Appendices Teaching and Examination Regulations
Master’s Degree Programme 2010-2011

Applied Mathematics

Appendix A Teaching outcomes of the degree programme
(art. 1.3)

The degree programme aims to train the students in such a way that they acquire the insight, skills and knowledge that allows the recipient of the degree to establish a professional career in the field of Applied Mathematics.

Appendix B Specializations of the degree programme
(art. 2.2)

The degree programme has the following specializations:
- Computational Science and Numerical Mathematics
- Systems, Control and Optimization

Appendix C Content of the degree programme
(art. 2.3)

The master programme comprises 120 ECTS.

The degree programme has the following specializations:
- Computational Science and Numerical Mathematics
- Systems, Control and Optimization

The requirements on the programme are the following:

A. Student colloquium (5 ECTS)

B. At least five modules from the following list of local modules, the modules in the specialization area are compulsory (at least 25 ECTS)

- **Specialization Algebra and Geometry:**
 - Caput Algebra and Geometry (annual)
 - Applied Geometry (annual)

- **Specialization Dynamical Systems and Analysis:**
 - Dynamical Systems and Chaos (annual)
 - Caput Dynamical Systems (biennial, 2010-2011)
 - Caput Mathematical Physics (biennial, 2011-2012)

- **Specialization Statistics and Probability:**
 - Statistical Genomics (biennial, 2011-2012)
 - Contemporary Statistics with Applications (biennial, 2010-2011)

- **Specialization Computational Science and Numerical Mathematics:**
 - Computational Fluid Dynamics (annual)
Computational Engineering (biennial, 2010-2011)
Boundary Layers (biennial, 2011-2012)
- **Specialization Systems, Control and Optimization:**
 Robust Control (annual)
 Introduction to Optimization (biennial, 2011-2012)
 Modeling and Identification (biennial, 2010-2011)

C. **At least three modules from the mastermath programme (at least 18 ECTS)**
From these modules at least two have to be in the specialization area and at least one has to be outside the specialization area.

D. **At least 10 ECTS of advanced modules from programmes of the RuG other than the master programmes mathematics and applied mathematics, like physics, applied physics, industrial engineering and management, chemistry, chemical engineering, astronomy, computing science and econometrics**
These modules have to be of at least third year bachelor level, and have to be relevant for the master applied mathematics (at the discretion of the exam committee).

E. **Free choice (at most 5 ECTS)**

F. **Final Research Project (50 ECTS)**
Research project in the specialization area. An internship of at least 15 ECTS is part of this project.

The local Mathematics and Applied Mathematics modules are

<table>
<thead>
<tr>
<th>module</th>
<th>offered</th>
<th>ECTS</th>
<th>assessment</th>
<th>practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caput Algebra and Geometry</td>
<td>Annual</td>
<td>5</td>
<td>Take home exam followed by an oral discussion of the problems</td>
<td></td>
</tr>
<tr>
<td>Applied Geometry</td>
<td>Annual</td>
<td>5</td>
<td>Homework, oral presentation, final assignment, report</td>
<td></td>
</tr>
<tr>
<td>Boundary Layers</td>
<td>Biennial</td>
<td>5</td>
<td>Oral examination</td>
<td>x</td>
</tr>
<tr>
<td>Caput Dynamical Systems</td>
<td>Biennial</td>
<td>5</td>
<td>Oral presentation, essay</td>
<td></td>
</tr>
<tr>
<td>Caput Mathematical Physics</td>
<td>Biennial</td>
<td>5</td>
<td>Oral presentation, essay</td>
<td></td>
</tr>
<tr>
<td>Computational Engineering</td>
<td>Biennial</td>
<td>5</td>
<td>Assignments, oral presentation</td>
<td></td>
</tr>
<tr>
<td>Computational Fluid Dynamics</td>
<td>Annual</td>
<td>5</td>
<td>Assignments, oral examination</td>
<td>x</td>
</tr>
<tr>
<td>Contemporary Statistics with</td>
<td>Biennial</td>
<td>5</td>
<td>Homework, final project, examination</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamical Systems and Chaos</td>
<td>Annual</td>
<td>5</td>
<td>Oral presentation, essay</td>
<td></td>
</tr>
<tr>
<td>Final Research Project</td>
<td>Annual</td>
<td>50</td>
<td>Assessment of performance, report, presentation</td>
<td></td>
</tr>
<tr>
<td>Introduction to Optimization</td>
<td>Biennial</td>
<td>5</td>
<td>Homework, oral examination</td>
<td></td>
</tr>
<tr>
<td>Modeling and Identification</td>
<td>Biennial</td>
<td>5</td>
<td>Take home exam followed by an oral discussion of the problems</td>
<td></td>
</tr>
<tr>
<td>Robust Control</td>
<td>Annual</td>
<td>5</td>
<td>Take home exam followed by an oral discussion of the problems</td>
<td></td>
</tr>
<tr>
<td>Statistical Genomics</td>
<td>Biennial</td>
<td>5</td>
<td>Homework, final project, examination</td>
<td></td>
</tr>
</tbody>
</table>
For information on the modules of the Mastermath programme see http://www.mastermath.nl.

For information on the modules of programmes of the RuG other than the master programmes mathematics and applied mathematics see the teaching and examination regulations of the corresponding programme.

Appendix D Optional modules
(art. 2.4)

See Appendix C.

Appendix E Entry requirements and compulsory order of examinations
(art. 3.2)

For students admitted to the programme there are no entry requirements for the individual modules.

Appendix F Admission to the degree programme and different specializations
(art. 4.1.1 + art. 4.2)

Holders of the following Bachelor’s degree from the University of Groningen are considered to have sufficient knowledge and skills and will be admitted to the Master’s degree programme in Applied Mathematics:
- BSc Mathematics
- BSc Applied Mathematics.

Appendix G Application deadlines for admission and deadlines for decision
(art. 4.5.1 + 4.5.3)

Deadlines for application are:
- June 1st 2010 for EU student
- April 15th 2010 for non-EU students

Deadlines for decision are:
- July 1st 2010 for EU student
- June 15th 2010 for non-EU students