Computational Cognitive Neuroscience [**WMCC010-05**] User Models [**WMCC004-05**]

Cognitive Engineering

Mandatory Course Units (20 ECTS credit points)
with a study load of 5 ECTS credit points, unless stated otherwiseApplied Cognitive Engineering [WMCC007-05]
Cognitive Engineering [WMCC001-05]
Neuro-ergonomics [WMCC011-05]
User Models [WMCC004-05]

Computational Cognitive Neuroscience

Mandatory Course Units (15 ECTS credit points) with a study load of 5 ECTS credit points, unless stated otherwise

Computational Cognitive Neuroscience [WMCC010-05] Cognitive Modelling – Complex Behaviour [WMCC008-05] Machine Learning [WMAI010-05]

Cognitive Language Modelling

Mandatory Course Units (15 ECTS credit points) with a study load of 5 ECTS credit points, unless stated otherwise

Computational Simulations of Language [WMCC009-05] Language Modelling [WMCC003-05] Language Technology Project [LIX025M05]

Appendix IV Elective Course Units (art. 3.7.1)

In addition to the mandatory fixed programme and the programme specialisations, the programme also consists of 25/30 ECTS credit points in elective course units (depending on their specialisation). Students will have to fill this space of 25/30 credit points with one of the following three options (or combinations thereof):

1. A student may choose one or more of the following pre-approved elective course units that are offered by Computational Cognitive Science or Artificial Intelligence:

Pre-approved Elective Course Units
with a study load of 5 ECTS credit points, unless stated otherwise
Applied Cognitive Engineering [WMAI19004]
Arguing Agents [WMAI001-05]
Auditory Biophysics [WMAI013-05]
Cognitive Engineering [WMCC001-05]
Cognitive Modelling – Complex Behaviour [WMCCoo8-05]
Cognitive Robotics [WMAI003-05]
Computational Cognitive Neuroscience [WMCC010-05]
Computational Simulations of Language [WMCC009-05]
Computational Social Choice [WMAI016-05]
Deep Learning [WMAI017-05]
Design of Multi-Agent Systems [WMAI004-05]
Handwriting Recognition [WMAI019-05]
Language Modelling [WMCC003-05]
Logical Aspects of Multi-Agent Systems [WMAI020-05]
Machine Learning [WMAI010-05]
Models of Human-Syntax Processing [WMCC014-05]
Neuro-ergonomics [WMCC011-05]
Robotics for Artificial Intelligence [WMAI011-05]
User Models [WMCC004-05]

- 2. A student may choose one or more of the following pre-approved elective course units taught by other degree programmes (the study load is 5 ECTS credit points unless stated otherwise). For the form of examination, refer to the EER or assessment plans of the relevant degree programmes:
 - Advanced Experimental Skills [**PSMCV-1**]
 - Advanced Imaging Techniques [WMBY015-05]
 - Advanced Self-Organisation of Social Systems [WMBY017-05]
 - Auditory and Visual Perception [WMBC002-05]
 - Cognitive Psychology, Theory and Applications [PSMCB-2]
 - Computational Semantics [LIX021M05]
 - Computer-Mediated Communication [LIX022M05]
 - Corpus Linguistics [LTR024M05]
 - Introduction Science and Business ^a [WMSE001-10]
 - Introduction Science and Policy ^a [WMSE002-10]
 - Introduction to Data Science [WMCS002-05]
 - Language Technology Project [LIX025M05]
 - Natural Language Processing [LIX001M05]
 - Philosophy of Neuroscience [FI024FK]

- Psychophysiology and its Applications [**PSMCB-1**]
- Skills in Science Communication [WMEC006-05]
- Scientific Visualization [WMCS018-05]
- Semantic Web Technology [LIX002M05]
- User Interface Evaluation [LIX024M05]
- Web and Cloud Computing [WMCS005-05]

a) This course yields 10 ECTS credit points. You can take either Introduction Science and Business or Introduction Science and Policy, and will only be awarded credit points for one of the two course units.

3. Formal approval of the Board of Examiners is required, in case and before a student would like to deviate from these rules (e.g. including course units from other programmes and universities).

Appendix V Entry Requirements and Compulsory Order of Examinations (Article 4.4)

Course Unit Name	Entry Requirements ^a
Applied Cognitive Engineering [WMCC007-05]	- Cognitive Engineering [WMCC001-05]
Final Research Project [WMCC901-45 , WMCC901-30]	 At least 60 ECTS credit points from the master's phase (students must have this study programme approved by the Board of Examiners) Advanced Statistical Modelling [WMCC005-05] Cognitive Modelling – Basic Principles and Methods [WMCC006-05] First-Year Research Project [WMCC012-05] Formal Models of Cognition [WMCC002-05] Completion of the specialization relevant to the final research project

a) In the event that a student has applied for a course to count as a course replacement, this replacement course also counts as a valid alternative for the course entry requirement in question.

Models of Human-Syntax Processing [WMCC014-05] has General Linguistics [WBAI022-05] as a strongly recommended course unit. Students who did not take the Artificial Intelligence BSc are advised to (have) take(n) a comparable course unit.

a) In the event that a student has applied for a course to count as a course replacement, this replacement course also counts as a valid alternative for the course entry requirement in question.

Appendix VI Admission to the Degree Programme (Article 2.1A.1 + 2.1B.1)

- 1. Students in possession of a Dutch or foreign certificate of higher education that indicates that they have the following knowledge and skills shall be admitted to the degree programme:
 - knowledge of and insight in the subject of Artificial Intelligence
 - knowledge of and insight in the subject of Cognitive Psychology or Cognitive Science
 - knowledge of and insight in the subject of Statistics and Research methods
 - practical skills in Programming
- 2. The holder of a certificate from the Bachelor's degree programme "Artificial Intelligence" of any university in the Netherlands is expected to have the knowledge and skills listed in Article 2.1 and is admitted to the degree programme on that basis.

Appendix VII Transitional Provisions (Article 7.1)

The transitional provisions are an arrangement that students can use as a reference to courses that previously existed. Some course units or curriculum choices were previously part of the programme, but have since been updated. In some cases, an arrangement can consist of multiple courses. If a provision is not listed in the list of transitional arrangements, students will have to ask the permission of the Board of Examiners first – through a course replacement. The provisions are listed in reverse-chronological order. General provisions are described through text – courses that are a direct replacement for a current course are listed in table format.

Discontinued Course Unit(s)			Replacement Course Unit(s)			
Course Name	Course Code	ECTS credit points	Final Exam Opportunity	Course Name	Ćourse Code	ECTS credit points
Non- derivation Theories of Syntax	WMCC013- 05	5	-	Models of Human- Syntax Processing	WMCC014- 05	5
Pattern Recognition	WMCS011- 05	5	Course unit still exists	Pattern Recognition	WMAI021- 05	5

Students who started in 2020 – 2021 or before:

Students who were previously part of the Human-Machine Communication MSc need not request any transitional provisions: since the only formal change to the master's programme is a name change – they are formally still under the same programme. This does mean that they will graduate under the 'Computational Cognitive Science' name.

Students who started in 2019 – 2020 or before:

There are no transitional provisions for the year 2019 – 2020.

However, below, you can find a table of courses that are considered equivalent – but have changed course codes since 2020 - 2021. While the course codes of these courses are different, they are considered equal for the intents and purposes of your MSc diploma: you do not have to take the version that is listed in the current Teaching- and Examination regulations – and can use the 'Old Course Code' version instead. Note that this list only contains courses that have been part of previous Teaching- and Examination regulations, and only courses that have not changed their name (otherwise it is a discontinued course unit/replacement course unit pair, listed in the TER of the organizing programme). Any other equivalences that may exist between courses that can be beneficial in the event of a course replacement or a potential block in the event of a free-choice elective will have to be checked with the Board of Examiners of your own degree programme.

Course Name	Old Course Code	New Course Code	ECTS Credit Points		
Organized by Computational Cognitive Science (MSc)					
Advanced Statistical Modelling	WMAI18001	WMCC005-05	5		
Applied Cognitive Engineering	WMAI19004	WMCC007-05	5		
Cognitive Engineering	KIM.CE11	WMCC001-05	5		
Cognitive Modelling: Basic	KIM.CMB11	WMCCoo6-05	5		
Principles and Methods		_	-		
Cognitive Modelling: Complex Behaviour	KIM.CMC11	WMCCoo8-05	5		
Computational Cognitive	KIM.CCN11	WMCC010-05	5		
Computational Simulations of	WMAI18003	WMCC009-05	5		
Language			5		
Final Research Project	KIM.AFMC30	WMCC901-30	30		
Final Research Project	KIM.AFMC06	WMCC901-45	45		
First-year Research Project	KIM.FYRP11	WMCC012-15	5		
Formal Models of Cognition	KIM.FMC11	WMCC002-05			
Internship	KIM.STAHMC	WMCC902-15	15		
Language Modelling	KIM.LM04	WMCCoo3-05	5		
Neuro-ergonomics	KIM.NE06	WMCC011-05	5		
User Models	KIM.UM03	WMCC004-05	5		
Organized by Other Programm	es (Mandatory /	Specialization)			
Machine Learning	KIM.ML09	WMAI010-05	5		
Organized by Other Programm	es (Pre-approve	d Elective)			
Advanced Imaging Techniques	MLBI0901	WMBY015-05	5		
Advanced Self-organisation of Social Systems	MLBI0801	WMBY017-05	5		
Arguing Agents	KIM.AA08	WMAI001-05	5		
Auditory Biophysics	KIM.AB09	WMAI013-05	5		
Auditory and Visual Perception	WMBC13001	WMBC002-05	5		
Cognitive Robotics	WMAI19001	WMAI003-05	5		
Computational Social Choice	WMAI19002	WMAI016-05	5		
Deep Learning	WMAI18002	WMAI017-05	5		
Design of Multi-agent Systems	KIM.DMAS04	WMAI004-05	5		
Hand-writing Recognition	KIM.SCHR03	WMAI019-05	5		
Introduction to Data Science	WMCS16002	WMCS002-05	5		
Introduction to Science and Business	WNBIBEB08A	WMSE001-10	10		
Introduction to Science and Policy	WNBIBEB08B	WMSE002-10	10		
Logical Aspects of Multi-agent Systems	WMAI19003	WMAI020-05	5		
Machine Learning	KIM.ML09	WMAI010-05	5		
Robotics for AI	KIM.ROB03	WMAI011-05	5		

Scientific Visualisation	INMSV-08	WMCS018-05	5
Skills in Science Communication	WMEC13004	WMECoo6-o5	5
Web and Cloud Computing	INMWCC-12	WMCS005-05	5

Students who started in 2018 – 2019 or before:

Students in the Cognitive Engineering specialization do not have to include Applied Cognitive Engineering [**WMCC007-05**] in their mandatory programme. It is still strongly advised to include it as an elective course unit.

No further transitional provisions apply - the current curriculum is compatible with most older versions of the Teaching- and Examination Regulations. Cases not listed in the Teaching and Examination Regulations - through either the current curriculum or the transitional provisions listed - are only valid in consultation with, and through approval of, the Board of Examiners of the degree programme.

Students are permitted to obtain a diploma in the Computational Cognitive Science MSc programme without fully fitting the curriculum set out in Appendix III and Appendix IV. This can only happen in consultation with, and through approval of, the Board of Examiners of the degree programme. Students are required to finish an MSc Project, to guarantee they are able to function as an MSc level researcher in line with the Dublin level descriptors / Framework for Qualifications of the European Higher Education Area, and are required to fit the Learning Outcomes of the programme (set out in Appendix I). These Learning Outcomes have been established in accordance with the AI MSc Framework of Reference of the Netherlands.

Appendix IX Application and Decision Deadlines for Admission (Article 2.6.1 and 2.6.3)

Programmes starting on 1 September 2021

Programme	Deadline of	Deadline of decision
	Application	
Behavioural and Cognitive	1 May 2021	1 June 2021
Neurosciences		
Biology	1 May 2021	1 June 2021
Biomedical Engineering	1 May 2021	1 June 2021
Biomedical Sciences	1 May 2021	1 June 2021
Biomolecular Sciences	1 May 2021	1 June 2021
Computational Cognitive Science	1 May 2021	1 June 2021
Ecology and Evolution	1 May 2021	1 June 2021
Energy and Environmental Sciences	1 May 2021	1 June 2021
Marine Biology	1 May 2021	1 June 2021
Mechanical Engineering	1 May 2021	1 June 2021
Medical Pharmaceutical Sciences	1 May 2021	1 June 2021
Nanoscience: for non-EU/EEA students	1 February 2021	1 June 2021
Nanoscience: for EU/EEA students	1 May 2021	1 June 2021
Science Education and Communication	1 May 2021	1 June 2021

Programmes starting on 1 September 2021 and 1 February 2022

Programme	Deadline of	Deadline of	Deadline of	Deadline of
	Application	decision	Application	decision for 1
	for 1	for 1	for 1 February	February
	September	September		
Applied Mathematics	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Applied Physics	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Artificial Intelligence	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Astronomy	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Chemical Engineering	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Chemistry	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Computing Science	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Farmacie	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Industrial Engineering	1 May 2021	1 June 2021	15 October 2021	15 November 2021
and Management				
Mathematics	1 May 2021	1 June 2021	15 October 2021	15 November 2021
Physics	1 May 2021	1 June 2021	15 October 2021	15 November 2021