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Abstract

We propose a new solution method for two-stage mixed-integer recourse models. In contrast
to existing approaches, we can handle general mixed-integer variables in both stages, and
thus, e.g., do not require that the first-stage variables are binary. Our solution method is
a Benders’ decomposition, in which we iteratively construct tighter approximations of the
expected second-stage cost function using a new family of optimality cuts. We derive these
optimality cuts by parametrically solving extended formulations of the second-stage prob-
lems using deterministic mixed-integer programming techniques. We establish convergence
by proving that the optimality cuts recover the convex envelope of the expected second-stage
cost function. Finally, we demonstrate the potential of our approach by conducting numerical
experiments on several investment planning and capacity expansion problems.

Keywords: stochastic programming, mixed-integer recourse, Benders’ decomposition

1 Introduction

Frequently, practical problems in, e.g., healthcare, energy, manufacturing, and logistics involve
both uncertainty and integer decision variables. A powerful modelling tool for such problems is
the class of two-stage mixed-integer recourse (MIR) models (Wallace and Ziemba 2005, Gassmann
and Ziemba 2013), but these models are notoriously hard to solve (Dyer and Stougie 2006). Typ-
ically, MIR models are solved using decomposition algorithms inspired by Benders’ decomposi-
tion (Benders 1962, Küçükyavuz and Sen 2017). However, existing decomposition approaches can
only handle special cases of MIR models, or they are not attractive from a computational point of
view. In this paper, we develop a tractable Benders’ decomposition algorithm which solves general
two-stage MIR models. In order to achieve this, we propose a new family of optimality cuts for MIR
models, i.e., supporting hyperplanes which describe the expected second-stage cost function. The
advantage of our so-called scaled cuts scaled cuts over existing optimality cuts is twofold. First,
we prove that scaled cuts can be used to recover the convex envelope of the expected second-stage
cost function in general, i.e., we do not require assumptions on the first- and second-stage decision
variables. Second, scaled cuts can be computed efficiently using state-of-the-art techniques for
deterministic mixed-integer programs (MIPs).

In a decomposition algorithm, optimality cuts are used to iteratively construct tighter outer
approximations of the expected second-stage cost function. A prime example is the L-shaped
method by Van Slyke and Wets (1969), which efficiently solves continuous recourse models. We,
however, focus on MIR models with mixed-integer second-stage decisions, which are much harder
to solve, since the expected mixed-integer second-stage cost function is non-convex, and thus the
rich toolbox of convex optimization cannot be used. It turns out that this difficulty is mitigated
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if the first-stage decision variables are pure binary. In fact, there is an array of decomposition
algorithms developed for this special case (Laporte and Louveaux 1993, Sherali and Fraticelli 2002,
Sen and Higle 2005, Sen and Sherali 2006, Ntaimo and Tanner 2008, Ntaimo 2010, 2013, Gade
et al. 2014, Angulo et al. 2016, Qi and Sen 2017, Zou et al. 2019). However, these algorithms
suffer from a positive duality gap when applied to MIR models with general mixed-integer first-
stage variables, since they use optimality cuts which are in general not tight, see Carøe and
Schultz (1999) and Sherali and Zhu (2006). A notable exception is the algorithm by Zhang and
Küçükyavuz (2014) for MIR models with pure integer first- and second-stage decision variables,
but their approach does not apply to general mixed-integer variables. Existing solution methods
for general MIR models are of limited practical use, since they branch on continuous first-stage
variables (Carøe and Schultz 1999, Ahmed et al. 2004, Sherali and Zhu 2006), or they introduce
auxiliary first-stage integer decision variables (Carøe and Tind 1998, Ahmed et al. 2020).

Similar as in traditional decomposition algorithms for MIR models, we iteratively improve
an outer approximation of the expected second-stage cost function. In contrast to traditional
approaches, however, we exploit the definition of the current outer approximation to update the
outer approximation from one iteration to the next. More precisely, we propose a recursive scheme
to update the outer approximation, in which we solve extended formulations of the second-stage
subproblems, whose definitions depend on the outer approximation in the current iteration. In this
way, we derive non-linear optimality cuts for the non-convex second-stage cost functions, which
we use to improve the current outer approximation. The problem is, of course, that non-linear
optimality cuts introduce non-convexities in the master problem, which presents computational
challenges. However, by scaling the non-linear optimality cuts, we obtain linear cuts for the
expected second-stage cost function, which we refer to as scaled cuts.

We are able to efficiently compute our scaled cuts, by exploiting ideas from robust optimization
and deterministic mixed-integer programming. Moreover, we prove that scaled cuts are able to
recover the convex hull of the expected second-stage cost function. In particular, we consider the
scaled cut closure of a given outer approximation, defined as the pointwise supremum of all scaled
cuts that we can compute using the current outer approximation, and we prove that the sequence
of outer approximations defined by recursively computing the scaled cut closure converges to the
convex envelope of the expected second-stage cost function. In addition, we prove that the scaled
cut closure of a convex polyhedral outer approximation remains convex polyhedral. In other words,
the scaled cut closure can be described using finitely many scaled cuts.

We use scaled cuts to develop a Benders’ decomposition algorithm which solves two-stage MIR
models with general mixed-integer variables in both stages. In this way, we close the duality gap
of traditional optimality cuts. Since scaled cuts are linear in the first-stage decision variables, our
Benders’ decomposition algorithm is computationally tractable. In particular, we do not introduce
auxiliary variables or require spatial branching of the first-stage feasible region for convergence. We
do use a novel cut-enhancement technique to speed up convergence of the scaled cuts. The idea is to
use the current outer approximation to identify solutions that cannot be optimal. Doing so allows
us to construct stronger scaled cuts that do not have to be valid for these suboptimal solutions. We
empirically test the quality of scaled cuts by conducting numerical experiments on an investment
planning problem (IPP) by Schultz et al. (1998) and the DCAP problem instances (Ahmed and
Garcia 2003) from SIPLIB (Ahmed et al. 2015), as well as variants of both problems. Our results
show that scaled cuts outperform traditional optimality cuts, in the sense that we are able to
significantly reduce the optimality gap at the root node of the Benders’ master problem. Indeed,
on the IPP instances and the DCAP instances, we respectively achieve an average 92% and 51%
reduction of the root node gap compared to traditional optimality cuts, and, moreover, we achieve
a zero root node gap on 18 out of 24 IPP instances.

Summarizing, our main contributions are the following.

• We derive a new family of optimality cuts for MIR models, the scaled cuts, and we propose
efficient strategies to compute these cuts.

• Using these scaled cuts, we develop a tractable Benders’ decomposition algorithm which
solves MIR models with general mixed-integer variables in both stages.
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• We prove that scaled cuts can be used to recover the convex envelope of the expected second-
stage cost function.

• We propose an optimality cut-enhancement technique, which we use to speed up convergence
of scaled cuts and to reduce the duality gap of traditional cuts.

• We conduct numerical experiments to test our scaled cuts, and we show that our (enhanced)
scaled cuts can be used to close or significantly reduce the duality gap of traditional opti-
mality cuts.

The remainder of this paper is organized as follows. In Section 2, we formally introduce MIR
models and review solution approaches. Next, we introduce scaled cuts and develop our Benders’
decomposition algorithm in Section 3, and we describe several strategies to compute scaled cuts
in Section 4. Section 5 concerns the proof of convergence of the scaled cuts. We report on our
numerical experiments in Section 6, and we conclude in Section 7.

Notation: Throughout, conv(A) denotes the convex hull of a set A. For a function f : A 7→
R ∪ {∞}, we define its convex envelope co(f) : conv(A)7→ R and its closed convex envelope
co(f) : conv(A) 7→ R as the pointwise supremum of all convex, respectively affine, functions
majorized by f . In addition, we define dom(f) = {x ∈ A : f(x) <∞}. Finally, for any B ⊆ A, we
denote by epiB(f) the epi-graph of f restricted to B, i.e., epiB(f) := {(x, θ) ∈ B ×R : θ ≥ f(x)},
and we write epi(f) = epiA(f).

2 Problem Description and Literature Review

2.1 Problem Description

Two-stage recourse models explicitly model parameter uncertainty by a random vector ω whose
realization is unknown when a first-stage decision x has to be made. In contrast, the second-
stage decision vector y is allowed to depend on the realization of ω, referred to as a scenario.
We assume that the probability distribution of ω is known, and we denote its support by Ω. A
possible interpretation is that the first-stage decision corresponds to a long-term, strategic decision,
concerning, e.g., facility location or investment planning, whereas the second-stage decisions are
short-term in nature, corresponding to, e.g., routing adjustments or reordering decisions. We
consider two-stage recourse models of the form

η∗ := min
x
{c>x+ Eω[vω(x)] : Ax = b, x ∈ X}, (1)

where the second-stage costs vω(x) are defined as

vω(x) := min
y
{q>ω y : Wωy = hω − Tωx, y ∈ Y}, x ∈ X, ω ∈ Ω, (2)

and vω(x) = ∞ if x /∈ X, where X := {x ∈ X : Ax = b}. Note that we consider randomness
in all data elements of the second-stage problem. Furthermore, the sets X and Y may impose
integer restrictions on the first- and second-stage decision variables, i.e., X = Zp1+ × Rn1−p1

+ and

Y = Zp2+ × Rn2−p2
+ . The resulting model is called a two-stage mixed-integer recourse model.

Throughout, we make the following assumptions.

(A1) For every ω ∈ Ω and x ∈ X, we have −∞ < vω(x) <∞.

(A2) The support Ω of ω is finite.

(A3) The first-stage feasible region X is non-empty and bounded.

(A4) The components of A, b, and Wω, ω ∈ Ω are rational, and for every ω′ ∈ Ω, the probability
P(ω = ω′) is rational.

3



Assumption (A1) is known as relatively complete and sufficiently expensive recourse, and together
with (A2) implies that Eω[vω(x)] is finite for every x ∈ X. Furthermore, Assumption (A2) ex-
cludes the case where ω follows a continuous distribution. Nevertheless, continuous distributions
are typically approximated by finite discrete distributions, e.g., using sample average approxi-
mation (Kleywegt et al. 2002). Finally, the assumptions in (A3) and (A4) guarantee that X is
compact and X̄ := conv(X) is a polytope (Del Pia and Weismantel 2016, Theorem 1). In addition,
by (A4) the second-stage cost functions vω, ω ∈ Ω are lower semi-continuous (lsc) on X̄ (Schultz
1995), and thus, using that X̄ is compact, vω is bounded from below on X̄ (Anger 1990, Theorem
3.7).

2.2 Benders’ Decomposition for MIR Models

Benders’ decomposition (Benders 1962) is widely used to solve MIR models, since it is able to
exploit their underlying two-stage structure. A Benders’ decomposition algorithm maintains an
outer approximation Q̂out : X̄ 7→ R of the expected second-stage cost function Q(x) := Eω[vω(x)],
i.e., Q̂out(x) ≤ Q(x) ∀x ∈ X. The corresponding relaxation of (1) defined as

min
x
{c>x+ Q̂out(x) : x ∈ X} (MP)

is referred to as the master problem, and an optimal solution x̄ of (MP) is known as the current
solution. Typically, Q̂out is convex polyhedral, and thus (MP) can be solved efficiently. Note that
if Q̂out(x̄) = Q(x̄), then x̄ is also optimal in the original problem (1). If, however, Q̂out(x̄) < Q(x̄),
then the outer approximation is strengthened using an optimality cut for Q:

Q(x) ≥ α− β>x ∀x ∈ X,

which is such that α−β>x̄ > Q̂out(x̄), i.e., the outer approximation is strictly improved at x̄. Next,
the master problem (MP) is resolved using the strengthened outer approximation. We summarize
Benders’ decomposition for MIR models in Algorithm 1. Throughout, we maintain a lower- and
upper bound LB and UB on η∗, i.e., LB ≤ η∗ ≤ UB.

Algorithm 1 Benders’ Decomposition for MIR Models.

1: Initialization
2: Q̂out ≡ L, where Q(x) ≥ L ∀x ∈ X.
3: LB ← −∞, UB ←∞.

4: Iteration step

5: Solve (MP), denote optimal solution by x̄ (current solution).
6: LB ← c>x̄+ Q̂out(x̄).
7: UB ← min

{
c>x̄+Q(x̄), UB

}
8: Compute optimality cut Q(x) ≥ α− β>x ∀x ∈ X.

9: Stopping criterion

10: if UB − LB < ε then stop: return x̄
11: else
12: Add optimality cut to (MP):

Q̂out(x)← max
{
Q̂out(x), α− β>x

}
, x ∈ X.

13: Go to line 5.
14: end if

Typically, optimality cuts are tight for Q at the current solution x̄, i.e., α−β>x̄ = Q(x̄), which
ensures that the outer approximation strictly improves at x̄, and as a result, we find a different
solution in the next iteration. In some cases, however, the optimality cuts are not tight at x̄, see,
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e.g., Zou et al. (2019), and thus the algorithm may stall. Therefore, in a practical implementation
of Algorithm 1, we stop in these cases if the outer approximation improves by less than ε at x̄,
i.e., if Q̂out(x̄) > α− β>x̄− ε, and on termination, we return the best incumbent solution that we
encountered during the algorithm.

An important observation is that Algorithm 1 allows for decomposition by scenario: optimality
cuts for Q can be computed by aggregating optimality cuts for the second-stage cost functions vω,
ω ∈ Ω. For example, the L-shaped method by Van Slyke and Wets (1969), which solves continuous
recourse models, uses optimality cuts of the form

vω(x) ≥ αω − β>ω x ∀x ∈ X, ω ∈ Ω, (3)

by exploiting linear programming (LP) duality of the second-stage subproblems. Taking expec-
tations then yields the optimality cut Q(x) ≥ Eωαω − Eωβ>ω x ∀x ∈ X. In fact, Benders’ decom-
position algorithms that generalize the L-shaped method to more general classes of MIR models
typically use the same strategy to compute optimality cuts, i.e., cuts of the form (3) are aggre-
gated to derive optimality cuts for Q. We review such generalizations in Section 2.2.1. However,
if optimality cuts are computed by aggregating cuts of the form (3), then the resulting Benders’
decomposition algorithm is not able to solve MIR models with general mixed-integer variables in
both stages, as we explain in Section 3. Therefore, we propose a new family of optimality cuts
which is suited for general MIR models in Section 3.1, and we use it to develop a modified Benders’
decomposition in Section 3.2.

2.2.1 Generalizations to Mixed-Integer Recourse. The L-shaped method exploits that
the expected second-stage cost function Q is convex polyhedral if the recourse is continuous, i.e.,
if Y = Rn2

+ . In contrast, if Y is a mixed-integer set, then Q is in general not convex, or even
continuous, see, e.g., Schultz (1995). Therefore, the L-shaped method does not readily generalize
to broader classes of MIR models. However, Laporte and Louveaux (1993) show that if the first-
stage decisions are binary, i.e., if X = Bn1 , then there exists a finite family of optimality cuts
which describe Q. In other words, there exists a convex polyhedral outer approximation Q̂out of Q
defined on X̄ such that Q̂out(x) = Q(x) ∀x ∈ X. They exploit this result to develop the integer
L-shaped algorithm for MIR models with X = Bn1 .

In fact, there exists a wide range of algorithms generalizing the L-shaped method to this spe-
cial case, that typically use techniques for deterministic MIPs. For example, Sherali and Fraticelli
(2002), Sen and Higle (2005), Ntaimo and Tanner (2008), Ntaimo (2010, 2013), Gade et al. (2014),
and Qi and Sen (2017) use cutting planes to derive strong continuous relaxations of the second-
stage subproblems. These parametric cutting planes depend linearly on the first-stage decision
vector x, and thus they can be re-used in subsequent iterations. Moreover, since the resulting
relaxation of the second-stage problem is continuous, LP-duality can be used to derive optimality
cuts for the second-stage cost functions. In general, convergence of these methods is only guar-
anteed if X = Bn1 , since this condition ensures that the continuous relaxations defined by the
parametric cutting planes are tight. However, Zhang and Küçükyavuz (2014) manage to general-
ize the approach based on Gomory cuts by Gade et al. (2014) to pure integer MIR models, i.e.,
X = Zn1

+ and Y = Zn2
+ , by identifying feasible basis matrices of the extended formulation, and Kim

and Mehrotra (2015) use mixed-integer rounding cuts to derive tight continuous relaxations for a
nurse scheduling problem with general mixed-integer decision variables and a totally unimodular
recourse matrix.

In another direction, Sen and Sherali (2006) use branch-and-bound for MIPs to obtain a dis-
junctive characterization of the second-stage cost functions vω, ω ∈ Ω. They then use techniques
from disjunctive programming to construct a convex relaxation of vω, and show that their ap-
proximation is exact if x is an extreme point of X̄. As a consequence, the resulting D2-BAC
algorithm solves two-stage MIR models with X = Bn1 . A different approach is taken by Zou
et al. (2019), who develop the SDDiP algorithm for multi-stage MIR models with binary state
variables. They construct tight lower-bounding approximation of the second-stage cost functions
using Lagrangian cuts, which are computed by solving Lagrangian relaxations of specific reformu-
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lations of the second-stage subproblems. However, Lagrangian cuts are not tight in case of general
mixed-integer state variables.

In fact, there does not exist a tractable Benders’ decomposition algorithm for two-stage MIR
models with general mixed-integer variables in both stages. We provide this missing link by
proposing scaled cuts for MIR models. Indeed, our Benders’ decomposition algorithm generalizes
the algorithms by Sherali and Fraticelli (2002), Sen and Higle (2005), Sen and Sherali (2006),
Ntaimo and Tanner (2008), Ntaimo (2010, 2013), Gade et al. (2014), Zhang and Küçükyavuz
(2014), and Qi and Sen (2017) to general MIR models.

The advantage of our method compared to existing solution methods for general MIR models is
that we do not use spatial branching of the first-stage feasible region or auxiliary integer variables
for convergence. In contrast, the global branch-and-bound procedure by Ahmed et al. (2004),
the dual decomposition approach by Carøe and Schultz (1999), and the decomposition-based
branch-and-bound algorithm by Sherali and Zhu (2006) use spatial branching for convergence,
and Carøe and Tind (1998) use auxiliary integer decision variables to capture non-convex terms
in the master problem, exploiting general duality for MIPs. Similarly, the stochastic Lipschitz
dynamic programming algorithm by Ahmed et al. (2020) introduces binary variables to include
non-linear optimality cuts in the master problem.

3 Benders’ Decomposition for General MIR Models

In this section, we introduce our family of linear optimality cuts for the expected second-stage cost
function Q. Using these so-called scaled cuts, we are able to recover the convex envelope co(Q)
of Q, so that we can solve the MIR model in (1) by replacing Q(x) by co(Q)(x) and the feasible
region X by its convex hull X̄. That is, the resulting convex relaxation of the original problem
in (1), defined as

η̂ := min
x
{c>x+ co(Q)(x) : x ∈ X̄}, (4)

satisfies η̂ = η∗, and moreover, if x∗ is optimal in the original problem (1), then x∗ is also optimal
in (4), see, e.g., Proposition 2.4 in Tardella (2004).

In contrast, traditional Benders’ decomposition algorithms for MIR models, see, e.g., Sherali
and Fraticelli (2002), Sen and Higle (2005), and Gade et al. (2014), use optimality cuts which, in
general, do not yield co(Q). More precisely, if we compute optimality cuts for Q by aggregating
linear cuts vω(x) ≥ αω − β>ω x ∀x ∈ X for the second-stage cost functions, then we obtain at
most Eω[co(vω)]. However, this expected value of the convex envelopes of the second-stage cost
functions vω is not the same as the convex envelope of the expected second-stage cost function Q.
In fact, in general Eω[co(vω)(x)] ≤ co(Q)(x), resulting in a duality gap, see also Carøe and Schultz
(1999) and Boland et al. (2018). This gap is zero if X = Bn1 (Zou et al. 2019, Theorem 1), but
if X is a general mixed-integer set, then the duality gap may be positive, see Example 1.

Remark 1. In general, any family of linear optimality cuts for Q yields at most its closed convex
envelope co(Q). However, since Q is lsc and X is compact, we have that co(Q) = co(Q) (Falk
1969, Theorem 2.2). Similarly, co(vω) = co(vω) for every ω ∈ Ω.

Example 1. Consider the expected second-stage cost function Q(x) = Eω[vω(x)], x ∈ [0, 4],
where

vω(x) = min
y
{2y : y ≥ ω − x, y ∈ Z+}, x ∈ [0, 4],

and ω is discretely distributed with mass points ω1 = 2.5 and ω2 = 3, both with probability 1/2.
The function Q is known as a simple integer recourse (SIR) function, see, e.g., Louveaux and
van der Vlerk (1993). For a given ω and x, the optimal second-stage decision y is the smallest
non-negative integer such that y ≥ ω − x, denoted by dω − xe+, and thus vω(x) = 2dω − xe+.
Furthermore, straightforward computations yield co(vω1

)(x) = 2 max{0, ω1 − x, 3 − 2x} and
co(vω2)(x) = 2 max{0, ω2 − x}.
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Figure 1 shows vω1 and vω2 and their convex envelopes as functions of x. Observe that the
difference between co(vω)(x) and vω(x) in general not equal to zero, and that the values of x for
which co(vω)(x) = vω(x) are not the same for ω = ω1 and ω = ω2. This results in a positive
duality gap between co(Q)(x) and Eω[co(vω)(x)], see Figure 2. For example, at x = 1, we have
co(Q)(1) = Q(1) = 4, but Eω[co(vω)(1)] = 3.5, i.e., the duality gap at x = 1 is equal to 1/2. ♦

x1 2 3 4

2

4

6 vω1
(x)

co(vω1
)(x)

(a)

x1 2 3 4

2

4

6 vω2
(x)

co(vω2
)(x)

(b)

Figure 1: The Second-Stage Cost Functions vω1
and vω2

of Example 1 and Their Convex Envelopes.

x1 2 3 4

2

4

6 Q(x) = Eω[vω(x)]

co(Q)(x)

Eωco(vω)(x)

Figure 2: The Duality Gap for MIR Models: the difference between co(Q)(x) and Eωco(vω)(x) in
Example 1 is in general non-negative, and equal to 1/2 if, e.g., x = 1.

The duality gap illustrated in Example 1 may be closed using scaled cuts, which we derive in
Section 3.1. Indeed, we show in Theorem 1 that they can be used to recover co(Q). In Section 3.2,
we use scaled cuts to develop a Benders’ decomposition algorithm which solves MIR models with
general mixed-integer variables.

3.1 Scaled Cuts for MIR Models

We approximate the expected second-stage cost function Q using linear optimality cuts, in order
to ensure that the master problem is computationally tractable. Evidently, we may obtain such
cuts by aggregating linear optimality cuts for the second-stage cost functions of the form vω(x) ≥
αω − β>ω x ∀x ∈ X, but Example 1 illustrates that the resulting cut

Q(x) ≥ Eωαω − Eωβ>ω x ∀x ∈ X, (5)

is in general not tight. Instead, we may use non-linear cuts to construct tight non-convex approx-
imations of vω and Q, but the resulting master problem is highly non-convex, and thus solving it
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is in general not realistic from a computational point of view. That is why we propose to use non-
linear optimality cuts for vω, ω ∈ Ω, and we transform these cuts into linear cuts for Q, thereby
maintaining a tractable master problem. The resulting scaled cuts generally yield stronger outer
approximations than cuts of the form (5), and, in fact, they may be used to close the duality gap
illustrated in Example 1.

More precisely, we consider cuts for vω, ω ∈ Ω, of the form

vω(x) ≥ αω − β>ω x− τωφ(x) ∀x ∈ X, (6)

where φ : X̄ 7→ R is a convex polyhedral function, referred to as a cut-generating function, and
τω ≥ 0. For example, Ahmed et al. (2020) derive cuts of the form (6) using φ(x) = ||x − x̄||,
where x̄ ∈ X̄ and || · || is a norm on Rn1 . We, however, propose to use φ = Q̂out, where Q̂out is
a convex polyhedral outer approximation of Q, i.e., Q̂out(x) ≤ Q(x) ∀x ∈ X. The advantage of
using φ = Q̂out becomes clear if we take expectations on both sides of (6), which yields

Q(x) ≥ Eωαω − Eωβ>ω x− Eωτωφ(x) ∀x ∈ X, (7)

and if we use that φ(x) ≤ Q(x) to obtain the following cut,

Q(x) ≥ Q(x) + Eωτωφ(x)

1 + Eωτω
≥ Eωαω − Eωβ>ω x

1 + Eωτω
∀x ∈ X.

In particular, this so-called scaled cut is linear in the first-stage decision vector x, and is therefore
suitable for efficient computations, whereas the cut in (7) introduces non-linear, non-convex terms
in the master problem, which is undesirable from a computational point of view.

We formally introduce scaled cuts in Definition 1, and in Example 2 we illustrate how to
compute a scaled cut for the SIR model of Example 1. For technical reasons, we assume throughout
that epi(φ) is a rational polyhedron; if φ satisfies this condition, we say that φ is a rational convex
polyhedral function.

Definition 1 (scaled cuts). Let φ : X̄ 7→ R be a rational convex polyhedral function such that
φ(x) ≤ Q(x) ∀x ∈ X, and denote by Πω(φ) the set of cut coefficients which define optimality cuts
of the form (6), i.e.,

Πω(φ) := {(α, β, τ) : vω(x) ≥ α− β>x− τφ(x) ∀x ∈ X, τ ≥ 0}.

Then, for any (αω, βω, τω) ∈ Πω(φ), ω ∈ Ω, the optimality cut

Q(x) ≥ Eωαω − Eωβ>ω x
1 + Eωτω

, ∀x ∈ X (8)

is referred to as a scaled cut.

Example 2 (Example 1 continued). Consider the SIR function Q of Example 1. Note that
Q(x) ≥ 0 and Q(x) ≥ 4 − 2x for every x ∈ [0, 4], and thus an outer approximation of Q is given
by Q̂out(x) = max{0, 4 − 2x}, x ∈ [0, 4]. Therefore, we can use φ = Q̂out as a cut-generating
function to derive a scaled cut for Q at, e.g., x̄ = 2. To this end, we compute cuts of the form
vω(x) ≥ α− βx− τφ(x) ∀x ∈ [0, 4], ω ∈ {ω1, ω2}, which are tight at x̄. In particular, it is easy to
verify that the cuts vω1(x) ≥ 10− 4x− 2φ(x) ∀x ∈ [0, 4], and vω2(x) ≥ 6− 2x ∀x ∈ [0, 4] are tight
at x̄, see Figure 3.

Since the cuts for vω1
and vω2

are tight at x̄, the resulting unscaled cut

Q(x) ≥ 1/2(10− 4x− 2φ(x)) + 1/2(6− 2x) = 8− 3x− φ(x) ∀x ∈ [0, 4],

is also tight at x̄ = 2, see Figure 4a. We show the corresponding scaled cut Q(x) ≥ (8 −
3x)/2 ∀x ∈ [0, 4] in Figure 4b. Figures 4a and 4b reveal the following geometric interpretation
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x1 2 3 4

2

4

6 vω1
(x)

10− 4x− 2φ(x)

5− 2x

(a)

x1 2 3 4

2

4

6 vω2
(x)

6− 2x

(b)

Figure 3: Illustration of the (Non-Linear) Cuts for the Second-Stage Cost Functions Derived in
Example 2. The left figure displays the the second-stage cost function vω(x) = 2d2.5 − xe+, and
the non-linear cut vω1

(x) ≥ 10− 4x− 2φ(x) ∀x ∈ [0, 4], where φ(x) = max{0, 4− 2x}, x ∈ [0, 4].
Observe that this cut is tight at, e.g., x̄ = 2, and strictly improves the best possible linear
cut vω1(x) ≥ 5 − 2x ∀x ∈ [0, 4] at x̄. The right figure displays the second-stage cost function
vω2(x) = 2d3− xe+ and the linear cut vω2(x) ≥ 6− 2x, which is tight at x̄.

of scaled cuts: they pass through those points where the cut-generating function φ(x) and the
unscaled cut α− β>x− τφ(x) intersect. Indeed, if x is such that φ(x) = α− β>x− τφ(x), then

α− β>x
1 + τ

= φ(x) = α− β>x− τφ(x). ♦

x1 2 3 4

2

4

6 Q(x)

φ(x)

unscaled cut

(a) unscaled cut

x1 2 3 4

2

4

6 Q(x)

φ(x)

scaled cut

(b) scaled cut

Figure 4: The left figure shows the unscaled cut Q(x) ≥ 8 − 3x − φ(x) ∀x ∈ [0, 4] of Example 2,
where φ(x) = max{0, 4 − 2x}, x ∈ [0, 4]. The right figure shows the corresponding scaled cut
Q(x) ≥ (8− 3x)/2 ∀x ∈ [0, 4].

In Example 2, the non-linear cuts for the non-convex second-stage costs functions vω are tight
at x̄. In Lemma 1, we derive general sufficient conditions for the cut-generating function φ so that
such a tight non-linear cut of the form vω(x) ≥ α− β>x− τφ(x) exists.

Lemma 1. Let x̄ ∈ X be given, and let φ : X̄ 7→ R be a rational convex polyhedral function. If
(x̄, φ(x̄)) is an extreme point of conv(epiX(φ)), then there exist α, β, and τ ≥ 0 such that the
optimality cut vω(x) ≥ α− β>x− τφ(x) ∀x ∈ X is tight at x̄, i.e., vω(x̄) = α− β>x̄− τφ(x̄).
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Proof. Proof. See appendix.

An important implication of Lemma 1 is that if φ = Q̂out, where Q̂out is an outer approximation
of Q, then there exists a scaled cut which improves Q̂out at x̄, if (x̄, φ(x̄)) is an extreme point of
conv(epiX(φ)) and Q̂out(x̄) < Q(x̄). Indeed, by Lemma 1, there exist cut coefficients (αω, βω, τω) ∈
Πω(φ), ω ∈ Ω such that the corresponding cut for vω is tight at x̄, i.e., vω(x̄) = αω−β>ω x̄−τωφ(x̄),
and thus the scaled cut in (8) improves Q̂out in x̄, since

Eωαω − Eωβ>ω x̄
1 + Eωτω

=
Eω[vω(x̄) + τωφ(x̄)]

1 + Eωτω
=
Q(x̄) + Eωτωφ(x̄)

1 + Eωτω
> φ(x̄) = Q̂out(x̄),

where the inequality follows from Q(x̄) > Q̂out(x̄) = φ(x̄).
This suggests that we can use scaled cuts to iteratively improve outer approximations of Q.

We formalize this intuition by showing that we can recover co(Q) via scaled cuts. In particular,
we define the scaled cut closure of a cut-generating function φ as the pointwise supremum of
all scaled cuts corresponding to φ, see Definition 2, and we show that the sequence of outer
approximations obtained by recursively computing the scaled cut closure converges uniformly to
co(Q), see Theorem 1.

Definition 2 (Scaled cut closure). Let φ : X̄ 7→ R be a rational convex polyhedral function.
Then, the scaled cut closure SCC(φ) : X̄ 7→ R of φ is defined as

SCC(φ)(x) = sup
αω,βω,τω

{
Eωαω − Eωβ>ω x

1 + Eωτω
: (αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω

}
, x ∈ X̄.

The definition of the scaled cut closure implies that SCC(φ) can be described using infinitely
many scaled cuts. It turns out, however, that SCC(φ) is convex polyhedral, see Proposition 1,
i.e., SCC(φ) is the pointwise supremum of finitely many optimality cuts. Furthermore, if φ ≤ Q,
then SCC(φ) ≤ Q, since the scaled cuts of Definition 1 are valid if φ ≤ Q. However, the scaled cut
closure of φ is defined for an arbitrary convex polyhedral function φ, i.e., we do not require that
φ ≤ Q. This is because we may compute scaled cuts using an inexact outer approximation of Q,
obtained, e.g., by solving convex approximations of MIR models by Romeijnders et al. (2016) and
van der Laan and Romeijnders (2020). In fact, we prove that for an arbitrary convex polyhedral
approximation φ0 of Q, scaled cuts are able to recover the convex envelope of max{φ0, Q}.

Proposition 1. Let φ : X̄ 7→ R be a rational convex polyhedral function. Then, SCC(φ) is a
rational convex polyhedral function.

Proof. Proof. See appendix.

Theorem 1. Let φ0 : X̄ 7→ R be a rational convex polyhedral function. Recursively define the
sequence {φk}k≥0 as φk+1 = SCC(φk), k ≥ 0. Then, φk converges uniformly to co(max{φ0, Q}).
In particular, if φ0(x) ≤ Q(x) ∀x ∈ X, then φk → co(Q).

Proof. Proof. The proof is postponed to Section 5.

Theorem 1 implies that if φ0 is defined as, e.g., a trivial lower bound of Q, or the LP-relaxation
of Q, obtained by relaxing the integer restrictions on the second-stage decision variables y, then
we can recover co(Q) using scaled cuts, thereby solving the MIR model in (1). If, however, φ0

is an inexact outer approximation obtained by solving a convex approximation of (1), then we
may use scaled cuts to improve the quality of the resulting solution. Of course, in practice, a
complete description of co(Q) is typically not required to solve the MIR model in (1). Therefore,
we use scaled cuts to develop an efficient Benders’ decomposition algorithm for MIR models in
Section 3.2.
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3.2 Benders’ Decomposition with Scaled Cuts

We propose a Benders’ decomposition algorithm in which we iteratively construct tighter outer
approximations of Q using scaled cuts. That is, we maintain an outer approximation Q̂out of Q,
and we solve the master problem

η∗ = min
x
{c>x+ Q̂out(x) : x ∈ X}, (MP)

to obtain the current solution x̄. If Q̂out(x̄) < Q(x̄), then we compute a scaled cut which improves
Q̂out at x̄ using Q̂out as a cut-generating function, i.e., we take φ = Q̂out. Recall from Lemma 1
that such a scaled cut exists if (MP) returns an optimal solution x̄ such that (x, φ(x̄)) is an extreme
point of conv(epiX(φ)). In particular, then there exist cuts vω(x) ≥ αω − β>ω x − τωφ(x) ∀x ∈ X,
ω ∈ Ω, which are tight at x̄, and thus the unscaled cut Q(x) ≥ Eωαω −Eωβ>ω x−Eωτωφ(x) is also
tight at x̄. In general, however, the resulting scaled cut

Q(x) ≥ Eωαω − Eωβ>ω x
1 + Eωτω

∀x ∈ X (9)

is not tight at x̄, unless Eωτω = 0, since otherwise

Eωαω − Eωβ>ω x
1 + Eωτω

=
Eω[vω(x̄) + τωφ(x̄)]

1 + Eωτω
=
Q(x̄) + Eωτωφ(x̄)

1 + Eωτω
< Q(x̄),

where the inequality is due to Eωτω > 0 and φ(x̄) = Q̂out(x̄) < Q(x̄). In fact, the larger the scaling
factor Eωτω, the less the scaled cut in (9) improves the outer approximation at x̄. As a result, the
scaled cut obtained by computing tight non-linear cuts for vω is not necessarily the dominating
scaled cut, i.e., the scaled cut which yields the most improvement of Q̂out at x̄.

In order to compute the dominating scaled cut, we solve

ρ∗ := sup
αω,βω,τω

{
Eωαω − Eωβ>ω x̄

1 + Eωτω
: (αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω

}
. (10)

The optimization problem in (10) presents a significant challenge, since it features a non-linear
objective function. A natural way to a address this challenge is to linearise the objective function
by introducing a penalty parameter ρ, penalizing large vales of 1 + Eωτω, yielding

C(ρ) := sup
αω,βω,τω

{
Eωαω − Eωβ>ω x̄− ρ(1 + Eωτω) : (αω, βω, τω) ∈ Πω(φ), ω ∈ Ω

}
. (11)

For arbitrary values of ρ, this linearised optimization problem merely represents an approximation
of the one in (10). However, it turns out that if C(ρ) = 0, then ρ = ρ∗, i.e., ρ equals the optimal
objective value in (11), and the optimal solutions of the optimization problems in (10) and (11) are
the same. Indeed, if C(ρ) = 0, then Eωαω−Eωβ>ω x̄−ρ(1+Eωτω) ≤ 0 for all (αω, βω, τω) ∈ Πω(φ),
ω ∈ Ω, and thus

Eωαω − Eωβ>ω x̄
1 + Eωτω

≤ ρ ∀(αω, βω, τω) ∈ Πω(φ), ω ∈ Ω. (12)

Moreover, if the supremum in (11) is attained, then the optimal solution (αω, βω, τω) ∈ Πω(φ),
ω ∈ Ω, satisfies the inequality in (12) with equality, and thus ρ = ρ∗.

Instead of solving (10), we thus solve C(ρ) = 0 for ρ. Before explaining how we do so, we first
introduce several properties of C(·) in Lemma 2 that we will exploit. In particular, we will use
that C(·) is strictly decreasing, continuous and convex.

Lemma 2. Let x̄ ∈ X̄ be given and let φ : X̄ 7→ R be a rational convex polyhedral function. Then,

(i) the value function C(·) defined in (11) is continuous, convex, and strictly decreasing on
dom(C) = {ρ : C(ρ) <∞},

11



(ii) the supremum in (11) is attained if ρ ∈ dom(C),

(iii) for ρ̄ ∈ dom(C), a subgradient of C(·) at ρ̄ is given by −(1 + Eωτω), where τω, ω ∈ Ω,
correspond to an optimal solution of the problem in (11) with ρ = ρ̄, and

(iv) if x̄ ∈ X, then dom(C) = [φ(x̄),∞).

Proof. Proof. See appendix.

Lemma 2 shows that if the penalty parameter ρ is not large enough, i.e., if x̄ ∈ X and ρ < φ(x̄),
then we have C(ρ) = ∞. Typically, for ρ = φ(x̄), we have C(ρ) > 0 and then C(·) continuously
decreases until C(ρ) = 0 for ρ = ρ∗. There are, however, exceptions for which C(ρ) < 0 for all
ρ ∈ dom(C), leading to the following characterization of ρ∗ in Lemma 3 that holds in general.

Lemma 3. Let x̄ ∈ X̄ be given and let φ : X̄ 7→ R be a rational convex polyhedral function. Then,
the optimal value ρ∗ of the problem in (10) satisfies

ρ∗ = min
ρ
{ρ : C(ρ) ≤ 0}. (13)

In particular, if x̄ ∈ X and ρ∗ > φ(x̄), then ρ∗ is the unique solution of C(ρ) = 0.

Proof. Proof. See appendix.

To compute the dominating scaled cut parameters for a given x̄ ∈ X in our Benders’ decom-
position, we use an iterative approach to obtain ρ∗. First we compute C(ρ0) for ρ0 = φ(x̄). If
C(ρ0) ≤ 0, then we can stop: ρ∗ = ρ0. Otherwise, we conclude that ρ0 is a lower bound for ρ∗, i.e.,
ρ0 < ρ∗, since C(·) is strictly decreasing. However, since C(·) is convex we can immediately derive
a better lower bound for ρ∗ without any additional computations. This lower bound, denoted ρ1,
is the value of ρ for which the right-hand side of the subgradient inequality

C(ρ) ≥ C(ρ0)− (1 + Eωτω)(ρ− ρ0) ∀ρ ∈ R.

equals 0. That is, ρ1 = ρ0 + C(ρ0)/(1 + Eωτω). Note that ρ1 > ρ0, since C(ρ0) > 0 and
1 + Eωτω > 0.

In general, we iteratively compute ρk, k ≥ 0, using the updating rule

ρk+1 = ρk +
C(ρk)

1 + Eωτω
, (14)

where τω, ω ∈ Ω, correspond to an optimal solution of the problem in (11) with ρ = ρk. It
follows from convexity of C(·) that the resulting sequence {ρk}k≥0 is non-decreasing. To see this,
substitute ρ = ρk+1 in the subgradient inequality

C(ρ) ≥ C(ρk)− (1 + Eωτω)(ρ− ρk)

to obtain C(ρk+1) ≥ 0, and use the updating rule in (14). An additional consequence of C(ρk+1) ≥
0 is that {ρk}k≥0 is bounded from above by ρ∗. In fact, Lemma 4 establishes that ρk → ρ∗. To
prove Lemma 4, we need the technical assumption that C(ρ0) > 0; recall that if C(ρ0) ≤ 0, then
we are done, since then ρ∗ = ρ0.

Lemma 4. Let x̄ ∈ X be given and let φ : X̄ 7→ R be a rational convex polyhedral function. Let
ρ0 = φ(x̄), and assume that C(ρ0) > 0. Recursively define ρk+1 = ρk + C(ρk)/(1 + Eωτω), k ≥ 0,
where τω, ω ∈ Ω, correspond to an optimal solution of the problem in (11) with ρ = ρk. Then, the
resulting sequence {ρk}k≥0 is such that ρk → ρ∗, C(ρk)→ 0, and if C(ρk) < δ, then ρk ≥ ρ∗ − δ.

Proof. Proof. See appendix.
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Based on Lemma 4, we propose to solve (10) using a fixed point iteration algorithm, in which
we iteratively construct the sequence {ρk}k≥0, and we stop if C(ρk) < δ. Lemma 4 ensures that
this algorithm is finitely convergent, and that on termination, ρk ≥ ρ∗ − δ. Moreover, we note
that C(ρ) can be computed efficiently using the expression C(ρ) = Eω[Cω(ρ)], where

Cω(ρ) := sup
α,β,τ
{α− β>x̄− ρ(1 + τ) : (α, β, τ) ∈ Πω(φ)}. (15)

That is, we exploit that the problem in (11) decomposes by scenario. Furthermore, we can
efficiently parallelize our fixed point iteration algorithm by computing the quantities Cω(ρ), ω ∈ Ω,
in parallel. Finally, in Section 4, we describe several strategies for solving (15), which exploit that
Πω(φ) is a convex polyhedral set.

4 Computation of Scaled Cuts

In this section, we describe how to efficiently solve the problem in (15). This enables us to
compute the dominating scaled cut at the current solution x̄ via the fixed point iteration algorithm
in Section 3.2. To solve (15), we exploit that Πω(φ) is polyhedral, see Lemma 5. To derive this
result, we recall that Πω(φ) is the set of cut coefficients (α, β, τ) which define non-linear optimality
cuts for the second-stage cost functions vω of the form

vω(x) ≥ α− β>x− τφ(x) ∀x ∈ X. (16)

We analyse cuts of the form (16) by exploiting that vω is a mixed-integer programming value
function. In particular, note that for any s ∈ R, we have vω(x) ≥ s if and only if q>ω y ≥ s
for every y ∈ Y such that Wωy = hω − Tωx. If we assume, for the purpose of exposition, that
φ ≡ 0, then by similar reasoning, (α, β, τ) satisfies (16) if and only if q>ω y ≥ α − β>x for every
(x, y) ∈ Sω := {(x, y) ∈ X × Y : Wωy + Tωx = hω}. In fact, we only need that q>ω y

i ≥ α− β>xi
for each of the finitely many extreme points (xi, yi), i = 1, . . . , k, of conv(Sω). To see this, note
that every (x, y) ∈ Sω can be written as a convex combination of these extreme points, i.e.,

(x, y) =
∑k
i=1 λ

i(xi, yi) for some λi ≥ 0, i = 1, . . . , k, with
∑k
i=1 λ

i = 1, and thus

q>ω y =

k∑
i=1

λiq>ω y
i ≥

k∑
i=1

λi(α− β>xi) = α− β>x

if q>ω y
i ≥ α− β>xi for every i = 1, . . . , k.

To derive a similar characterisation for the case where φ 6≡ 0, we first linearise the cut in (16)
by noting that if τ ≥ 0, then (α, β, τ) satisfies (16) if and only if

vω(x) ≥ α− β>x− τθ ∀(x, θ) ∈ X × R such that θ ≥ φ(x). (17)

In other words, we are able to derive non-linear cuts for vω in the x-space by deriving linear cuts
for vω in the (x, θ)-space. Similar to the case where φ ≡ 0, we have that (α, β, τ) satisfies (17) if
and only if q>ω y ≥ α− β>x− τθ for every (x, θ, y) ∈ Sφω , where

Sφω := {(x, θ, y) ∈ X × R× Y : θ ≥ φ(x), Wωy = hω − Tωx}.

We are now in a position to state our representation result for Πω(φ).

Lemma 5. Let φ : X̄ 7→ R be a rational convex polyhedral function and consider Πω(φ) =
{(α, β, τ) : vω(x) ≥ α− β>x− τφ(x) ∀x ∈ X, τ ≥ 0}. Then, Πω(φ) is a rational polyhedron, and

Πω(φ) = {(α, β, τ) : q>ω y
i + β>xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (18)

where (xi, θi, yi) ∈ Sφω, i = 1, . . . , d, denote the extreme points of conv(Sφω).
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Proof. Proof. Note that (α, β, τ) ∈ Πω(φ) is equivalent to (17). Thus, using the definition of vω(x)
and Sφω , we have that (α, β, τ) ∈ Πω(φ) if and only if q>ω y+ β>x+ τθ ≥ α for every (x, θ, y) ∈ Sφω .
Because the latter inequality is also valid for conv(Sφω), we obtain that

Πω(φ) = {(α, β, τ) : q>ω y + β>x+ τθ ≥ α ∀(x, θ, y) ∈ conv(Sφω)}.

To obtain (18), observe that conv(Sφω) is a rational polyhedron (Del Pia and Weismantel 2016,
Theorem 1) with one extreme direction, namely (0, 1, 0), and finitely many extreme points.

The expression in (18) reveals that

Cω(ρ) = sup
α,β,τ
{α− β>x̄− ρ(1 + τ) : q>ω y

i + β>xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (19)

i.e., we can compute Cω(ρ) by solving a linear programming problem if all extreme points of
conv(Sφω) are known. In Section 4.1, we describe a row generation scheme for solving (19) by
enumerating a sufficiently rich subset of the extreme points of conv(Sφω), and in Section 4.2, we
solve the dual problem of (19) using cutting plane techniques.

4.1 A Row Generation Scheme

In general, the number of extreme points of conv(Sφω) may be very large, and in those cases directly
solving the LP in (19) is computationally infeasible. Therefore, we propose a row generation scheme
similar to approaches in robust optimization and disjunctive programming, see, e.g., Perregaard
and Balas (2001), Zeng and Zhao (2013), and Georghiou et al. (2020). In this approach, we
iteratively identify extreme points (xi, θi, yi) ∈ Sφω , i = 1, . . . , t, and we solve the resulting cut-
generation master problem

max
α,β,τ
{α− β>x̄− ρ(1 + τ) : q>ω y

i + β>xi + τθi ≥ α ∀i ∈ {1, . . . , t}, τ ≥ 0}. (CGMP)

We denote the optimal solution of (CGMP) by (αt, βt, τ t), and we attempt to identify a point

(xt+1, θt+1, yt+1) ∈ Sφω which violates the inequality q>ω y + βt
>
x + τ tθ ≥ αt by solving the cut

generation subproblem

νt := min
x,θ,y
{q>ω y + βt

>
x+ τ tθ − αt : (x, θ, y) ∈ Sφω}, (CGSP)

which is a small-scale MIP. Note that (αt, βt, τ t) is feasible and thus optimal in (19) if and only
if νt ≥ 0. If νt < 0, then we consider an optimal solution (xt+1, θt+1, yt+1) of (CGSP) and use it
to strengthen (CGMP), i.e., we add the constraint q>ω y

t+1 + β>xt+1 + τθt+1 ≥ α to (CGMP) and
resolve (CGMP). Since conv(Sφω) has finitely many extreme points, finite termination of the row
generation scheme is guaranteed if (CGSP) returns an optimal solution (xt+1, θt+1, yt+1) which
is an extreme point of conv(Sφω). Indeed, since the objective function of (CGSP) is linear, it has
an optimal solution which is an extreme point of conv(Sφω). Typically, only a small fraction of
the total number of extreme points needs to be computed before the algorithm terminates. We
summarize the row generation scheme in Algorithm 2.
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Algorithm 2 Row Generation Scheme for Solving (15).

1: Input: x̄ ∈ X, cut-generating function φ : X̄ 7→ R, ρ ≥ φ(x̄), and tolerance level δ ≥ 0
2: Initialization
3: t = 1 and (x1, θ1, y1) = (x̄, ρ, ȳ), for an arbitrary ȳ ∈ {Y : Wωy = hω − Tωx̄}.
4: Iteration step

5: Solve (CGMP) and update (CGSP) using optimal solution (αt, βt, τ t) .
6: Solve (CGSP), denote optimal value by νt and optimal solution by (xt+1, θt+1, yt+1).
7: Append constraint q>ω y

t+1 + β>xt+1 + τθt+1 ≥ α to (CGMP).

8: Stopping criterion

9: if νt ≥ −δ then stop: (αt + νt, βt, τ t) is δ-optimal in (15)
10: else
11: t← t+ 1 and go to line 5
12: end if

In Algorithm 2, we initialize (CGMP) with the point (x̄, ρ, ȳ) ∈ Sφω in order to ensure that
(CGMP) is bounded. Note that Algorithm 2 can be implemented efficiently, since the problems
in (CGMP) and (CGSP) are a small-scale LP and MIP, respectively. Furthermore, in the fixed
point iteration algorithm in Section 3.2, we have to obtain Cω(ρ) multiple times for different
values of ρ, and thus we have to run Algorithm 2 repeatedly. This can be done efficiently by
implementing a warm start for the row generation scheme, in which we reuse the points (xi, θi, yi)
identified during one run of Algorithm 2 in subsequent runs. This is possible since the feasible
region Sφω of (CGSP) does not depend on ρ.

4.2 Convexification via Cutting Plane Techniques

The second approach we consider for solving the problem in (19) is to use cutting plane techniques
to solve its dual LP, which we derive in Lemma 6 below. The advantage of this approach over
the row generation scheme in Section 4.1 is that it only requires solving small-scale LPs, which is
computationally less expensive, and thus it may be faster if not too many LPs need to be solved.

Lemma 6. Let φ : X̄ 7→ R be a rational convex polyhedral function, let x̄ ∈ X̄ be given, and
consider the value function Cω(ρ) defined in (19). Then,

Cω(ρ) = −ρ+ min
y
{q>ω y : (x̄, ρ, y) ∈ conv(Sφω)} ∀ρ ∈ dom(Cω). (20)

Proof. Proof. We will show that the dual of (19) is given by the expression in (20), so that the
result follows from strong LP duality. In particular, for arbitrary ρ ∈ dom(Cω), the dual of (19)
is given by

Cω(ρ) = −ρ+ min
λi≥0

{
d∑
i=1

λiq>ω y
i :

d∑
i=1

λi = 1,

d∑
i=1

λixi = x̄,

d∑
i=1

λiθi ≤ ρ

}
.

Since (xi, θi, yi), i = 1, . . . , d, are the extreme points of conv(Sφω), the above is equivalent to

Cω(ρ) = −ρ+ min
θ,y

{
q>ω y : (x̄, θ, y) ∈ conv(Sφω), θ ≤ ρ

}
, (21)

and (20) follows by noting that it is optimal to select θ = ρ in (21).

We solve the problem in (20) by using parametric cutting planes of the form Ŵωy ≥ ĥω −
T̂ωx− rωθ to recover conv(Sφω), i.e.,

conv(Sφω) ⊆ Ŝφω := {(x, θ, y) : Wωy = hω − Tωx, Ŵωy ≥ ĥω − T̂ωx− rωθ}. (22)
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In particular, we use these cutting planes to obtain the following relaxation of (20),

Ĉω(ρ) = −ρ+ min
y
{q>ω y : (x̄, ρ, y) ∈ Ŝφω}

= −ρ+ min
y
{q>ω y : Wωy = hω − Tωx̄, Ŵωy ≥ ĥω − T̂ωx̄− rωρ}. (23)

Initially, the collection of cutting planes Ŵωy ≥ ĥω − T̂ωx − rωθ is empty, and the relaxation
in (23) reduces to the LP-relaxation of the second-stage subproblem. If the resulting solution ȳ
of this relaxation is such that (x̄, ρ, ȳ) ∈ conv(Sφω), then we are done: ȳ is optimal in (20) and
Ĉω(ρ) = Cω(ρ). Otherwise, we derive a parametric cutting plane which separates (x̄, ρ, ȳ) from
conv(Sφω), after which we update Ŝφω and resolve (23). Depending on the family of cutting planes
that we use to recover conv(Sφω), this procedure is finitely convergent. In particular, if we use
the Fenchel cuts by Boyd (1994), then the resulting algorithm is finitely convergent (Boyd 1995,
Corollary 3.3). Before discussing further computational aspects of our cutting plane approach,
Lemma 7 describes how we can retrieve an optimal solution (α, β, τ) of the primal problem in (19)
if we have solved the dual problem in (20).

Lemma 7. Let φ : X̄ 7→ R be a rational convex polyhedral function, and suppose that the cutting
planes Ŵωy ≥ ĥω − T̂ωx − rωθ satisfy (22). Let x̄ ∈ X and ρ ≥ φ(x̄) be given, and consider the
cutting plane relaxation Ĉω(ρ) defined in (23), and denote by λω and πw optimal dual multipliers

corresponding to the constraints Wωy = hω−Twx̄ and Ŵωy ≥ ĥω− T̂ωx̄− rωρ, respectively. Then,

(α, β, τ) := (λ>whω + π>w ĥω, λ
>
ωTω + π>w T̂ω, π

>
ω rω) (24)

is feasible in (19), and Ĉω(ρ) = α− β>x̄− (1 + τ)ρ.

Proof. Proof. Since λω and πw are optimal dual multipliers of (23), strong LP duality implies that

Ĉω(ρ) = −ρ+ λ>ω (hω − Tωx) + π>ω (ĥω − T̂ωx− rωθ) and it follows from the definition of (α, β, τ)
that Ĉω(ρ) = α− β>x̄− (1 + τ)ρ.

Moreover, we prove that (α, β, τ) is feasible in (19) by showing that q>ω y + β>x + τθ ≥ α for
every (x, θ, y) ∈ Sφω . Indeed, for arbitrary (x, θ, y) ∈ Sφω , we have

α− β>x− τθ = λ>ω (hω − Tωx) + π>ω (ĥω − T̂ωx− rωθ)
≤ λ>ωWωy + π>ω Ŵωy ≤ q>ω y,

where the first inequality is due to πω ≥ 0 and (x, θ, y) ∈ Sφω , so that Wωy = hω − Tωx and

Ŵωy ≥ ĥω − T̂ωx− rωθ, and the latter inequality follows from dual feasibility and y ≥ 0.

As mentioned earlier, it is possible to solve the problem in (20) in finitely many iterations
using Fenchel cuts. In practice, however, computing these Fenchel cuts takes significant time.
That is why it may be advantageous to use other parametric cutting planes that can be computed
faster, but do not necessarily converge in a finite number of iterations. To generate such cutting
planes, note that if (x̄, ρ, ȳ) /∈ conv(Sφω), then (x̄, ρ, ȳ) does not satisfy the integer restrictions
in Sφω , and thus we can apply ideas from deterministic mixed-integer programming to generate
specific types of cutting planes for Sφω . For example, we outline how to generate (strengthened)
lift-and-project (L&P) cuts in Section 4.2.1. Of course, it is also possible to generate other types
of cutting planes, see, e.g., Balas and Jeroslow (1980) and Zhang and Küçükyavuz (2014) for
Gomory mixed-integer (GMI) cuts, and Qi and Sen (2017) for multi-term disjunctive cuts. In
the practical implementation of our cutting plane approach in Algorithm 3, we accommodate the
case where the cutting planes do not converge finitely by stopping after a pre-specified number of
iterations K, or if we are unable to cut away a fractional solution (x̄, ρ, ȳ).
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Algorithm 3 Cutting Plane Approach for Solving (19).

1: Input: x̄ ∈ X, cut-generating function φ : X̄ 7→ R, and ρ ≥ φ(x̄), iteration limit K.
2: Initialization
3: Let Ŵω and T̂ω denote empty matrices, ĥω and rω denote empty vectors, and let k ← 0.

4: Iteration step

5: Solve

min
y
{q>ω y : Wωy = hω − Tωx̄, Ŵωy ≥ ĥω − T̂ωx̄− rωρ},

store optimal solution ȳ, and dual multipliers λω and πω.
6: Let (α, β, τ)← (λ>whω + π>w ĥ

k
ω, λ

>
ωTω + π>w T̂

k
ω , π

>
ω r

k
ω).

7: Stopping criterion

8: if ȳ satisfies integer restrictions or if k > K then return (α, β, τ).
9: else

10: Generate cutting plane w>y + a>x+ rθ ≥ s ∀(x, θ, y) ∈ Sφω .
11: if w>ȳ + a>x̄+ rρ ≥ s then return (α, β, τ).
12: else

13: Let Ŵω ←
(
Ŵω

w>

)
, T̂ω ←

(
T̂ω
a>

)
, rω ←

(
rω
r

)
, and ĥω ←

(
ĥω
s

)
.

14: k ← k + 1. Go to line 5.
15: end if
16: end if

Efficient implementations of Algorithm 3 are possible, since each iteration merely requires solv-
ing a small-scale LP. Furthermore, we may speed up the convergence of Algorithm 3 by adding
multiple cutting planes to (23) in one iteration, e.g., by generating a round of GMI cuts. Fi-
nally, since the cutting planes that we use depend parametrically on x and θ, they can be reused
in subsequent iterations of the Benders’ decomposition algorithm and the fixed point iteration
algorithm.

Remark 2. The decomposition algorithms for MIR models by Sherali and Fraticelli (2002), Sen
and Higle (2005), Ntaimo and Tanner (2008), Ntaimo (2010, 2013), Gade et al. (2014), and Qi and
Sen (2017) use cutting planes for the second-stage subproblems which depend only on x. These
cutting planes are used to recover the convex hull of the set {(x, y) ∈ X×Y : Wωy = hω−Tωx}, and
the resulting continuous relaxation of vω(x) is guaranteed to be tight only if the first-stage variables
are binary. Furthermore, the parametric Gomory cutting planes by Zhang and Küçükyavuz (2014)
can be used to solve the second-stage subproblem if the first- and second-stage variables are pure
integer. We are able to generalize these approaches to general mixed-integer variables by using
cutting planes which depend parametrically on x and θ, where θ ≥ φ(x).

4.2.1 Lift-and-Project Cuts. Suppose that ȳ is a fractional solution of the LP in (23), i.e.,
ȳi /∈ Z for some i ∈ {1, . . . , p2}. In order to generate an L&P cut which separates the point
(x̄, ρ, ȳ) from Sφω , we denote by Ŝφω the continuous relaxation of Sφω defined by the cutting planes

Ŵωy ≥ ĥω − T̂ωx − rωθ, and we consider the disjunctive relaxation of Sφω implied by the split
disjunction yi ≤ bȳic ∨ yi ≥ dȳie:

Sφω ⊆ S+
ω,ȳ,i :=

{
(x, θ, y) ∈ Ŝφω : yi ≤ bȳic

}⋃{
(x, θ, y) ∈ Ŝφω : yi ≥ dȳie

}
.

Next, we formulate a cut-generation LP (CGLP) which we use to recover conv(S+
ω,ȳ,i) through cuts

of the form a>x+rθ+w>y ≥ s. Without loss of generality, we may assume that there exist matrices
C1
ω and C2

ω, and vectors cω and dω such that Ŝφω = {(x, θ, y) ∈ Rn1+1+n2
+ : C1

ωx+cωθ+C2
ωy ≥ dω}.
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Then, the CGLP is given by

min a>x̄+ rρ+ w>ȳ − s
subject to

a> − λ>i C1
ω ≥ 0, i = 1, 2,

r> − λ>i cω ≥ 0, i = 1, 2,

w> − λ>1 C2
ω + ν1e

>
i ≥ 0,

w> − λ>2 C2
ω − ν2e

>
i ≥ 0, (CGLP)

s− λ>1 dω + ν1byic ≤ 0,

s− λ>2 dω − ν2dyie ≤ 0

− 1 ≤ u ≤ 1, −1 ≤ r ≤ 1, −1 ≤ w ≤ 1, −1 ≤ s ≤ 1,

λi ≥ 0, νi ≥ 0, i = 1, 2,

see, e.g., Balas and Perregaard (2003). Any feasible solution of (CGLP) corresponds to a valid cut
for Sφω of the form a>x + rθ + w>y ≥ s. Moreover, an optimal solution of (CGLP) corresponds
to the deepest cut in the sense that the violation of the point (x̄, ρ, ȳ) is maximized. Finally, it is
possible to strengthen the resulting L&P cut in analogy to the procedure described in, e.g, Balas
et al. (1996).

5 Proof of Convergence

In this section, we prove Theorem 1. That is, we show that for any convex polyhedral function
φ0 : X̄ 7→ R, the sequence {φk}k≥0 defined recursively as φk+1 = SCC(φk), k ≥ 0, converges
uniformly to co(max{φ0, Q}). For convenience, we recall that the scaled cut closure SCC(φ) is
defined as

SCC(φ)(x) = sup
αω,βω,τω

{
Eω[αω − β>ω x]

1 + Eωτω
: (αω, βω, τω) ∈ Πω(φ) ∀ω ∈ Ω

}
, x ∈ X̄,

where Πω(φ) := {(α, β, τ) : vω(x) ≥ α − β>x − τφ(x) ∀x ∈ X, τ ≥ 0}. We prove Theorem 1 by
showing, in Section 5.1, that φk converges to a limit function φ∗ satisfying SCC(φ∗) = φ∗, i.e., φ∗

is a fixed point of the scaled cut closure operation. Next, in Section 5.2, we show that such a fixed
point must satisfy φ∗ = co(max{φ0, Q}), which completes the proof.

In order to obtain these results, we derive an alternative expression for SCC(φ), as follows,

SCC(φ)(x) = sup
τω≥0

sup
αω,βω

{
Eω[αω − β>ω x]

1 + Eωτω
: vω(x′) + τωφ(x′) ≥ αω − β>ω x′ ∀x′ ∈ X, ω ∈ Ω

}
= sup
τω≥0

{
Eωco(vω + τωφ)(x)

1 + Eωτω

}
,

where the latter equality follows directly from the definition of the closed convex envelope. We
use this expression to define a mapping T defined on the space of continuous bounded functions,
which is such that Tφ = SCC(φ), see Definition 3.

Definition 3. Consider the space C(X̄) of continuous bounded functions mapping from X̄ to R,
equipped with the metric d, defined as

d(f, g) := ||f − g||∞ = sup
x∈X̄
|f(x)− g(x)|, f, g ∈ C(X̄),

and define T : C(X̄) 7→ C(X̄) as

(Tf)(x) = sup
τω≥0

{
Eωco(vω + τωf)(x)

1 + Eωτω

}
, x ∈ X̄, f ∈ C(X̄). (25)
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In order to see that T maps into C(X̄), i.e., Tf ∈ C(X̄) for every f ∈ C(X̄), note that
by (25), Tf is the pointwise supremum of convex lsc functions, and thus Tf is convex and lsc.
Furthermore, since X̄ is a compact polyhedral set, it follows from Theorem 2 below that Tf is
continuous and bounded, i.e., Tf ∈ C(X̄).

Theorem 2. (Rockafellar 1970, Theorem 10.2) If f : D 7→ R is a convex lsc function defined on
a convex polyhedral domain D, then f is continuous on D.

Since Tφ = SCC(φ), we can also define the sequence {φk}k≥0 in terms of T. That is, for a
given φ0 ∈ C(X̄) such that φ0 is convex, we define φk+1 := Tφk, k ≥ 0. Since T maps into C(X̄),
it follows that φk+1 = Tφk ∈ C(X̄) for every k ≥ 0, and thus φk is well-defined for every k ≥ 0.
In addition, φk is convex for every k ≥ 0.

5.1 Uniform Convergence and Fixed Points

The main result of this section is Proposition 2, which states that φk converges uniformly to a
fixed point of T. In order to prove it, we derive several properties of the sequence {φk}k≥0 in
Lemma 8.

Lemma 8. Let φ0 ∈ C(X̄) be a convex function, and consider the sequence {φk}k≥0 ⊆ C(X̄)
defined by φk+1 := Tφk, k ≥ 0. Then, φk is monotone increasing in k, i.e., φk+1 ≥ φk for every
k ≥ 0, and, moreover, φk ≤ co(max{φ0, Q}) for every k ≥ 0.

Proof. Proof. We prove monotonicity of φk by showing that Tf ≥ f for every convex f ∈ C(X̄).
Indeed, if f ∈ C(X̄) is convex, then

Tf ≥ sup
τω≥0

{
Eω[co(vω) + τωco(f)]

1 + Eωτω

}
≥ co(f) = f,

where the second inequality follows by letting τω →∞ for every ω ∈ Ω.
Next, we prove by induction that φk ≤ co(max{φ0, Q}) for every k ≥ 0. Note that φ0 ≤

co(max{φ0, Q}) follows directly from convexity of φ0. Next, we fix arbitrary k ≥ 0, and we
assume that φk ≤ co(max{φ0, Q}), so that φk(x) ≤ max{φ0(x), Q(x)} ∀x ∈ X. Then, for every
x ∈ X,

φk+1(x) = (Tφk)(x) ≤ sup
τω≥0

{
Eω[vω(x) + τωφk(x)]

1 + Eωτω

}
≤ sup
τω≥0

{
Q(x) + Eωτωφk(x)

1 + Eωτω

}
,

≤ sup
τω≥0

{
max{φ0(x), Q(x)}+ Eωτω max{φ0(x), Q(x)}

1 + Eωτω

}
= max{φ0(x), Q(x)}.

Hence, φk+1 ≤ co(max{φ0, Q}), since φk+1 is a convex function majorized by max{φ0, Q}.

Since the sequence {φk}k≥0 is monotone increasing and bounded, φk converges pointwise to
some limit function. Indeed, for every x ∈ X̄, the real-valued sequence {φk(x)}k≥0 is monotone
increasing and bounded, and thus convergent. Therefore, we may define φ∗ as the pointwise limit
of φk, i.e., φ∗(x) := limk→∞ φk(x), x ∈ X̄. We, however, need a stronger type of convergence
than pointwise convergence for the proof of Theorem 1, namely uniform convergence: φk converges
uniformly to φ∗ if for every ε > 0, there exists a K ≥ 0 such that ||φk − φ∗||∞≤ ε ∀k ≥ K. In
Proposition 2, we obtain that φk converges uniformly to φ∗ by showing that the pointwise limit
φ∗ is continuous. In addition, we exploit continuity of T, see Lemma 9 below, to prove that φ∗ is
a fixed point of T, i.e., Tφ∗ = φ∗.

Lemma 9. The mapping T : C(X̄) 7→ C(X̄) of Definition 3 is continuous on C(X̄).
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Proof. Proof. See appendix.

Proposition 2. Let φ0 ∈ C(X̄) be a convex function. Then, the sequence {φk}k≥0 defined by
φk+1 = Tφk, k ≥ 0, converges uniformly to its pointwise limit φ∗. Moreover, φ∗ is convex and
continuous, and φ∗ is a fixed point of T, i.e., Tφ∗ = φ∗.

Proof. Proof Dini’s theorem (Rudin 1976, Theorem 7.13) states that if a monotone increasing
sequence of continuous functions converges pointwise to a continuous function, then the conver-
gence is uniform. Therefore, it suffices to show that φ∗ is continuous in order to establish that φk
converges uniformly to φ∗. We prove that φ∗ is continuous by noting that monotonicity of φk, see
Lemma 8, implies that φ∗(x) = supk≥0 φk(x), i.e., φ∗ is the pointwise supremum of convex contin-
uous functions. It follows that φ∗ is convex and lsc, and thus, using Theorem 2, φ∗ is continuous.
In order to see that φ∗ is a fixed point of T, note that

Tφ∗ = T lim
k→∞

φk = lim
k→∞

Tφk = lim
k→∞

φk+1 = φ∗,

where the second equality follows from the continuity of T in Lemma 9.

5.2 Properties of Fixed Points of T
By Proposition 2, φk converges uniformly to a fixed point of T. We exploit this result to derive
properties of the limit function φ∗. In particular, in Proposition 3, we show that any convex fixed
point f of T is such that f ≥ co(Q). In order to prove Proposition 3, we need the following result.

Lemma 10. Assume that f ∈ C(X̄) is convex. If (x̄, θ̄) = (x̄, f(x̄)) is an extreme point of
epi(f) = {(x, θ) ∈ X̄ ×R : θ ≥ f(x)}, then supτω≥0{co(vω + τωf)(x̄)− τωf(x̄)} ≥ vω(x̄) for every
ω ∈ Ω.

Proof. Proof. See appendix.

Intuitively, Lemma 10 says that if x̄ corresponds to an extreme point of epi(f), then the gap
between vω(x)+τωf(x) and co(vω+τωf)(x̄) can be made arbitrarily small by choosing appropriate
τω ≥ 0. We may exploit this result to derive properties of fixed points of T. For the purpose of
exposition, assume that there exist τω ≥ 0 such that co(vω + τωf)(x̄) = vω(x̄) + τωf(x̄). Then,

(Tf)(x̄) =
Eω[vω(x̄) + τωf(x̄)]

1 + Eωτω
=
Q(x̄) + Eωτωf(x̄)

1 + Eωτω
,

which reveals that, unless f(x̄) ≥ Q(x̄), we have Tf(x̄) > f(x̄), i.e., f is not a fixed point of T.
We prove Proposition 3 by formalizing this reasoning.

Proposition 3. Let φ0 ∈ C(X̄) be given. Assume that f ∈ C(X̄) is convex and f ≥ φ0. If f is a
fixed point of T, i.e. if Tf = f , then f ≥ co(max{φ0, Q}).

Proof. Proof. We will show that for every extreme point (x̄, f(x̄)) of epi(f), we have θ̄ = f(x̄) ≥
co(max{φ0, Q})(x̄). This suffices to prove f(x) ≥ co(Q)(x) ∀x ∈ X̄, since Carathodory’s the-
orem (Rockafellar and Wets 2009, Theorem 2.29) implies that, for arbitrary x ∈ X̄, the point
(x, f(x)) ∈ epi(f) can be written as a convex combination of n1 + 2 extreme points of epi(f), i.e.,

(x, f(x)) =

n1+2∑
i=1

λi(xi, f(xi)),

where
∑n1+2
i=1 λi = 1, λi ≥ 0, and (xi, f(xi)) is an extreme point of epi(f), i = 1, . . . , n1 + 2, and

thus

f(x) =

n1+2∑
i=1

λif(xi) ≥
n1+2∑
i=1

λico(max{φ0, Q})(xi) ≥ co(max{φ0, Q})(x),
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where we used convexity of co(max{φ0, Q}) to obtain the latter inequality.
We show that f(x̄) ≥ co(max{φ0, Q})(x̄) if (x̄, θ̄) is an extreme point of epi(f) by proving that

(i) x̄ ∈ X, and (ii) f(x̄) ≥ max{φ0(x̄), Q(x̄)} if x̄ ∈ X. We prove these claims by contradiction.
First, suppose that x̄ /∈ X. Then, vω(x̄) =∞ for every ω ∈ Ω, and thus, by Lemma 10,

sup
τω≥0
{co(vω + τωf)(x̄)− τωf(x)} =∞ ∀ω ∈ Ω.

It follows that there exists a τω ≥ 0 such that co(vω + τωf)(x̄)− τωf(x̄) > f(x̄). But then, for this
choice of τω, ω ∈ Ω,

(Tf)(x̄) ≥ Eωco(vω + τωf)(x̄)

1 + Ewτω
>

Eω[f(x̄) + τωf(x̄)]

1 + Ewτω
= f(x̄),

which is a contradiction, since Tf = f .
Next, suppose that x̄ ∈ X, but f(x̄) < max{φ0(x̄), Q(x̄)}. Since, by assumption, f(x) ≥ φ0(x),

it must be that f(x̄) < Q(x̄). Let δ = Q(x̄) − f(x̄) > 0, and note that Lemma 10 implies that
there exist τω ≥ 0 such that

co(vω + τωf)(x̄)− τωf(x̄) ≥ vω(x̄)− δ/2.

But then,

(Tf)(x̄) ≥ Eωco(vω + τωf)(x̄)

1 + Eωτω

≥ Eω[vω(x̄) + τωf(x̄)− δ/2]

1 + Eωτω

=
f(x̄) + δ/2 + Eω[τωf(x̄)]

1 + Eω(τω)
> f(x̄),

which contradicts Tf = f .

We are now ready to prove Theorem 1.

Proof. Proof of Theorem 1. It suffices to prove that for any convex φ0 ∈ C(X̄) the sequence
{φk}k≥0 defined by φk+1 = Tφk, k ≥ 0, converges uniformly to co(max{φ0, Q}). Proposition 2
implies that φ∗ = limk→∞ φk exists, and φ∗ is a fixed point of T. Moreover, using Lemma 8,
we have that φ∗ ≤ co(max{φ0, Q}), and monotonicity of φk implies that φ∗ ≥ φ0. Thus, by
Proposition 3, we have φ∗ ≥ co(max{φ0, Q}). Finally, since max{φ0, Q} is an lsc function defined
on a compact domain, we have co(max{φ0, Q}) = co(max{φ0, Q}) (Falk 1969, Theorem 2.2), and
the result follows.

6 Numerical Experiments

Theorem 1 states that our scaled cuts can be used to recover the convex envelope of the expected
second-stage cost function by recursively computing the scaled cut closure, and thus they can
be used to solve general MIR models. Of course, in practice, we do not compute the full scaled
cut closure, but we strengthen the outer approximation using a single (dominating) scaled cut in
every iteration of our Benders’ decomposition, in line with Algorithm 1. Therefore, we assess the
performance of scaled cuts on a range of problem instances, namely (variants of) an investment
problem by Schultz et al. (1998), as well as (variants of) the DCAP problem instances by Ahmed
and Garcia (2003) from SIPLIB (Ahmed et al. 2015), see Sections 6.3.2 and 6.3.3, respectively. In
addition, in Section 6.3.1, we consider a problem instance by Carøe and Schultz (1999), to which
we refer as the CS instance, which is known to have a relatively large duality gap. Before we
discuss our results, we first describe the setup of our numerical experiments in Section 6.1, and in
Section 6.2, we describe a cut-enhancement technique which we use to speed up the convergence
of scaled cuts.
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6.1 Setup of Numerical Experiments

In our numerical experiments, we compare scaled cuts to traditional optimality cuts in terms
of bounds on the optimal value, solution quality, and running time. In particular, we consider
traditional Benders’ cuts of Van Slyke and Wets (1969), as well as the strengthened Benders’ (SB)
cuts and the Lagrangian (L) cuts of Zou et al. (2019). We compute L cuts using a row-generation
scheme similar to Algorithm 2, with the additional restriction that τ = 0 in (CGMP). Furthermore,
we compare the different strategies for computing scaled cuts described in Section 4, i.e., we
consider scaled cuts obtained using row generation (S-RG cuts) and cutting plane techniques (S-
CP cuts). For the S-CP cuts, we solve the second-stage subproblems using both GMI cutting
planes as well as the L&P cutting planes described in Section 4.2.1.

We assess solution quality by comparing the lower and upper bound, denoted by LB and UB,
respectively, maintained during the Benders’ decomposition, see Algorithm 1. In particular, we
are interested in the relative optimality gap

ρ :=
UB − LB
|LB|

× 100%,

and the relative LB and UB gaps, defined as (η∗ − LB)/|η∗| × 100% and (UB − η∗)/|η∗| × 100%,
respectively, where η∗ is the optimal value of the original MIR model. We expect that these gaps
are smaller if we use scaled cuts, compared to traditional optimality cuts.

In our implementation of Algorithm 1, we use a warm start in which we solve the continuous
relaxation of the original model using the L-shaped algorithm by Van Slyke and Wets (1969).
Furthermore, we solve the master problem (MP) using branch-and-cut techniques if some of the
first-stage decisions are integer. Interestingly, since scaled cuts can be used to recover co(Q), a
branch-and-cut scheme can converge to the optimal integer solution at the root node. Indeed, recall
that instead of solving the original problem (1), we can equivalently solve its convex relaxation
in (4). That is why we use a pure cutting plane approach to solve (MP), in which we use Fenchel
cuts (Boyd 1994) to cut away non-integer solutions. In addition, for the larger DCAP problems,
we also use a branch-and-cut scheme in which we add at most five Fenchel cuts to solve the
nodal subproblems if the number of leaf nodes is less than eight. In this scheme, we maintain
separate outer approximations for each nodal subproblem to speed up convergence, since they are
potentially stronger than a global outer approximation.

In our experiments, we use parallelized implementations of all optimality cut computation
routines, which exploit that the computations decompose by scenario. All our experiments are
run on a machine with two Intel Xeon E5 2680v3 CPUs (24 cores @2.5GHz) and 128GB RAM
using Gurobi 9.1.0; computation time is limited to three hours. Furthermore, the tolerance levels ε
and δ in the Benders’ decomposition and the fixed point iteration algorithm are set to 10−4, unless
mentioned otherwise. Finally, in order to prevent numerical instability, we stop Algorithm 1 if the
outer approximation improves by less than ε, and in our row generation scheme for computing
S-RG and L cuts, we restrict the absolute value of the cut coefficients (α, β, τ) in (CGMP) to be
at most 108.

6.2 Cut-Enhancement Technique

The main idea of our cut-enhancement technique is to derive cuts which are only valid on a
subset X ′ of the first-stage feasible region X. That is, we consider optimality cuts of the form

Q(x) ≥ α− β>x ∀x ∈ X ′ ⊆ X.

Clearly, these optimality cuts are in general at least as strong as cuts which are valid for every
x ∈ X. However, the resulting algorithm is only correct if the optimal solution x∗ of the MIR
model in (1) is contained in X ′. Thus, in the definition of X ′, we may exclude feasible solutions
which cannot be optimal. In particular, in our Benders’ decomposition for MIR models, see
Algorithm 1, we take

X ′ = {x ∈ X : c>x+ Q̂out(x) ≤ UB},
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where Q̂out is the current outer approximation of Q, and UB is the best known upper bound
on the optimal value η∗ of the MIR model in (1). Indeed, note that if c>x + Q̂out(x) > UB,
then x is not optimal in (1), since otherwise Q(x) ≥ Q̂out(x) and thus c>x + Q(x) > UB. In an
alternative implementation, we may use a heuristic approach to obtain a candidate solution and
a corresponding upper bound on η∗. Finally, note that the constraint c>x + Q̂out(x) ≤ UB is
polyhedral if Q̂out is a convex polyhedral function, which ensures that our enhancement technique
is computationally feasible.

In our experiments, we use the cut-enhancement technique to speed up convergence of scaled
cuts. In addition, we assess the effect of computing enhanced L and SB cuts, referred to as SB*
and L* cuts, respectively, by comparing them to their unenhanced counterparts in terms of the
resulting bounds on η∗. Note that we only use enhanced scaled cuts, since we expect them to
outperform ordinary scaled cuts.

6.3 Results

6.3.1 The CS Instance. Carøe and Schultz (1999) describe a set of MIR problem instances
for which the duality gap is at least 1/16. These instances are defined as

η∗ = min
0≤x≤1

{
3x+ Eω

[
min

y∈{0,1}
{−2y : −1/2y ≥ hω − x}

]}
,

where hω follows a discrete symmetric uniform distribution with r realizations for some even r; the

realizations of hω are given by hsω = εs and h
s+r/2
ω = 1/4−εs, where εs ∈ (0, 1/32), s = 1, . . . , r/2,

are all distinct. We choose r = 100, and εs = ∆s, s = 1, . . . , r/2, where ∆ = 1/32
1+r/2 .

Since the input size of the CS instance is relatively small, we do not exploit parallelization
to compute these cuts in order to avoid overhead, we use a tolerance level ε = 10−6, and we do
not use a warm start with Benders’ cuts as described in Section 6.1, to ensure that the difference
in outcomes can be attributed completely to the different cut types. In our experiments, we
compare the different types of optimality cuts mentioned in Section 6.1. For comparison, we do
not only compute the S-CP (L&P) cuts, but we also compute the traditional counterpart of these
cuts, obtained by solving the second-stage problem using L&P cuts, as described by Sherali and
Fraticelli (2002). We report the results in Table 1.

Table 1: CS Instance.

Cut type Lower bound Upper bound Cpu #Cuts (avg.
(gap to η∗ = 0.2482) (gap to η∗ = 0.2482) time cpu time)

Traditional cuts

Benders -0.0080 (103.21%) 0.7482 (201.48%) 0.168s 9 (0.003s)
SB -0.0080 (103.21%) 0.7482 (201.48%) 0.364s 9 (0.021s)
L&P 0.0083 (96.64%) 0.7482 (201.48%) 0.255s 9 (0.011s)
L 0.0083 (96.64%) 0.7482 (201.48%) 0.384s 8 (0.027s)

Scaled cuts

S-CP (GMI) 0.2482 (0.00%) 0.2488 (0.24%) 0.838s 33 (0.015s)
S-CP (L&P) 0.2482 (0.00%) 0.2484 (0.09%) 0.767s 17 (0.031s)
S-RG 0.2482 (0.00%) 0.2482 (0.00%) 3.233s 17 (0.176s)

What is immediately striking from Table 1 is that the scaled cuts are able to completely close
the duality gap of traditional cuts, which is relatively large for the CS instance. In particular,
the LB gap of all types of scaled cuts is zero, whereas traditional cuts have LB gaps of around
100%. In other words, the quality of the lower bound obtained using traditional cuts is very poor,
and can be significantly improved using scaled cuts. Similarly, the UB gap, which measures the
quality of the incumbent solution, is over 200% if we use traditional cuts, and can be reduced to
zero using S-RG cuts. We are not able to find the optimal solution using the S-CP cuts, but the
resulting gaps are very small (less than 0.25%) compared to traditional cuts.
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In terms of computation time, we observe that computing scaled cuts generally requires more
time compared to their traditional counterparts. For example, the average computation time per
cut of S-CP (L&P) cuts compared to traditional L&P cuts has roughly tripled, and S-RG cuts
take over six times as long to compute as L cuts. Finally, as expected, the row generation scheme
for computing scaled cuts requires significantly more time than the S-CP cuts. However, we recall
that in general, stronger performance guarantees are available for the S-RG cuts, since the row
generation scheme computes Cω(ρ) exactly whereas the cutting plane techniques may only yield
a lower bound. This is reflected by the non-zero UB gap of the S-CP cuts.

6.3.2 Investment Planning Problems. Schultz et al. (1998) consider the following invest-
ment planning problem

min
x∈X

{
−3/2x1 − 4x2 + Eω[vω(x)] : x ∈ [0, 5]2

}
,

where X = R2, and

vω(x) = min
y∈Y
{−16y1−19y2−23y3−28y4 : 2y1 + 3y2 + 4y3 + 5y4 ≤ h1

ω − x1

6y1 + y2 + 3y3 + y4 ≤ h2
ω − x2},

where Y = {0, 1}4; the random variables h1
ω and h2

ω follow independent discrete uniform distri-
butions on {5, 5.5, . . . , 15}. This problem, and variants thereof are frequently used as benchmark
instances in the literature, see, e.g., Ahmed et al. (2004), Ntaimo (2013), Gade et al. (2014), and
Qi and Sen (2017). The variants we consider are obtained by setting X = Z2

+, as well as Y = Z4
+.

In another variant, the technology matrix is given by

Tω = H :=

(
2/3 1/3
1/3 2/3

)
,

whereas in the original problem, Tω = I2. Finally, we vary the distribution of hω by letting h1
ω

and h2
ω follow independent discrete uniform distributions on S equidistant lattice points of the

interval [5, 15], so that |Ω| = S2. Note that in the original problem, S = 21, we additionally
consider S = 11 and S = 101. For the resulting 24 instances, we compare the SB and L cuts to
their enhanced counterparts and to the S-CP (L&P) and S-RG cuts. We report the results for the
instances with X = Z2

+ and X = R2
+ in Tables 2 and 3, respectively. We do not report results for

S-CP (GMI) cuts, since similar as for the CS instance, they perform worse than the S-CP (L&P)
cuts.

Table 2: Investment Planning Problems (X = Z2
+): Root Node Gaps.

Instance Root node gap (computation time)

Y Tω |Ω| SB SB* L L* S-CP (L&P) S-RG

Z4
+ I2 121 3.87% (0s) 1.63% (0s) 1.00% (0s) 0.06% (0s) 0.00% (1s) 0.00% (1s)

441 4.08% (1s) 1.27% (2s) 1.03% (1s) 0.00% (2s) 0.00% (124s) 0.00% (2s)

10201 4.23% (23s) 1.28% (46s) 1.05% (35s) 0.00% (46s) 1.15% (3h) 0.00% (76s)

Z4
+ H 121 9.54% (0s) 8.90% (0s) 0.84% (1s) 0.00% (1s) 0.00% (20s) 0.00% (1s)

441 9.04% (1s) 8.10% (1s) 2.09% (2s) 0.00% (3s) 0.75% (348s) 0.00% (5s)

10201 7.94% (15s) 6.85% (22s) 2.40% (52s) 2.40% (51s) 0.88% (3h) 0.00% (521s)

{0, 1}4 I2 121 6.73% (0s) 6.36% (0s) 2.90% (0s) 2.90% (0s) 0.00% (20s) 0.00% (3s)

441 6.89% (1s) 6.30% (2s) 2.84% (1s) 2.84% (1s) 0.00% (132s) 0.00% (11s)

10201 7.03% (23s) 6.45% (35s) 2.84% (30s) 1.38% (63s) 0.36% (3h) 0.00% (117s)

{0, 1}4 H 121 10.82% (0s) 10.39% (0s) 2.60% (1s) 1.61% (1s) 0.00% (19s) 0.00% (2s)

441 10.39% (1s) 9.73% (1s) 3.36% (1s) 3.36% (1s) 0.00% (201s) 0.00% (23s)

10201 9.64% (11s) 8.83% (29s) 2.64% (30s) 2.64% (32s) 0.00% (8169s) 0.00% (230s)
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Table 3: Investment Planning Problems (X = R2
+): Root Node Gaps.

Instance Root node gap (computation time)

Y Tω |Ω| SB SB* L L* S-CP (L&P) S-RG

Z4
+ I2 121 7.71% (0s) 4.13% (2s) 1.00% (1s) 0.00% (1s) 0.00% (10s) 0.00% (2s)

441 7.78% (0s) 5.66% (5s) 2.37% (3s) 2.02% (5s) 0.62% (3h) 0.14% (239s)

10201 9.47% (8s) 8.55% (82s) 3.97% (163s) 3.89% (152s) 3.13% (3h) 2.00% (3h)

Z4
+ H 121 9.58% (0s) 9.10% (0s) 0.94% (1s) 0.00% (2s) 0.00% (65s) 0.00% (5s)

441 10.06% (1s) 9.41% (1s) 3.80% (5s) 3.51% (7s) 0.00% (1643s) 0.00% (21s)

10201 9.66% (14s) 9.00% (43s) 4.16% (172s) 4.14% (206s) 3.13% (3h) 1.41% (3h)

{0, 1}4 I2 121 10.44% (0s) 10.32% (0s) 3.26% (1s) 1.52% (1s) 0.00% (55s) 0.00% (4s)

441 9.45% (1s) 9.37% (1s) 4.90% (3s) 4.88% (4s) 1.16% (3h) 1.15% (643s)

10201 11.14% (20s) 11.07% (21s) 6.06% (88s) 6.04% (103s) 3.40% (3h) 2.86% (3h)

{0, 1}4 H 121 10.89% (0s) 10.50% (0s) 4.73% (1s) 4.72% (2s) 0.00% (1142s) 0.00% (23s)

441 11.28% (0s) 10.94% (1s) 4.86% (5s) 4.85% (4s) 0.00% (916s) 0.00% (76s)

10201 11.18% (10s) 10.80% (27s) 4.59% (128s) 4.56% (129s) 2.11% (3h) 1.50% (3h)

There are several interesting observations to make from these results. First, observe that our
enhanced cuts are able to significantly reduce the root node gaps for both SB and L cuts, at
the expense of very little computational overhead. Indeed, the SB* cuts reduce the root node
gap compared to the SB cuts by an average of roughly 15%, or 1 percentage point, and the L*
cuts improve over the L cuts on 19 out of 24 instances by approximately 45% on average, or 0.7
percentage points. In fact, on 6 instances, the enhanced L cuts were able to achieve a zero root
node gap.

Second, we observe from Tables 2 and 3 that our scaled cuts are clearly outperform the tradi-
tional cuts: the S-RG cuts and the S-CP (L&P) cuts achieve a lower root node gap than the L cuts
on 23 and 24 out of 24 instances, respectively. Furthermore, a head-to-head comparison reveals
that the S-RG cuts are strictly preferred over the S-CP cuts, because the S-RG cuts perform at
least as well in terms of both the root node gap and computation time.

A comparison of the results in Tables 2 and 3 indicates that the instances with X = R2
+ are

consistently harder to solve than the instances with X = Z2
+. For example, the S-RG cuts achieve

a zero root node gap for all instances in Table 2, and half of the instances in Table 3. For the
other instances in Table 3, the S-RG cuts reduce the average root node gap of the L cuts from
4.3% to 1.3%, which is a 70% reduction.

6.3.3 The DCAP Instances. The DCAP instances by Ahmed and Garcia (2003) concern
a multi-period capacity planning problem, in which the first-stage decisions pertain to buying
resource capacity, and the second-stage problem is to assign these resources to a set of tasks.
In addition, task processing requirements are uncertain, which translates to randomness in the
recourse matrixWω. The instances are are larger than the investment planning problems, and differ
in the number of resources, tasks, periods, and scenarios. Therefore, we solve the DCAP instances
by adding optimality cuts according to cut hierarchies: we first exhaust lower-level optimality cuts
before using higher-level cuts. For example, in every iteration of our Benders’ decomposition, we
first use SB* cuts to improve the outer approximation, and if this fails, we resort to L* cuts. We
use the notation SB*+L* to denote this specific cut hierarchy. In addition, we consider the cut
hierarchy SB*+L*+S-RG, and we benchmark both hierarchies against stand-alone SB* cuts.

Furthermore, the first-stage problem has mixed-binary decision variables, which are used to
model fixed set-up costs that we incur if we buy capacity. Thus, in order to investigate the
performance of scaled cuts in the root node, we solve the master problem (MP) using a pure
cutting plane approach, see the results in Table 4. In addition, we use the branch-and-cut scheme
described in Section 6.1 to solve (MP), see Table 5.
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Table 4: DCAP Instances: Root Node Gaps.

LB gap - UB gap (computation time)

Instance SB* SB*+L* SB*+L*+S-RG

DCAP 233 200 26.78% - 3.68% (7s) 0.06% - 1.87% (542s) 0.01% - 0.17% (5416s)

DCAP 233 300 27.86% - 6.78% (17s) 0.08% - 0.28% (721s) 0.02% - 0.13% (6774s)

DCAP 233 500 30.24% - 11.12% (14s) 0.05% - 3.40% (906s) 0.01% - 0.34% (9188s)

DCAP 243 200 22.80% - 1.31% (12s) 0.08% - 0.75% (650s) 0.01% - 0.13% (7122s)

DCAP 243 300 22.69% - 1.39% (8s) 0.09% - 0.59% (1301s) 0.03% - 0.18% (3h)

DCAP 243 500 23.30% - 0.88% (13s) 0.09% - 0.56% (2362s) 0.02% - 0.25% (3h)

DCAP 332 200 44.53% - 51.42% (1s) 0.15% - 1.06% (319s) 0.06% - 1.06% (4343s)

DCAP 332 300 44.79% - 28.42% (1s) 0.20% - 0.20% (485s) 0.04% - 0.20% (3h)

DCAP 332 500 47.61% - 18.18% (1s) 0.12% - 0.55% (1122s) 0.08% - 0.55% (2862s)

DCAP 342 200 40.89% - 9.59% (6s) 0.13% - 9.15% (1045s) 0.05% - 2.12% (3h)

DCAP 342 300 40.92% - 7.15% (5s) 0.13% - 4.24% (1802s) 0.05% - 2.17% (3h)

DCAP 342 500 38.20% - 6.71% (18s) 0.10% - 2.61% (3272s) 0.04% - 1.50% (3h)

Table 5: DCAP Instances: Branch-and-Cut Scheme.

LB gap - UB gap (computation time)

Instance SB* SB*+L* SB*+L*+S-RG

DCAP 233 200 26.78% - 3.68% (7s) 0.05% - 0.82% (190s) 0.00% - 0.00% (297s)

DCAP 233 300 27.87% - 6.78% (11s) 0.03% - 0.01% (281s) 0.00% - 0.01% (1993s)

DCAP 233 500 30.24% - 11.12% (12s) 0.04% - 0.77% (200s) 0.00% - 0.00% (1202s)

DCAP 243 200 22.80% - 1.31% (8s) 0.05% - 0.34% (264s) 0.01% - 0.13% (1726s)

DCAP 243 300 22.69% - 1.39% (11s) 0.09% - 0.25% (232s) 0.26% - 0.11% (3h)

DCAP 243 500 23.30% - 0.88% (13s) 0.07% - 0.46% (999s) 0.02% - 0.19% (3h)

DCAP 332 200 44.53% - 51.42% (1s) 0.30% - 1.15% (124s) 0.04% - 0.76% (4420s)

DCAP 332 300 44.79% - 28.42% (1s) 0.15% - 0.82% (197s) 0.04% - 1.27% (3h)

DCAP 332 500 47.61% - 18.18% (1s) 0.10% - 0.39% (617s) 0.03% - 0.48% (3h)

DCAP 342 200 40.74% - 9.59% (5s) 0.09% - 5.45% (258s) 0.10% - 4.57% (3h)

DCAP 342 300 40.92% - 7.15% (9s) 0.10% - 3.65% (329s) 0.00% - 0.17% (3h)

DCAP 342 500 38.22% - 6.71% (13s) 0.08% - 4.81% (410s) 0.02% - 0.73% (3h)

A first observation from the results in Tables 4 and 5 is that both cut hierarchies clearly
outperform the stand-alone SB* cuts in terms of both LB and UB gaps. Moreover, similar as for
the instances in Sections 6.3.1 and 6.3.2, our scaled cuts are able to significantly reduce the LB
and UB gap in the root node. Indeed, compared to the SB*+L* cut hierarchy, including S-RG
cuts in the hierarchy reduces the average LB and UB gaps by respectively 67% and 64%. However,
for some instances, the UB gaps in the root node are still relatively large, but a comparison of the
results in Tables 4 and 5 reveals that using a branch-and-cut scheme to solve (MP) further reduces
the average UB gap on 9 out of 12 instances, and for these instances, the average UB gap decreases
by roughly 61%. Closer inspection of the results in Table 4 reveals that the LB gaps achieved by
the SB*+L* cut hierarchy in the root node are relatively small: they are at most 0.2%, and below
0.1% for 6 of the 12 instances. That is why we also consider relaxations of the original DCAP
instances, for which we expect that the SB* and L* cuts perform less well. In particular, we relax
the binary requirements in the first-stage problem, which comes down to assuming that there are
no fixed set-up costs associated with buying capacity. We report the results in Table 6.
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Table 6: DCAP Relaxations: Root Node Gaps.

LB gap - UB gapa (computation time)

Instance (LSDE gap)b SB* SB*+L* SB*+L*+S-RG

DCAP 233 200 32.74% - 4.93% (2s) 0.68% - 1.62% (116s) 0.11% - 0.26% (3h)

DCAP 233 300 (0.05%) 30.70% - 7.50% (4s) 0.82% - 1.30% (189s) 0.19% - 0.82% (3h)

DCAP 233 500 31.26% - 12.61% (4s) 0.47% - 1.10% (248s) 0.08% - 0.09% (3h)

DCAP 243 200 21.50% - 0.60% (7s) 0.45% - 0.60% (134s) 0.05% - 0.15% (3h)

DCAP 243 300 22.06% - 0.80% (9s) 0.51% - 0.80% (173s) 0.16% - 0.52% (3h)

DCAP 243 500 (0.23%) 22.22% - 0.45% (14s) 0.41% - 0.45% (358s) 0.04% - 0.45% (3h)

DCAP 332 200 (0.02%) 42.22% - 57.03% (1s) 1.40% - 3.69% (87s) 0.34% - 2.69% (3h)

DCAP 332 300 42.83% - 33.15% (1s) 1.27% - 7.04% (93s) 0.46% - 4.94% (3h)

DCAP 332 500 46.93% - 19.58% (4s) 0.46% - 1.46% (421s) 0.20% - 1.46% (3h)

DCAP 342 200 32.96% - 1.24% (5s) 0.57% - 1.24% (98s) 0.12% - 1.24% (3h)

DCAP 342 300 36.81% - 2.43% (8s) 0.55% - 0.77% (166s) 0.18% - 0.77% (3h)

DCAP 342 500 (0.22%) 33.14% - 1.99% (13s) 0.49% - 1.65% (340s) −0.04% - 1.65% (3h)

aThe LB and UB gaps are computed using the best known lower and upper bound on η∗, respec-
tively, obtained by solving the large-scale deterministic equivalent (LSDE) MIP using Gurobi with
24 threads, and a time limit of 12 hours.
bWe report the LSDE gap if it exceeds 0.01%.

Similar as for the original DCAP instances, our cut hierarchies achieve significantly better
LB and UB gaps compared to the benchmark SB* cuts. As we expected, however, the LB gaps
achieved by the SB*+L* hierarchy are noticeably larger compared to the original DCAP instances.
Nonetheless, in line with our previous findings, we are able to significantly reduce the LB gaps
by also including S-RG cuts: we achieve a 78% reduction, on average. Moreover, on 7 out of 12
instances, we have found better incumbent solutions, and for these instances, the average UB gap
is reduced by 41% from 2.3% to 1.4%.

7 Conclusion

We propose a new family of optimality cuts which can be used to solve general two-stage mixed-
integer recourse (MIR) models. These so-called scaled cuts are derived by solving extended for-
mulations of the second-stage subproblems. In contrast to existing optimality cuts, scaled cuts
can be used to recover the convex envelope of the expected second-stage cost function in general.
That is, we allow for general mixed-integer decision variables in both stages, and we do not make
restrictive assumptions regarding the uncertain parameters in the model, e.g., we do not require
that the problem exhibits fixed recourse. We describe efficient primal and dual subroutines for
computing our scaled cuts, which are based on vertex enumeration and cutting planes techniques,
respectively, and we propose a novel cut-enhancement technique to accelerate the convergence of
our scaled cuts. To demonstrate the effectiveness of the (enhanced) scaled cuts, we solve a number
of MIR problem instances from the literature, and we find that we are able to improve significantly
over existing optimality cuts in terms of solution quality and the optimality gap at the root node
of the Benders’ master problem.

One avenue for future research is the extension to multi-stage MIR models and to problems
with non-linear cost functions, such as quadratic or conic MIR models. An alternative direction
is to compute scaled cuts using inexact lower bounds for the expected second-stage cost function,
which can be obtained by solving convex approximations of the original MIR model. Typically,
such inexact lower bounds are relatively inexpensive to generate, and thus they may be used to
speed up the convergence of our scaled cuts.
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Appendix

The proofs of Lemmas 1-4 and Proposition 1 are not only postponed to the appendix for ease of
presentation, they also depend on the characterizations of the set Πω(φ) and the function Cω(ρ)
in Lemmas 5 and 6 in Section 4, respectively. The proofs of these lemmas are independent of the
results in Section 3. The proofs of Lemmas 1-4 can be read in the same order as they appear in
the main text. We only remark that the proof of Proposition 1 depends on Lemma 3 and is for
this reason given after the proof of that lemma.

Proof. Proof of Lemma 1. We have to show that

sup
α,β,τ
{α− β>x̄− τφ(x̄) : (α, β, τ) ∈ Πω(φ)} = vω(x̄), (26)

and that the supremum in (26) is attained by some (α, β, τ) ∈ Πω(φ). In the proof, we will use
the definition of Cω(ρ) in (15), which we repeat here for convenience,

Cω(ρ) = sup
α,β,τ
{α− β>x̄− (1 + τ)ρ : (α, β, τ) ∈ Πω(φ)}. (27)

In particular, it also suffices to show that Cω(φ(x̄)) = −φ(x̄) + vω(x̄), and that the supremum
in (27) with ρ = φ(x̄) is attained.

We first show that the problem in (27) is feasible and bounded, so that the corresponding
supremum is attained, using the polyhedrality of Πω(φ) from Lemma 5. Feasibility follows from
the fact that vω is bounded from below, which is a consequence of Assumptions (A3) and (A4).
Boundedness follows from the definition of Πω(φ), which implies that

Cω(φ(x̄)) ≤ −φ(x̄) + vw(x̄) <∞,

where the latter inequality follows from x̄ ∈ X and Assumption (A1). In the remainder of the
proof, we show that Cω(φ(x̄)) ≥ −φ(x̄) + vω(x̄).

In particular, we use the dual representation of Cω(ρ) in Lemma 6 to obtain that

Cω(φ(x̄)) = −φ(x̄) + min
y
{q>ω y : (x̄, φ(x̄), y) ∈ conv(Sφω)},

where

Sφω := {(x, θ, y) ∈ X × R× Y : θ ≥ φ(x), Wωy = hω − Tωx},

and we show that q>ω y ≥ vω(x̄) for every y such that (x̄, φ(x̄), y) ∈ conv(Sφω). Fix such y arbitrarily,
and let (xi, θi, yi) ∈ Sφω , i = 1, . . . , d, denote the extreme points of conv(Sφω). Then, there exist
λi ≥ 0, i = 1, . . . , d and µ1 ≥ 0, for which

(x̄, φ(x̄), y) =

d∑
i=1

λi(xi, θi, yi) + (0, µ1, 0),

and
∑d
i=1 λ

i = 1. Noting that (xi, θi) ∈ epiX(φ), and using the assumption that (x̄, φ(x̄)) is an
extreme point of conv(epiX(φ)) it follows that (xi, θi) = (x̄, φ(x̄)) for every i = 1, . . . , d. The
desired inequality then follows:

q>ω y =

d∑
i=1

λiq>ω y
i ≥

d∑
i=1

λivω(xi) =

d∑
i=1

λivω(x̄) = vω(x̄),

where the inequality follows from feasibility of yi in vω(xi) = miny∈Y{q>ω y : Wωy = hω−Tωxi}.
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Proof. Proof of Lemma 2. We first show that C(·) is convex and continuous on dom(C), and that
the supremum in (11) is attained for all ρ ∈ dom(C). We use the expression C(ρ) = Eω[Cω(ρ)],
where Cω(ρ) is defined in (27), and we use the polyhedral representation of Πω(φ) in Lemma 5 to
obtain that

Cω(ρ) = sup
α,β,τ
{α− β>x̄− ρ(1 + τ) : q>ω y

i + β>xi + τθi ≥ α ∀i ∈ {1, . . . , d}, τ ≥ 0}, (28)

where (xi, θi, yi), i = 1, . . . , d, are the extreme points of conv(Sφω). In particular, since the LP
in (28) is feasible and bounded for all ρ ∈ dom(Cω), the corresponding supremum is attained, and
the corresponding value function Cω(·) is convex and continuous on dom(Cω) for every ω ∈ Ω. It
then follows from C(ρ) = Eω[Cω(ρ)] and

dom(C) =
⋂
ω∈Ω

dom(Cω), (29)

that C(·) is convex and continuous on dom(C), and that the corresponding supremum is attained.
To see that C(·) is strictly decreasing on dom(C), fix ρ1, ρ2 ∈ dom(C) such that ρ1 < ρ2. We

know that there exist (αω, βω, τω) ∈ Πω(φ), ω ∈ Ω, such that

C(ρ2) = Eωαω − Eωβ>ω x̄− (1 + Eωτw)ρ2,

and, using the definition of C(ρ1), we obtain

C(ρ1) ≥ Eωαω − Eωβ>ω x̄− (1 + Eωτw)ρ1,

from which it follows that C(ρ1) > C(ρ2), using that ρ1 < ρ2 and Eωτw ≥ 0.
To prove (iii), fix ρ̄ ∈ dom(C), and denote an optimal solution of (11) with ρ = ρ̄ by (αω, βω, τω),

ω ∈ Ω. We have to show that

C(ρ) ≥ C(ρ̄)− (1 + Eωτω)(ρ− ρ̄) ∀ρ ∈ R.

This follows directly by substituting C(ρ̄) = Eωαω−Eωβ>ω x̄− ρ̄(1+Eωτω) and using the definition
of C(ρ) in (11).

Finally, to show that dom(C) = [φ(x̄),∞) if x̄ ∈ X, we will prove the slightly more general
expression

dom(C) = {ρ : (x̄, ρ) ∈ conv(epiX(φ))}, (30)

for arbitrary x̄ ∈ X̄, which reduces to dom(C) = [φ(x̄),∞) if x̄ ∈ X, since then (x̄, ρ) ∈
conv(epiX(φ)) if and only if ρ ≥ φ(x̄). We prove (30) from (29), by showing that dom(Cω) =
{ρ : (x̄, ρ) ∈ conv(epiX(φ))} for every ω ∈ Ω. To do so, we use expression for the dual LP of (28)
from Lemma 6, which we repeat here for convenience:

min
y
{q>ω y : (x̄, ρ, y) ∈ conv(Sφω)}. (31)

In particular, we show that the dual LP in (31) is bounded and feasible if and only if (x̄, ρ) ∈
conv(epiX(φ)). In fact, the dual LP is bounded for all ρ ∈ R as a consequence of Assumption (A1).
To see that the dual problem is feasible if and only if (x̄, ρ) ∈ conv(epiX(φ)), suppose that (x̄, ρ) ∈
conv(epiX(φ)), i.e., there exist λi ≥ 0, and (xi, θi) ∈ epiX(φ), i = 1, . . . , d′, such that

∑d′

i=1 λ
i = 1

and

(x̄, ρ) =

d′∑
i=1

λi(xi, θi).

It follows from Assumption (A1) that there exist yi such that (xi, θi, yi) ∈ Sφω , i = 1, . . . , d′, and
as a resultx̄, ρ, d′∑

i=1

λiyi

 =

d′∑
i=1

λi(xi, θi, yi) ∈ conv(Sφω),

and thus y :=
∑d′

i=1 λ
iyi is feasible in (31). The converse claim can be proved in a similar way.
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Proof. Proof of Lemma 3. Using the definition of ρ∗ in (10), we have

ρ∗ = min
ρ

{
ρ : ρ ≥ Eωαω − Eωβ>ω x̄

1 + Eωτω
∀(αω, βω, τω) ∈ Πω(φ), ω ∈ Ω

}
= min

ρ

{
ρ : Eωαω − Eωβ>ω x̄− ρ(1 + Eωτω) ≤ 0 ∀(αω, βω, τω) ∈ Πω(φ), ω ∈ Ω

}
,

and using the definition of C(ρ), we obtain ρ∗ = minρ{ρ : C(ρ) ≤ 0}. Suppose now that x̄ ∈ X
and ρ∗ > φ(x̄). It follows from ρ∗ > φ(x̄) and (13) that C(φ(x̄)) > 0, and thus ρ∗ is the unique
solution of C(ρ) = 0, since C(·) is continuous and strictly decreasing on dom(C) = [φ(x̄),∞), see
Lemma 2.

Proof. Proof of Lemma 4. We first show that C(ρk) → 0, which suffices to show that ρk → ρ∗,
since C(·) is continuous by Lemma 2, and ρ∗ is the unique solution of C(ρ) = 0 by Lemma 3.

In order to prove that C(ρk)→ 0, we rewrite the updating rule in (14) as

ρk+1 − ρk =
C(ρk)

1 + Eωτω,k
, (32)

in which we use the notation τω,k to emphasize that the value of τω depends on the iteration, i.e.,
τω,k corresponds to an optimal solution of the problem in (27) with ρ = ρk. By construction, the
sequence {ρk} is non-decreasing and bounded, and thus convergent. Therefore, taking limits on
both sides of (32) yields

0 = lim
k→∞

C(ρk)

1 + Eωτω,k
,

and thus, we have to show that 1 + Eωτω,k is eventually bounded over k. That is, it suffices to
show that there exists a τ̄ such that Eωτω,k ≤ τ̄ for all k ≥ 1.

We derive such a τ̄ by using that Πω(φ) is polyhedral, see Lemma 5. In particular, let

(αiω, β
i
ω, τ

i
ω), i = 1, . . . , d, and (α̂jω, β̂

j
ω, τ̂

j
ω), j = 1, . . . , r denote the extreme points and directions

of Πω(φ), respectively, ω ∈ Ω. Since Cω(ρ0) < ∞ it must be that α̂jω − β̂j>ω x̄ − ρ0(1 + τ̂ jω) ≤ 0,
since otherwise it would be possible to improve the objective in (27) with ρ = ρ0 without bound.
Furthermore, we have that ρk > ρ0 for every k ≥ 1, since {ρk}k≥0 is increasing, and ρ1 > ρ0 by the

assumption that C(ρ0) > 0. It follows that α̂jω − β̂j>ω x̄− ρk(1 + τ̂ jω) < 0 for every k ≥ 1, and thus
any optimal solution of the problem in (27) with ρ = ρk, k ≥ 1, is a convex combination of the
extreme points (αiω, β

i
ω, τ

i
ω), i = 1, . . . , d, of Πω(φ). Hence, we can take τ̄ = Eω[maxi=1,...,d{τ iω}].

Finally, we show that if C(ρk) < δ, then ρk ≥ ρ∗−δ. To this end, let (αω,k, βω,k, τω,k) ∈ Πω(φ),
ω ∈ Ω, be such that C(ρk) = Eωαω,k −Eωβ>ω,kx̄− (1 + Eωτω,k)ρk, and use the definition of C(ρ∗)
to obtain that

C(ρ∗) ≤ Eωαω,k − Eωβ>ω,kx̄− (1 + Eωτω,k)ρ∗.

It follows that

C(ρk)− C(ρ∗) ≥ (1 + Eωτω,k)(ρ∗ − ρk) ≥ ρ∗ − ρk,

and we obtain ρ∗ − ρk ≤ δ by substituting C(ρ∗) = 0 and C(ρk) ≤ δ, as desired.

Proof. Proof of Proposition 1. We will show that there exists a finite collection of optimality cuts

SCC(φ)(x) ≥ αk − β>k x ∀x ∈ X̄, k = 1, . . . ,K,

defined by rational data, which completely describe SCC(φ), i.e., for every x̄ ∈ X̄, there exist
rational αk and βk, such that SCC(φ)(x̄) = αk − β>k x̄. To this end, fix arbitrary x̄ ∈ X̄, and note
that SCC(φ)(x̄) = ρ∗, where ρ∗ is the optimal value of the problem in (10). By Lemma 3, we
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know that ρ∗ = minρ{ρ : C(ρ) ≤ 0}, where C(ρ) is defined as in (11). In particular, C(ρ∗) ≤ 0,
and we distinguish two cases: C(ρ∗) = 0, and C(ρ∗) < 0.

If C(ρ∗) = 0, then by Lemma 2, the optimal value ρ∗ of the problem in (10) is attained by
some (αω, βω, τω) ∈ Πω(φ), ω ∈ Ω, where (αω, βω, τω) attains the optimal value Cω(ρ∗) of (27).
Furthermore, since the feasible region Πω(φ) of (27) is a rational polyhedron by Lemma 5, and the
objective function is linear, it follows that the optimal value Cω(ρ∗) is in fact attained by one of
the finitely many rational extreme points of Πω(φ), and thus we assume, without loss of generality,
that (αω, βω, τω) is a rational extreme point of Πω(φ). By definition of SCC(φ), we have

SCC(φ)(x) ≥ Eωαω − Ewβ>ω x
1 + Eωτω

∀x ∈ X̄. (33)

and, in addition, (Eωαω−Ewβ>ω x̄)/(1+Eωτω) = ρ∗ = SCC(φ)(x̄), i.e., the optimality cut in (33) is
valid and tight at x̄. Moreover, the cut in (33) corresponds to one of the finitely many combinations
of rational extreme points of Πω(φ), ω ∈ Ω.

In order to analyse the case where C(ρ∗) < 0, we first show that

ρ∗ = min
ρ
{ρ : C(ρ) <∞}. (34)

To see this, suppose for contradiction that there exists a ρ′ < ρ∗ such that C(ρ′) < ∞. But
then, it must be that C(ρ′) > 0, since ρ∗ = minρ{ρ : C(ρ) ≤ 0}, and thus the continuity of C(·)
established in Lemma 2 implies that there exists a ρ′′ ∈ (ρ′, ρ∗) such that C(ρ′′) = 0, which is a
contradiction. Then, using the expression for dom(C) in (30), we obtain from (34) that

ρ∗ = min
ρ
{ρ : (x̄, ρ) ∈ conv(epiX(φ))}, (35)

and using similar reasoning for arbitrary x ∈ X̄, we have that

SCC(φ)(x) ≥ min
ρ
{ρ : (x̄, ρ) ∈ conv(epiX(φ))} ∀x ∈ X̄.

Thus, if we define Eφ as the set of cut coefficients which define valid inequalities for conv(epiX(φ)),
i.e.,

Eφ := {(α, β) : θ + β>x ≥ α ∀(x, θ) ∈ conv(epiX(φ))},

then every (α, β) ∈ Eφ defines an optimality cut of the form

SCC(φ)(x) ≥ α− β>x ∀x ∈ X̄. (36)

In addition, using (35) and that the function φ is convex polyhedral, we obtain

ρ∗ = max
α,β
{α− β>x̄ : (α, β) ∈ Eφ}, (37)

i.e., if (α, β) is optimal in (37), then the cut in (36) is tight at x̄. Moreover, the maximum
in (37) is attained by one of the finitely many rational extreme points of Eφ, since Eφ is a
rational polyhedron. To see this, use Theorem 1 in Del Pia and Weismantel (2016) to obtain that
conv(epiX(φ)) is a rational polyhedron, and note that

Eφ = {(α, β) : θi + β>xi ≥ α, i = 1, . . . , d},

where (xi, θi), i = 1, . . . , d, denote the (rational) extreme points of conv(epiX(φ)), see, e.g., Perre-
gaard and Balas (2001).
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Proof. Proof of Lemma 9. We show that T is Lipschitz continuous with Lipschitz constant equal
to 1, i.e., ||Tf −Tg||∞ ≤ ||f −g||∞ for all f, g ∈ C(X̄). Indeed, for arbitrary f, g ∈ C(X̄), we have

||Tf − Tg||∞ = sup
x∈X̄

∣∣∣∣ sup
τω≥0

{
Eωco(vω + τωf)(x)

1 + Eωτω

}
− sup
τω≥0

{
Eωco(vω + τωg)(x)

1 + Eωτω

} ∣∣∣∣
≤ sup
x∈X̄

sup
τω≥0

∣∣∣∣ {Eω [co(vω + τωf)(x)− co(vω + τωg)(x)]

1 + Eωτω

} ∣∣∣∣
≤ sup
τω≥0

{
Eω||co(vω + τωf)− co(vω + τωg)||∞

1 + Ewτω

}
≤ sup
τω≥0

{
Eωτω

1 + Ewτω

}
||f − g||∞

= ||f − g||∞,

where the final inequality follows from the fact that ||co(f) − co(g)||∞ ≤ ||f − g||∞. To see this,
let δ = ||f − g||∞, and fix x ∈ X̄. Note that

co(f)(x)− δ ≤ f(x)− δ ≤ g(x).

Because co(f)− δ is convex and lsc, it follows that

co(f)(x)− δ ≤ co(g)(x).

Analogously, we can show that co(g)(x)− δ ≤ co(f)(x), and the result follows.

Proof. Proof of Lemma 10. We have to prove that for every ε > 0 there exists τω ≥ 0 such that
co(vω + τf)(x̄) ≥ vω(x̄) + τf(x̄) − ε. We will do so by showing that there exist α, β, and τ ≥ 0
such that (i) vω(x) + τf(x) ≥ α− β>x ∀x ∈ X, and (ii) α− β>x̄ ≥ vω(x̄) + τf(x̄)− ε. The claim
then follows by letting ε→ 0.

Let ε > 0 be given and define v+
ω : epi(f) 7→ R as v+

ω (x, θ) = vω(x), (x, θ) ∈ epi(f). We prove
that α, β, and τ ≥ 0 satisfying (i) and (ii) exist by showing that co(v+

ω )(x̄, θ̄) = vω(x̄). Then, by
definition of co(v+

ω ), there exist α′, β′, and τ ′ such that

v+
ω (x, θ) ≥ α′ − β′>x− τ ′θ ∀(x, θ) ∈ epi(f), (38)

and

α′ − β′>x̄− τ ′θ̄ ≥ vω(x̄)− ε. (39)

Note that (38) implies that vω(x) ≥ α′ − β′
>
x − τ ′f(x) ∀x ∈ X since v+

ω (x, θ) = vω(x) and

(x, f(x)) ∈ epi(f) ∀x ∈ X. In addition, (39) implies that, α′ − β′>x̄ − τ ′f(x̄) ≥ vω(x̄) − ε, since
θ̄ = f(x̄). Thus, we may take (α′, β′, τ ′) = (α, β, τ).

It remains to show that co(v+
ω )(x̄, θ̄) = vω(x̄). Note that v+

ω is lsc, since vω is lsc and epi(f)
is a closed set. Analogous to Corollary 3.47 in Rockafellar and Wets (2009), it follows that
co(v+

ω ) is lsc, and as a result, co(v+
ω ) = co(v+

ω ). In addition, since (x̄, θ̄) is an extreme point of
epi(f), we have co(v+

ω )(x̄, θ̄) = v+
ω (x̄, θ̄) (Tawarmalani and Sahinidis 2002, Corollary 3). Hence,

co(v+
ω )(x̄, θ̄) = co(v+

ω )(x̄, θ̄) = v+
ω (x̄, θ̄) = vω(x̄).
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Küçükyavuz S, Sen S (2017) An introduction to two-stage stochastic mixed-integer programming. IN-
FORMS TutORials in Operations Research, 1–27.

Laporte G, Louveaux FV (1993) The integer L-shaped method for stochastic integer programs with com-
plete recourse. Operations Research Letters 13(3):133–142.

33



Louveaux FV, van der Vlerk MH (1993) Stochastic programming with simple integer recourse. Mathemat-
ical Programming 61(1-3):301–325.

Ntaimo L (2010) Disjunctive decomposition for two-stage stochastic mixed-binary programs with random
recourse. Operations Research 58(1):229–243.

Ntaimo L (2013) Fenchel decomposition for stochastic mixed-integer programming. Journal of Global
Optimization 55(1):141–163.

Ntaimo L, Tanner MW (2008) Computations with disjunctive cuts for two-stage stochastic mixed 0-1
integer programs. Journal of Global Optimization 41(3):365–384.

Perregaard M, Balas E (2001) Generating cuts from multiple-term disjunctions. International Conference
on Integer Programming and Combinatorial Optimization, 348–360 (Springer).

Qi Y, Sen S (2017) The ancestral benders cutting plane algorithm with multi-term disjunctions for mixed-
integer recourse decisions in stochastic programming. Mathematical Programming 161(1-2):193–235.

Rockafellar RT (1970) Convex analysis. Number 28 (Princeton university press).

Rockafellar RT, Wets RJB (2009) Variational analysis, volume 317 (Springer).

Romeijnders W, Schultz R, van der Vlerk MH, Klein Haneveld WK (2016) A convex approximation for
two-stage mixed-integer recourse models with a uniform error bound. SIAM Journal on Optimization
26(1):426–447.

Rudin W (1976) Principles of mathematical analysis (McGraw-Hill New York).

Schultz R (1995) On structure and stability in stochastic programs with random technology matrix and
complete integer recourse. Mathematical Programming 70(1-3):73–89.

Schultz R, Stougie L, van der Vlerk MH (1998) Solving stochastic programs with integer recourse by
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