Appendices Bachelor's Degree Programme Artificial Intelligence 2018 – 2019

Appendix I Learning Outcomes of the Degree Programme (Article 1.3.a)

The bachelor demonstrates knowledge, understanding, and the ability to evaluate, analyse and interpret relevant data in the field of

- 1. the symbolic approach to Artificial Intelligence and has the ability to apply this.
- 2. the numerical, non-symbolic approach to Artificial Intelligence and has the ability to apply this.
- 3. computational models of cognitive processes and has expertise in constructing and applying this.
- 4. autonomous systems and robotics and has the ability to apply this.
- 5. linguistics and language technology and has the ability to apply this.
- 6. knowledge and agent systems and has expertise in designing, implementing and applying these.

The bachelor has knowledge and understanding of

- 7. the most important philosophical theories developed in the areas of artificial intelligence and cognition.
- 8. relevant theories developed in the area of empirical sciences, psychology, biology and physics and has experience applying and analysing results thereof.

The bachelor has relevant knowledge and ability

- 9. to apply methods and techniques from mathematics and logic used in Artificial Intelligence.
- 10. to use algorithms, data structures and important programming languages used in Artificial Intelligence.

The bachelor has the ability

- 11. on an academic level, to analyse problems, critically review scientific results and communicate about this both individually as well as in a group, both oral and in written form, also in a broader societal context.
- 12. to critically reflect on one's own working method and to recognize the need for continued learning on a high degree of autonomy, also in the context of a master or a specialist profession.

Appendix II Majors and Minors of the Degree Programme (Article 2.1.4)

The degree programme has the following **Major**: - Artificial Intelligence

Appendix III Course Units in the Propaedeutic Phase (List of Course Units; Article 3.1.1)

The propaedeutic phase comprises a number of mandatory course units, each with a student workload of 5 ECTS credit points, listed in the table below. The modes of assessment and whether a course unit includes a practical are described in the assessment plan of the BSc Artificial Intelligence of the respective academic year.

Mandatory Courses (60 ECTS credit points)	
Algorithms and Data Structures in C [INBADC-09]	
Artificial Intelligence 1 [KIB.KI103]	
Autonomous Systems [KIB.AS03]	
Basic Scientific Skills [KIB.WBV06]	
Calculus for Artificial Intelligence [WPMA14003]	
Cognitive Psychology [KIB.CP06]	
General Linguistics [KIB.ATW03]	
Imperative Programming for AI [WBCS17002]	
Introduction to Artificial Intelligence [KIB.ORKIO3]	
Introduction to Logic [WPAI14001]	
Introduction to the Brain [WPAI18001]	
Linear Algebra and Multivariable Calculus [WPMA14005]	

Appendix IV Course Units in the Post-Propaedeutic Phase (List of Course Units; Article 6.1.1)

The post-propaedeutic phase comprises a number of mandatory course units, each with a student workload of 5 ECTS credit points, unless stated otherwise, listed in the table below. The different modes of assessment and whether a course unit includes a practical are described in the assessment plan of the BSc Artificial Intelligence of the respective academic year.

Mandatory Courses (60 ECTS credit points)
Advanced Logic [KIB.VL03]
Architectures of Intelligence [KIB.AVIO3]
Artificial Intelligence 2 [KIB.KI2O3]
Data Analytics and Communication [WBAI17001]
Knowledge and Agent Technology [KIB.KT03]
Language and Speech Technology [KIB.TST03]
Neural Networks [KIB.NNKIO3]
Neurophysics (Physics for Artificial Intelligence) [KIB.NF07]
Object-Oriented Programming [INBOGP-08]
Philosophy of Cognitive Science [FI053CW]
Signals and Systems [KIB.SENS12]
Statistics [WISTAKI-07]
Practical Course Units (choose 15 ECTS credit points ^a)
Autonomous Systems Practical [KIB.PAS05]
Autonomous Systems Practical Extension ^b [WPAI14001]
Cognitive Science Practical [KIB.PRCS08]
Knowledge Technology Practical [KIB.PKT10]
Language Technology Practical [KIB.PTT07]
Bachelor's Project (15 ECTS credit points)
Bachelor's Project ^c [WBAI18001]

a) It is possible to take more than 15 ECTS credit points in practical course units, if students use their elective space for the additional practical course units.

b) This course can only be taken directly in succession to Autonomous Systems Practical. *c)* This course yields 15 ECTS credit points. In addition to the mandatory (fixed) programme, the post-propaedeutic phase also consists of 30 ECTS credit points in elective course units. 15 of these credit points will have be chosen from a list of pre-approved electives. The other 15 credit points can either be from the list of pre-approved electives, or a free choice elective, provided the Board of Examiners has approved of this choice. The post-propaedeutic phase comprises the following pre-approved electives (each with a student workload of 5 ECTS credit points, unless stated otherwise):

Students can choose from the following list of course units without needing approval of the Board of Examiners:

(please refer to the Teaching and Examination Regulations and curriculum assessment plans of the relevant degree programmes for modes of assessment)

- Cognition and Attention [PSB3E-CP02]
- Computer Graphics [INBCG-08]
- Functional Programming [INBFP-08]
- Information Security [INBSEC-08]
- Introduction to Information Systems [INBIIS-08]
- Introduction Intelligent Systems [INBINTS-08]
- IT Law for non-law Students ^{a,c} [**RGARI70110**]
- Learning: Theory and Practice [PSB3E-M14]
- Logic Programming [LIX003B05]
- Human Error [PSB3E-M06]
- Computational Grammar [LIX025B05]
- Parallel Computing [INBPAR-08]
- Philosophy of Mind: Body, Brain, Mind ^{b,c} [FI142LBG]
- Philosophy of Science [FI090WET]
- Philosophy of Science, Technology & Society ^c [FI073HH]
- Philosophy of the Natural Sciences: Physics and Metaphysics [FI153LH]
- Problem Analysis and Design [WBCS16000]
- Self-organization of Ecological and Social Systems ^c [WLB07103]

a) This course yields 10 ECTS credit points.
b) This course yields 7.5 ECTS credit points.
c) This course is taught in Dutch.

A student c*an* take additional practical course units from the list of practical course units in the mandatory course units list without the formal approval of the Board of Examiners.

Formal approval of the Board of Examiners is required, in case and before a student would like to deviate from these rules (e.g. including course units from other programmes or abroad).

(Compulsory Order of Examinations; Article 8.2)

The examinations for the course units listed below may not be taken before the examinations for the associated course units have been passed:

Course Unit Name	Entry Requirements
Advanced Logic [KIB.VL03]	 Introduction to Logic [WPAI14001]
Autonomous Systems Practical [KIB.PAS05]	– Autonomous Systems [KIB.AS03]
Autonomous Systems Practical Extension [WBAI14001]	 Autonomous Systems Practical [KIB.PAS05]
	 At least 135 ECTS credit points from the AI Bachelor's phase (students must have their study programme approved by the Board of Examiners)
Bachelor's Project [WBAI18001]	 Data Analytics and Communication [WBAI17001] Statistics [WISTAKI-07]
	 Statistics [WISTARI-07] Students must have successfully completed all propaedeutic course units
Computational Grammar [LIX025B05]	– Logic Programming [LIX003B05]
Cognitive Science Practical [KIB.PRCS08]	 Cognitive Psychology [KIB.CP06] Statistics [WISTAKI-07]
Data Analytics and Communication [WBAI17001]	– Statistics [WISTAKI-07]
Knowledge Technology Practical [KIB.PKT10]	 Knowledge and Agent Technology [KIB.KT03]
Language and Speech Technology [KIB.TST03]	- General Linguistics [KIB.ATW03]
Language Technology Practical [KIB.PTT07]	 Language and Speech Technology [KIB.TST03]
Neural Networks for Artificial Intelligence [KIB.NNKI03]	 Calculus for Artificial Intelligence [WPMA14003] Linear Algebra and Multivariable Calculus [WPMA14005]
Neurophysics (Physics for Artificial Intelligence) [KIB.NF07]	 Calculus for Artificial Intelligence [WPMA14003] Linear Algebra and Multivariable Calculus [WPMA14005] Signals and Systems [KIB.SENS12]
Philosophy of Science, Technology & Society [FI073HH]	 Philosophy of Science [FI090WET]
Signals and Systems [KIB.SENS12]	 Calculus for Artificial Intelligence [WPMA14003] Linear Algebra and Multivariable Calculus [WPMA14005]

Appendix V Entry Requirements (Article 10.2.1)

A. HBO (university of applied science) propaedeutic certificate

Degree programme	Subjects at VWO (pre- university) level	Requirement: Dutch as a Second Language (programme II) for non- native speakers of Dutch
B Biology	wia or wib + na+sk+bio	
B Pharmacy	wia or wib + na+sk	
B Life Science and Technology	wib+na+sk	
B Computing Science	wib	
B Artificial Intelligence	wia or wib	
B Physics	wib+na	
B Chemistry	wib+na+sk	
B Astronomy	wib+na	
B Mathematics	wib	
B Chemical Engineering	wib+na+sk	
B Industrial Engineering and Management Science	wib	
B Applied Physics	wib+na	
B Applied Mathematics	wib	

1. The following requirements apply to the entrance examination as defined in Article 7.28.3 of the Act:

wia = Mathematics A; wib = Mathematics B; na = Physics; sk = Chemistry; bio = Biology

2. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).

3. The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

B. Foreign qualifications (EEA)

- 1. Any certificate that grants access to a university in a European country will also grant access to Dutch universities.
- 2. The same requirements that also apply to candidates with an HBO (university of applied science) propaedeutic certificate will apply to these candidates in the entrance examination as defined in Article 7.28.3 of the Act (see A).
- 3. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).
- 4. In addition, candidates are required to be competent in English: an IELTS score of 6.5, a TOEFL score of 580 (paper-based), of 237 (computer-based) or of 92 (internet-based) or equivalent.
- **5.** The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

C. Foreign qualifications (German)

- 1. German candidates must have a Zeugnis der Allgemeinen Hochschulreife ('Abitur').
- 2. The following requirements apply to the entrance examination as defined in Article 7.28.3 of the Act:

Degree programme	
B Biology	wi (LK or GK) na (LK or GK) sk (LK or GK) bio (LK or GK) (at least one subject at Leistungskurs level)
B Pharmacy B Life Science and Technology B Chemistry B Chemical Engineering	wi (LK or GK) na (LK or GK) sk (LK or GK) (at least one subject at Leistungskurs level)
B Computing Science B Mathematics B Applied Mathematics B Artificial Intelligence	wi (LK)
B Physics B Astronomy B Applied Physics	wi (LK) na (LK or GK)
B Industrial Engineering and Management Science	wi (LK or GK) na (LK or GK) (at least one subject at Leistungskurs level)

wi= Mathematics; na = Physics; sk = Chemistry; bio = Biology

LK = Leistungskurs level; GK = Grundkurs level followed until end of Class 13 or Class 12 (if Gymnasium education lasts 12 years).

- 3. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).
- 4. The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

D. Foreign qualifications (International Baccalaureate)

Degree programme	from 2010/2011
B Biology	Biology (SL or HL) Maths (SL or HL) Physics (SL or HL) Chemistry (SL or HL) two of these subjects at HL
B Pharmacy B Life Science and Technology B Chemistry B Chemical Engineering	Maths (SL or HL) Physics (SL or HL) Chemistry (SL or HL) two of these subjects at HL
B Computing Science B Mathematics B Applied Mathematics	Maths HL
B Artificial Intelligence	Maths SL or Maths HL
B Physics B Astronomy B Applied Physics B Industrial Engineering and Management Science	Maths HL Physics HL

1. The following requirements apply to the entrance examination as defined in Article 7.28.3 of the Act:

SL = Standard Level, HL = Higher Level

- 2. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).
- **3.** The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

E. Foreign qualifications (non-EEA)

- 1. A non-European certificate that according to NUFFIC and/or NARIC standards is equivalent to a Dutch VWO certificate will grant access to university in the Netherlands.
- 2. The same requirements that also apply to candidates with an HBO (university of applied science) propaedeutic certificate will apply to these candidates in the entrance examination as defined in Article 7.28.3 of the Act (see A).
- 3. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).
- 4. In addition, candidates are required to be competent in English: an IELTS score of 6.5, a TOEFL score of 580 (paper-based), of 237 (computer-based) or of 92 (internet-based) or equivalent.
- 5. The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

F. Entrance examination

Degree programme	Nature and Health	or	Nature and Technology
	VWO level		VWO level
B Biology	en, wia or b, sk, bio, na		en, wib, na, sk, bio
B Pharmacy	en, wia or b, sk, bio, na		en, wib, na, sk
B Life Science and Technology	en, wib, sk, bio, na		en, wib, na, sk
B Computing Science	en, wib, sk, bio		en, wib, na, sk
B Artificial Intelligence	en, wia or b, sk, bio		en, wib, na, sk
B Physics	en, wib, sk, bio, na		en, wib, na, sk
B Chemistry	en, wib, sk, bio, na		en, wib, na, sk
B Astronomy	en, wib, sk, bio, na		en, wib, na, sk
B Mathematics	en, wib, sk, bio		en, wib, na, sk
B Chemical Engineering	en, wib, sk, bio, na		en, wib, na, sk
B Industrial Engineering and	en, wib, sk, bio		en, wib, na, sk
Management Science			
B Applied Physics	en, wib, sk, bio, na		en, wib, na, sk
B Applied Mathematics	en, wib, sk, bio		en, wib, na, sk

1. The following requirements apply to the entrance examination as defined in Article 7.29 of the Act:

en = English; wia = Mathematics A; wib = Mathematics B; na = Physics; sk = Chemistry; bio = Biology

2. Non-native speakers of Dutch who wish to be admitted to the Bachelor's degree programmes in Biology, Life Science and Technology, or Pharmacy must also have passed the State Examination in Dutch as a Second Language, Programme II (NT2-II).

3. The Admissions Board Bachelor's programmes FSE will determine whether deficiencies have been compensated satisfactorily.

Appendix VI Clustering of Bachelor's Degree Programmes (Article 4.3.4, Article 4.6.1)

Degree programme CROHO code	Name of degree programme	Clustered with CROHO code	Name of degree programme		
56286	B Life Science and Technology	56860 56157	B Biology B Pharmacy		
56860	B Biology	56286	B Life Science and Technology		
		56157	B Pharmacy		
56157	B Pharmacy	56860	B Biology		
		56286	B Life Science and Technology		
56980	B Mathematics	56965	B Applied Mathematics		
		50206	B Physics		
		56962	B Applied Physics		
		50205	B Astronomy		
56965	B Applied	56980	B Mathematics		
	Mathematics	50206	B Physics		
		56962	B Applied Physics		
		50205	B Astronomy		
50206	B Physics	56962	B Applied Physics		
		50205	B Astronomy		
		56965	B Applied		
			Mathematics		
		56980	B Mathematics		
56962	B Applied Physics	50206	B Physics		
		50205	B Astronomy		
		56965	B Applied		
		50000	Mathematics		
		56980	B Mathematics		
50205	B Astronomy	56962	B Applied Physics		
		56965	B Applied		
		50000	Mathematics		
		50206	B Physics		
		56980	B Mathematics		
56857	B Chemistry	56960	B Chemical		
			Engineering		
56960	B Chemical	56857	B Chemistry		
	Engineering				

Appendix VII Admission to the Post-propaedeutic Phase (Article 5.1.1)

The following candidates will be admitted to the post-propaedeutic phase: Students who have been issued a positive study advice from the degree programme in question

Appendix VIII Contact Hours Propaedeutic Phase (Article 2.4)

Degree Programme Year 1	
Type of Contact Hour	Contact Hours per Year
Lectures	Approx. 270
Tutorial	Approx. 180
Practicals	Approx. 90
Tutoring / Mentor Hours	Approx. 10
Supervision during an internship	0
Final Examinations and Re-examinations	Approx. 60
Mid-term Examinations	Approx. 15
Career Support (FSE General)	Approx. 12
Miscellaneous Sessions (e.g. Q&A)	Approx. 30

Appendix IX University Minors of the Faculty of Science and Engineering (Article 7.5.1)

1. Neurosciences Minor (taught in English): Neuroscience (15 ECTS) Behavioural Neuroscience (15 ECTS)

People, Planet, Profit Minor (taught in English): Overview and Coherence People Planet Profit (10 ECTS) Paper People Planet Profit (5 ECTS) Project People, Planet, Profit (15 ECTS)

Astronomy through Space and Time Minor (taught in English): The Evolving Universe (5 ECTS) Cosmic Origins (5 ECTS) Astrobiology (5 ECTS)

Einstein's Physics: Space-time and parallel worlds (taught in English): Einstein's Universe (5 ECTS) Quantum World (5 ECTS) Building blocks of matter (5 ECTS)

2. The Programme Committee for the Bachelor's degree programmes in Biology and Life Science & Technology also has authority in the field of the Minor "Neurosciences" and/or its course units.

The Programme Committee for the Master's degree programme in Energy & Environmental Sciences also has authority in the field of the Minor "People, Planet, Profit" and/or its course units.

The Programme Committee for the Bachelor's degree programme in Astronomy also has authority in the field of the Minor "Astronomy through Space and Time" and/or its course units.

The Programme Committee for the Bachelor's degree programmes in Physics and Applied Physics also has authority in the field of the Minor "Einstein's physics: Space-time and parallel worlds" and/or its course units.

3. The Board of Examiners for the Bachelor's degree programmes in Biology and Life Science & Technology and the Master's degree programmes in Biology, Ecology & Evolution, Marine Biology and Molecular Biology & Biotechnology also has authority in the field of the Neurosciences Minor and/or its course units.

The Board of Examiners for the Master's degree programme in Energy & Environmental Sciences also has authority in the field of the People, Planet, Profit Minor and/or its course units.

The Board of Examiners for the Bachelor's degree programme in Astronomy also has authority in the field of the Astronomy through Space and Time Minor and/or its course units.

The Board of Examiners for the Bachelor's degree programmes in Physics and Applied Physics also has authority in the field of the Physics Minor "Einstein's physics: Space-time and parallel worlds" and/or its course units.

4. These Teaching and Examination Regulations also apply in their entirety to the Minors in Neurosciences, People, Planet, Profit, Astronomy through Space and Time and Einstein's physics: Space-time and parallel worlds and/or their course units.

Appendix X Transitional Arrangement (Article 12.1)

The transitional arrangement is an arrangement that students can use if they wish to replace a course that is part of their Teaching and Examination Regulations, but either no longer exists or has been changed to a different course in a later set of Teaching of Examination Regulations. In some cases, an arrangement consists of multiple courses. For this reason, the transitional arrangements have been separated by thick lines. If a transition is not in the list of transitional arrangements, students will have to ask the permission of the Board of Examiners first.

Discontinued Course Unit(s)			Replacement Course Unit(s)				
Course Name	Course Code	ECTS credit points	Final Exam Opportunity	Course Name	Course Code	ECTS credit points	Notes
Imperative Programming	INBIMP-09	5	2017 - 2018	Imperative Programming for AI	WBCS17002	5	
Research Methods	KIB.OZM10	5	2017 - 2018	Data Analytics and Communication	WBAI17001	5	
Human Factors	PSB3E- CP04	5	2018 - 2019	Introduction to the Brain	WPAI18001	5	See a)
Biopsychology	PSBE1-04	5	-	Bachelor's Project	WBAI18001	15	
Bachelor's Project	KIB.PROJ03	10	-				

a) If students use this transitional arrangement, they are also no longer able to take the Cognitive Neuroscience pre-approved elective course unit. This transitional arrangement only applies if they have yet to pass Human Factors as a mandatory part of their programme.