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Abstract

In models with many parameters, averaging unrestricted estimators with

estimators from restricted models can reduce estimation risk. We construct

valid confidence regions centered at such averaging estimators. When the

number of observations and imposed restrictions are sufficiently large, these

regions have lower expected volume compared to the standard confidence

region. Power gains over the standard F -test are found when the estimator

from the restricted model is close to the true parameter vector and increases

the distance to the parameter vector under the null.

1 Introduction

Estimation of high-dimensional parameter vectors can be inefficient even when

the number of observations is sufficiently large to estimate the parameters. To

increase efficiency, we can average estimators from an unrestricted model with

estimators from one or more restricted models. When the number of restrictions

on the parameters of interest is sufficiently large and averaging weights are of the

type proposed by James and Stein (1961), averaging estimators dominate the risk

of the unrestricted estimator and are locally minimax efficient (Hansen, 2016).

In this paper, we develop joint confidence regions centered at model averaging

estimators with James-Stein-type weights. This enables valid inference after aver-

aging estimators from models with and without control variables, random effects

and fixed effects models, and when averaging instrumental variables estimators

with least squares estimators. Instead of averaging with a single restricted esti-

mator, we also consider averaging estimators from a sequence of nested models.

∗University of Groningen, t.boot@rug.nl
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The proposed confidence regions are based on the observation by Stein (1981)

that the difference between the mean squared error of the averaging estimator

and an unbiased risk estimate satisfies a central limit theorem in the number of

parameters. Beran (1995) formalizes this in a set-up where a normally distributed

vector is averaged with a fixed vector. We extend these results to allow for the

construction of confidence regions after averaging an unrestricted and a restricted

estimator as in Hansen (2016).

To leverage Stein’s lemma in the proofs, results are derived under sequential

limits in the sample size (n) and the effective number of restrictions on the para-

meters of interest (d). The structure of the proof is then similar to that of Beran

(1995), with several modifications needed to establish the limiting distribution.

In particular, averaging with a random vector changes the asymptotic variance

needed to calculate the confidence regions. A well-known problem with sequential

limit theory is that it can be misleading with regard to finite sample properties.

We therefore study the averaging estimator in the linear regression model in more

detail. Under the rate condition d/n → 0, we find that the limit distribution

under sequential limits coincides with that under joint limits.

In line with the risk reduction, the expected volume of the recentered confi-

dence regions is smaller compared to the standard confidence region centered at

the unrestricted estimator, a property already anticipated by Stein (1956). This

reduction in volume affects power when the confidence regions are used as an al-

ternative to a standard F -test. When the restricted estimator is expected to be

close to the true parameter vector, power is increased over the standard confidence

region. When the restricted estimator is expected to be close to the parameter vec-

tor under the null, power is reduced. This emphasizes that the restrictions should

be selected with care. This is crucially different from the mean squared error

perspective, where it is possible to uniformly dominate the unrestricted estimator

regardless of the imposed restrictions.

We numerically analyze the confidence regions in a set of linear and instru-

mental variables models. We consider indirect restrictions, where the unrestricted

estimator is averaged with a more efficient, but potentially biased estimator from

a restricted model, as well as direct restrictions where the unrestricted estimator

is averaged with a fixed vector. The coverage rate is close to nominal, even when

the number of restrictions is small. Indirect restrictions improve power over the

standard F -test in some parts of the parameter space, yet lose power in others.

Direct restrictions where the signs of the fixed parameters correspond to the true

signs, increase power over the whole parameter space. The results are further
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illustrated in a cross-country growth regression derived from Magnus et al. (2010).

Recentered confidence regions for multiple parameters have been discussed for

the case where the restricted estimator is a fixed vector. Casella and Hwang

(2012) provide an overview of the literature on recentered confidence regions. If

the same radius is used as for the standard confidence region, Casella and Hwang

(1982) prove that recentering increases the coverage rate. Confidence sets with

reduced volume are developed for example by Casella and Hwang (1983) and

Samworth (2005). In our numerical evaluation, we find these confidence regions

to be conservative, especially when the number of parameters increases.

Confidence intervals for individual parameters after model averaging are pro-

posed by Hjort and Claeskens (2003). Based on this suggestion, Liu (2015) de-

velops confidence intervals for the Mallows model averaging estimator of Hansen

(2007), and the jackknife model averaging estimator of Hansen and Racine (2012).

Simulation-based approaches are considered by Claeskens and Hjort (2008), DiTrag-

lia (2016) and Zhang and Liu (2019). These papers find substantial reductions in

the length of the confidence intervals. Leeb and Kabaila (2017) show that for one-

dimensional intervals, in contrast with the multidimensional regions as considered

in this paper, such length reductions are not uniform over the parameter space.

This paper is structured as follows. Section 2 introduces the averaging esti-

mator and the associated confidence regions, and provides geometric intuition for

the results. The theoretical validity and the volume of the confidence regions is

discussed in Section 3. Section 4 provides numerical evidence for the coverage rate

and power properties of associated hypothesis tests. Section 5 concludes.

The following notation is used. The symbol ⇒ denotes convergence in distri-

bution,→p is convergence in probability. Almost surely is abbreviated as a.s. ||A||
denotes the largest eigenvalue of the square matrix A. PX = X(X ′X)−1X ′, and

MX = I − PX . Φ(x) is the standard normal cumulative distribution function.

2 General set-up

We consider the set-up as in Hansen (2016). Suppose we have n observations from

a model which depends on a parameter vector θn ∈ Rk. We are interested in a

parameter vector βn = g(θn) ∈ Rp for some differentiable function g : Rk → Rp.

For example, βn might be a subset of θn. Define G = ∂
∂θ
g(θ)′ ∈ Rk×p. Consider a

set of restrictions on θn as r(θn) = 0 for some differentiable function r : Rk → Rr,

and define R = ∂
∂θ
r(θ)′ ∈ Rk×r.

3



2.1 Averaging estimator

The estimator of the parameter vector of interest βn from the unrestricted model

is denoted as β̂n = g(θ̂n), and from the restricted model as β̃n. The averaging

estimator is given by the linear combination

β̂
a

n = ŵn,dnβ̃n + (1− ŵn,dn)β̂n

= β̃n + (1− ŵn,dn)δ̂n.
(1)

Here, we write for the difference between the unrestricted and restricted estimator

δ̂n = β̂n − β̃n, δn = E
[
β̂n − β̃n

]
. (2)

Let Σu, Σr, and Σδ denote the asymptotic variance matrices of β̂, β̃ and δ̂, with

the corresponding estimators Σ̂u,n, Σ̂r,n, and Σ̂δ,n.

The averaging weight ŵn,dn in (1) aims to minimize the risk ρ(β̂
a

n,βn), which

is defined as the expectation of a quadratic loss function, i.e.

ρ(β̂
a

n,βn) = E[`(β̂
a

n,βn)], `(β̂
a

n,βn) = n(β̂
a

n − βn)′Σ̂
−1
u,n(β̂

a

n − βn). (3)

We analyze averaging weights closely related to the shrinkage factor of James and

Stein (1961), which Hansen (2016) shows to be locally asymptotically minimax

efficient,

ŵn,dn =
τ̂n
nq̂n

, τ̂n = tr(Σ̂
−1
u,nΣ̂δ,n)− 2||Σ̂

−1
u,nΣ̂δ,n||, q̂n = δ̂

′
nΣ̂
−1
u,nδ̂n. (4)

The parameter τ̂n can be interpreted as a measure of the variance reduction achie-

ved by the imposed restrictions. When averaging with a fixed vector, Σ̂δ,n = Σ̂u,n,

and τ̂n = p− 2 as proposed by James and Stein (1961). The denominator of ŵn,dn

measures the misspecification bias induced by the restrictions. The weight placed

on the restricted model is large when the difference between the estimates from

the unrestricted and the restricted model as measured by q̂n is small, and the

variance reduction from the restrictions as measured by τ̂n is large. A geometric

motivation for the averaging weights is provided in Section 2.3.

The weights are indexed by the sample size n and the effective number of

restrictions on the parameter of interest dn introduced by Hansen (2016) as

dn =
tr(Σ̂

−1
u,nΣ̂δ,n)

||Σ̂
−1
u,nΣ̂δ,n||

. (5)
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We will consider asymptotics where dn → ∞. Under the assumptions given in

Section 3.2, we have dn ≤ min[p, r], so that dn → ∞ implies (p, r) → ∞. In

the special case where we average with a fixed vector, Σ̂δ,n = Σ̂u,n and hence,

dn = p = r, where p is the dimension of βn and r is the number of restrictions.

2.2 Confidence regions

We consider spherical confidence regions, which are defined as follows.

Definition 1 For any estimator β̄n of the parameter vector of interest βn, a

weighting matrix Ŵ , and critical values b̂n, the confidence region is defined as

C(β̄n, b̂n) =
{
t : n(β̄n − t)′Ŵ (β̄n − t) ≤ b̂2n

}
. (6)

Denote the inverse χ2(p)-distribution function as F−1χ2(p)(x). The conventional

confidence region for βn centered at β̂n with coverage rate 1− α, is

Cn(β̂n, dχ) =
{
t : n(β̂n − t)′Σ̂

−1
u,n(β̂n − t) ≤ b2χ

}
, b2χ = F−1χ2(p)(1− α). (7)

We consider recentered confidence regions where β̄n in Definition 1 is the aver-

aging estimator (1). To make the results comparable to the confidence region

defined by (7), the weighting matrix is taken as Ŵ = Σ̂
−1
u,n throughout. We then

consider the following critical values.

b̂2n = max(0, ên), ên = ρ̂
(
β̂
a

n,βn

)
+ p1/2σ̂(ĉn)Φ−1(1− α). (8)

Here ρ̂ is the following risk estimate,

ρ̂
(
β̂
a

n,βn

)
= p− 2τ̂n

[
tr(Σ̂

−1
u,nΣ̂δ,n)

nq̂n
− 2

nδ̂
′
nΣ̂
−1
u,nΣ̂δ,nΣ̂

−1
u,nδ̂n

(nq̂n)2

]
+ τ̂ 2n

1

nq̂n
, (9)

and the asymptotic variance σ̂2(ĉn) is estimated as

σ̂2(ĉn) = 2− 4
τ̂ 2n
p

[
tr(Σ̂

−1
u,nΣ̂δ,n)−1

ĉn + 1
−

tr(Σ̂
−1
u,nΣ̂δ,nΣ̂

−1
u,nΣ̂δ,n)/tr(Σ̂

−1
u,nΣ̂δ,n)2

(ĉn + 1)2

]
, (10)

with

ĉn = nδ̃
′
nΣ̂
−1
u,nδ̃n/tr(Σ̂

−1
u,nΣ̂δ,n), δ̃n = max

[
0, 1− tr(Σ̂

−1
u,nΣ̂δ,n)/ (nq̂n)

]1/2
δ̂n.

(11)
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In large samples, the risk estimator ρ̂(β̂
a

n,βn) appearing in (8) is an unbiased

estimator of the risk ρ(β̂
a

n,βn) defined in (3). Setting t = βn in (6), bringing

ρ̂(β̂
a

n,βn) to the left-hand side, and rescaling by p−1/2, we obtain the difference

D(β̂
a

n,βn) = p−1/2[`(β̂
a

n,βn)− ρ̂(β̂
a

n,βn)]. By the unbiasedness of ρ̂(β̂
a

n,βn), this

difference has expectation zero when n is large. If in addition the number of ef-

fective restrictions dn is sufficiently large, we find that D(β̂
a

n,βn) is asymptotically

normally distributed with an asymptotic variance that is consistently estimated

by (10)–(11). This then results in asymptotically correct coverage of βn.

2.3 Geometric motivation in the linear regression model

To gain intuition for the weights (4) and the properties of confidence regions

centered at the averaging estimator, consider the linear regression model

y = Xβ + ε, (12)

where y = (y1, . . . , yn)′, X = [x1, . . . ,xn]′ ∈ Rn×p, ε = (ε1, . . . , εn)′. The errors

are i.i.d. and satisfy E[εi|X] = 0, and E[ε2i |X] = σ2. For simplicity, in this

section we assume that σ2 is known and we condition on X. We also suppress the

dependence of the various estimators on the sample size n.

The unrestricted estimator is β̂ = (X ′X)−1X ′y, with var(β̂|X) = n−1Σ̂u =

σ2(X ′X)−1. Partition X = [X1,X2], and accordingly β = [β′1,β
′
2]
′, where

β2 ∈ Rr. We consider a set of restrictions defined by Rβ = 0, where R =

[Or×p−r, Ir]. This gives the restricted estimator β̃ = [y′X1(X
′
1X1)

−1,0′r]
′
, with

var(β̃|X) = n−1Σ̂r = n−1(Σ̂u − Σ̂uR(R′Σ̂uR)−1R′Σ̂u). The difference between

the estimators is δ̂ = β̂ − β̃. As pointed out by Hausman (1978), var(δ̂|X) =

n−1Σ̂δ = n−1(Σ̂u − Σ̂r). We also use below that cov(δ̂, β̂|X) = n−1Σ̂δ.

We are interested in averaging estimators with a low estimation risk ρ(β̂
a
,β) =

E[`(β̂
a
,β)] = E[n(β̂

a
−β)′Σ̂

−1
u (β̂

a
−β)]. Figure 1 displays the parameter vectors

β, β̂, and β̃ rescaled by (n−1Σ̂u)
−1/2. The averaging estimator β̂

a

∗ closest to β∗ is

given by the orthogonal projection of β∗ on the line segment joining β̂∗ and β̃∗.

Defining δ̂∗ = β̂∗ − β̃∗, this suggests

β̂
a

∗ = β̃∗ +
δ̂
′
∗(β∗ − β̃∗)
δ̂
′
∗δ̂∗

δ̂∗ = β̃∗ +

(
1− δ̂

′
∗(β̂∗ − β∗)
δ̂
′
∗δ̂∗

)
δ̂∗ (13)
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Figure 1: Power resulting from recentered confidence regions

β̃∗

β̂∗β∗

H0

β̂
a

∗

β̃∗

β̂∗β∗

H0

β̂
a

∗

Note: we write β∗ = (n−1Σ̂u)−
1
2β, and similar for the other vectors. H0

denotes the parameter vector under the null hypothesis.

Multiplying from the left with (n−1Σ̂u)
1
2 , we get the averaging estimator

β̂
a

= β̃ +
nδ̂
′
Σ̂
−1
u (β − β̃)

nδ̂
′
Σ̂
−1
u δ̂

δ̂ = β̃ +

(
1− nδ̂

′
Σ̂
−1
u (β̂ − β)

nδ̂
′
Σ̂
−1
u δ̂

)
δ̂. (14)

The denominator nδ̂
′
Σ̂
−1
u δ̂ equals nq̂n in the averaging weights (4). Also, for the

numerator we have E[nδ̂
′
Σ̂
−1
u (β̂ − β)|X] = tr(nΣ̂

−1
u cov(β̂, δ̂|X)) = tr(Σ̂

−1
u Σ̂δ) =

r, corresponding to the first term of τ̂n in (4). The second term in τ̂n is of lower

order in r, and does not appear in the geometric picture sketched here. We see

that the weights (4) achieve a low estimation risk by estimating the projection

that minimizes the loss `(β̂
a
,β).

Figure 1 also shows a particular realization of a confidence region centered at

the unrestricted estimator β̂∗ given by the large circle, and one centered at the

averaging estimator β̂
a

∗ given by the small circle. The volume of the confidence

regions centered at the averaging estimator can be reduced without sacrificing

coverage since its distance to the true parameter vector is smaller.

Efron (2006) points out that smaller confidence regions do not necessarily

improve the power of corresponding tests. This can be seen by comparing both

panels of Figure 1. On the left, the restricted estimator β̃ is further away from

the null hypothesis than the true parameter vector β. In this case, recentering

shifts the confidence region away from the parameter vector under the null and we

expect to gain power against H0. On the right however, the restricted estimator

is close to the parameter vector under the null. The recentered confidence region

now does not reject the null, while the standard confidence region would.
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The leading case in practice is to consider H0 : β = 0. From the discussion

above, we expect to gain power if the restricted estimator has the same signs as

the unknown parameter vector β, and the magnitude of the parameters is not too

small. Section 4 provides a suggestion to obtain the appropriate restrictions.

3 Theoretical results

3.1 Preliminaries

We defined the effective number of restrictions on the parameters of interest in

(5). The main results in this paper are based on sequential asymptotic limits,

where first the number of observations n goes to infinity, which we refer to as the

(n)-asymptotic limit. Then, we consider the limit where the effective number of

restrictions d goes to infinity, which we refer to as the (d, n)-asymptotic limit. Fol-

lowing Phillips and Moon (1999), this is also written as (d, n→∞)seq. We study

joint limits, written as (d, n→∞), in the linear regression model in Section 3.6.

The theoretical results will show the validity and expected volume of the confi-

dence regions centered at the averaging estimator (1) with critical values given by

(8)–(11). The confidence regions are said to be valid under the following definition.

Definition 2 Let b̂n be the critical value for the confidence region for the estimator

β̂
a

n with weighting matrix Σ̂
−1
u,n. The confidence region Cn

(
β̂
a

n, b̂n, Σ̂
−1
u,n

)
is (d, n)-

asymptotically valid if

lim
d→∞

lim
n→∞

∣∣∣P(β ∈ Cn (β̂an, b̂n))− (1− α)
∣∣∣ = 0. (15)

We measure the volume by the geometrical risk, see for example Beran (1995).

This geometric risk is trimmed to ensure that it is well defined for all values of

n. This trimming does not affect the expressions for the geometrical risk that we

derive below.

Definition 3 Suppose ξ is a finite positive constant. The confidence region Cn =

Cn(β̂n, b̂n) has trimmed (n)-asymptotic geometrical risk

GR(C) = lim
n→∞

E

[
min

{
sup
t∈Cn

√
p−1n(βn − t)′Σ̂

−1
u,n(βn − t), ξ

}]
= lim

n→∞
E

[
min

{√
p−1`(β̂n,βn) + p−1/2b̂n, ξ

}]
.

(16)
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If limd→∞GR(C) = g, where g does not depend on ξ, then the (d, n)-asymptotic

geometrical risk of Cn equals g.

The geometrical risk measures the expected distance between the most distant

vector in the confidence region and the true parameter vector of interest. As

indicated by the second line of (16), this equals the distance between the estimator

and the true parameter vector plus the radius of the confidence sphere.

Finally, we will need a measure of the (n)-asymptotic risk of an estimator.

Subtracting an (n)-asympotically unbiased estimator of this risk from the mean

squared error will yield a quantity that asymptotically has mean zero.

Definition 4 Suppose that as n→∞, `(β̂
a

n,βn)⇒ `(β̂
a
,β) = (β̂

a
−β)′Σ−1u (β̂

a
−

β). The (n)-asymptotic risk is defined as

ρ(β̂
a
,β) = E

[
`(β̂

a
,β)
]
. (17)

3.2 Assumptions

Assumption A1 Define the restricted set Θr = {θ : r(θ) = 0}. Let θr ∈ Θr.

The true parameter vector θn is close to the restricted parameter vector θr, in the

sense that θn = θr + n−1/2h

Assumption A2 Let the k-dimensional random vector z ∼ N(0,V ), and define

V = L′L. Along sequences θn defined in Assumption A1, as n→∞,

1. The parameter estimates converge in distribution to

√
n(β̂n − βn)⇒ β̂ − β = G′z
√
n(β̃n − βn)⇒ β̃ − β = G′

[
z − V R(R′V R)−1R′(z + h)

]
.

(18)

2. The covariance matrix estimates converge in probability to

Σ̂u,n →p Σu = G′V G,

Σ̂r,n →p Σr = G′L′(I −LR(R′L′LR)−1R′L′)LG,

Σ̂δ,n →p Σδ = Σu −Σr.

(19)

3. The averaging weights converge in distribution to

ŵn,dn ⇒ wd = τ/q̂. (20)

with q̂ = (z+h)′B(z+h), B = R(R′V R)−1R′V GV −1G′V R′(R′V R)−1R′,

τ = tr(Σ−1u Σδ)− 2||Σ−1u Σδ||.

9



Furthermore, the convergence in 1. and 3. occurs jointly.

Assumption A3 Define q = h′Bh and cd = q
tr(Σ−1

u Σδ)
. For all d, cd < ∞, and

limd→∞ cd = c < ∞. Moreover, limd→∞ τ/p = a1, limd→∞ tr(Σ−1u ΣδΣ
−1
u Σδ)/p =

a2.

Assumption A1 prevents the restrictions to cause an (n)-asymptotically infinite

bias in the restricted estimator β̃n. Assumption A2 regards the (n)-asymptotic

behavior of the estimators and their covariance matrices. The vector h captures

the misspecification bias that arises from imposing invalid restrictions. We see

that the difference between the asymptotic covariance matrices of the unrestricted

and restricted estimator is positive definite, so that a bias-variance trade-off is

apparent in imposing the restrictions. A consequence of Assumption A2 is that

the restricted estimator is (n)-asymptotically independent of its difference with the

unrestricted estimator, the same principle that underlies the specification tests by

Hausman (1978). Assumption A3 ensures that a law of large numbers in the

effective number of restrictions d applies to the averaging weights.

3.3 Confidence regions centered at unrestricted estimators

To highlight the ideas underlying the construction of confidence regions for the

averaging estimator, we can construct a valid confidence region under sequen-

tial limits for the unrestricted estimator β̂n. Since the unrestricted estimator

only depends on the dimension of the parameter vector of interest p, we consi-

der here (p, n)-sequential asymptotics. The following lemma provides a (p, n)-

asymptotically valid confidence region.

Lemma 1 Let Cn(β̂n, b) be a confidence region for the unrestricted estimator with

b2 = p+
√
pσΦ−1(1− α), (21)

where σ =
√

2. Then, Cn(β̂n, b) is (p, n)-asymptotically valid.

Proof: By Assumption A2, as n→∞,

p−1/2
[
n(β̂n − βn)′Σ̂

−1
u,n(β̂n − βn)− p

]
⇒ p−1/2

p∑
i=1

(z2i − 1), (22)

10



where {z1, z2, . . . , zp} is a sequence of mean zero independent random variables

with variance 1. Then, as (p, n→∞)seq,

p−1/2
[
n(β̂n − βn)′Σ̂

−1
u,n(β̂n − βn)− p

]
⇒ N(0, σ2), (23)

where σ2 = 2. �

Reasoning similar to that in the proof of Lemma 1 is used to develop confidence

intervals for the averaging estimator (1). We interpret the left-hand side of (23) as

the difference between the mean squared error of β̂n, and an (n)-asymptotically

unbiased estimator for its (n)-asymptotic risk. We therefore first derive such a

risk estimate for the averaging estimator (1). We then show that the difference

between the mean squared error and risk estimate converges in distribution to

a normal with an asymptotic variance that can be (d, n)-consistently estimated.

This is then used to construct (d, n)-asymptotically valid confidence regions for

the averaging estimator. For normally distributed estimators averaged with the

zero vector, the results reduce to those by Beran (1995).

Having established validity of the confidence region defined by Lemma 1, we

turn to the associated geometrical risk.

Lemma 2 The (p, n)-asymptotic geometrical risk for the confidence region defined

in Lemma 1 equals 2.

Proof: In Definition 1, take ζ = 3. Define t̂2n = p−1n(β̂n−βn)′Σ̂
−1
u (β̂n−βn). Under

Assumption A2, as n→∞, t̂2n ⇒ t̂2 = p−1(β̂−β)′Σ−1u (β̂−β). Also the critical va-

lue in (21) is such that p−1/2b̂n = p−1/2b. Then, limn→∞ E
[
min

{
t̂n + p−1/2b̂n, ζ

}]
=

E
[
min{t̂+ p−1/2b, ζ}

]
by the bounded convergence theorem. By Lemma A.1 in

Appendix A.3, plimp→∞ t̂ = 1. From (21), plimp→∞ p
−1/2b = 1. Then, since ζ = 3,

limp→∞ E
[
min{t̂+ p−1/2b, ζ}

]
= 2. �

3.4 Confidence regions centered at averaging estimators

To apply the reasoning leading to the confidence region (23), we first need an

(n)-asymptotically unbiased estimator for the (n)-asymptotic risk of β̂
a

n given in

(17). This is provided in the following lemma.

Lemma 3 Suppose Assumption A1–A3 hold. Consider the risk estimator (9).

Then, as n→∞,

ρ̂
(
β̂
a

n,βn

)
⇒ ρ̂

(
β̂
a
,β
)

= p− 2τ

[
tr(Σ−1u Σδ)

q̂
− 2

δ̂
′
Σ−1u ΣδΣ

−1
u δ̂

q̂2

]
+ τ 2

1

q̂
, (24)

11



and E
[
ρ̂(β̂

a
,β)
]

= ρ
(
β̂
a
,β
)

, with ρ(β̂
a
,β) as in (17).

Proof: Appendix A.2 shows that this follows from an application of Stein’s lemma.

In line with the approach to obtain confidence regions centered at the unre-

stricted estimator in (23), consider the difference between the quadratic loss (3)

and the unbiased estimator for its risk from Lemma 3,

Dn

(
β̂
a

n,βn

)
= p−1/2

[
`(β̂

a

n,βn)− ρ̂
(
β̂
a

n,βn

)]
. (25)

The following theorem gives the (d, n)-asymptotic distribution of Dn

(
β̂
a

n,βn

)
.

Theorem 1 Suppose Assumption A1–A3 hold. Then, as (d, n→∞)seq,

Dn

(
β̂
a

n,βn

)
⇒ N

(
0, σ2(c)

)
, σ2(c) = 2− 4

[
a1
c+ 1

− a2
(c+ 1)2

]
, (26)

where (c, a1, a2) defined in Assumption A3.

A proof is provided in Appendix A.3. This theorem generalizes Theorem 2.1 of

Beran (1995), which was derived for the case where the estimators are exactly

normal, the restricted estimator is the zero vector, and Σ̂
−1
u,n = Σ̂δ,n = Ip. In this

case a1 = a2 = 1, and c = limp→∞ h
′h/p with h as in Assumption A1.

The parameter c in Theorem 1 measures the strength of the misspecification

bias induced by the model restrictions relative to the efficiency gain. To construct

a valid confidence region, we need a (d, n)-consistent estimator of c, which is

provided in the following corollary.

Corollary 1 Suppose Assumption A2–A3 hold, and ĉn = nδ̃
′
nΣ̂
−1
u,nδ̃n/tr(Σ̂

−1
u,nΣ̂δ,n),

where δ̃n =

[
max

(
0, 1− tr(Σ̂

−1
u,nΣ̂δ,n)

nq̂n

)]1/2
δ̂n. Then, as (d, n→∞)seq, ĉn →p c.

The proof follows from Lemma A.1 in the Appendix A.1.

Corollary 1 leads to the main theorem.

Theorem 2 The confidence region Cn

(
β̂
a

n, b̂n

)
with critical values b̂n as in (8) is

(d, n)-asymptotically valid with (d, n)-asymptotic geometrical risk = 2
(
c+1−a1
c+1

)1/2
,

with a1 and c as in Theorem 1.

A proof is provided in Appendix A.4.

Since a1 ≥ 0, Theorem 2 states that the geometrical risk is at least as low

as when centering the confidence region centered at the unrestricted estimator.

We expect the largest improvements when the misspecification bias relative to the

variance improvements, as measured by the parameter c, is small.

12



3.5 Sequences of nested models

Instead of a single set of restrictions, we can also consider a sequence ofm restricted

models. Here, we have sets of restrictions ri(θn) = 0 for i = 1, . . . ,m, with

ri : Rk → Rri differentiable with respect to θn. As for a single set of restrictions,

define Ri = ∂
∂θ
ri(θ)′ ∈ Rk×ri . By nested models, we mean

Ri+1 = [Ri, R̃i+1]. (27)

Denote by β̂n the unrestricted estimator, and by β̃
(i)

n the estimator under the

i-th set of restrictions. For i = 1, . . . ,m, define

δ̂
(i)

n = β̂
(i−1)
n − β̃(i)

n , (28)

where β̂
(0)

n = β̂n. The covariance matrices of β̂n, β̃
(i)

n and δ̂
(i)

n are denoted by

var[β̂n] = n−1Σu,n, var[β̃
(i)

n ] = n−1Σ(i)
r,n, var[δ̂

(i)

n ] = n−1Σδ(i),n. (29)

with corresponding estimators n−1Σ̂u,n, n−1Σ̂
(i)

r,n, and n−1Σ̂δ(i),n.

Extending the averaging estimator (1) to the case with multiple nested models

β̂
a

n = β̂
(m)

n +
m∑
i=1

(1− ŵ(i)

n,din
)δ̂

(i)

n , ŵ
(i)

n,din
=

tr(Σ̂
−1
u,nΣ̂δ(i),n)− 2||Σ̂

−1
u,nΣ̂δ(i),n||

n δ̂
(i)

n

′
Σ̂
−1
u,nδ̂

(i)

n

(30)

Define the following quantities,

τ̂ (i)n = ŝ(i)n − 2λ̂(i)n , ŝ(i)n = tr(Σ̂
−1
u,nΣ̂δ(i),n), λ̂(i)n = ||Σ̂

−1
u,nΣ̂δ(i),n||,

q̂(i)n = δ̂
(i)

n

′
Σ̂
−1
u,nδ̂

(i)

n , q(i)n = δ(i)n
′
Σ−1u,nδ

(i)
n .

(31)

The effective number of restrictions imposed by the i-th set of restrictions equals

d(i)n = ŝ(i)n /λ̂
(i)
n , plim

n→∞
d(i)n = di. (32)

The following extensions of Assumption A1–A3 are made.

Assumption M1 For i = 1, . . . ,m, define restricted sets Θr(i) =
{
θ : r(i)(θ) = 0

}
.

Let θr(i) ∈ Θr(i). The true parameter vector θn is close to the restricted parameter

vectors θr(i), in the sense that θn = θr(i) + n−1/2h(i)

Assumption M2 Let the k × 1 dimensional vector z ∼ N(0,V ). As n→∞,

13



1. The parameter estimates converge in distribution to

√
n(β̂n − βn)⇒ β̂ − β = G′z,

√
n(β̃

(i)

n − βn)⇒ β̃i − β = G′
[
z − V Ri(R

′
iV Ri)

−1R′i(z + hi)
]
,

(33)

for i = 1, . . . ,m, along sequences defined in Assumption M1.

2. The covariance matrix estimates converge in probability to

Σ̂u,n →p Σu = G′V G,

Σ̂r(i),n →p Σr(i) = G′L′(I −LRi(R
′
iL
′LRi)

−1R′iL
′)LG,

Σ̂δ(i),n →p Σδ(i) = Σr(i−1) −Σr(i) .

(34)

where Σu is invertible, and Σr(0) = Σu.

3. The averaging weights converge in distribution to

ŵ(i)
n ⇒ wdi,i =

τi
q̂i
. (35)

where q̂i = (β̃i−1−β̃i)′Σ−1u (β̃i−1−β̃i), β̃0 = β̂, τi = si−2λi, si = tr(Σ−1u Σδi),

λi = ||Σ−1u Σδi ||.

Assumption M3 Let δ1 = G′V R1(R
′
1V R1)

−1R′1h1, and for i = 2, . . . ,m let

δi = G′V
[
Ri−1(R

′
i−1V Ri−1)

−1R′i−1hi−1 −Ri(R
′
iV Ri)

−1R′ihi
]
. Then, cdi =

δiΣ
−1
u δi/tr(Σ

−1
u Σδi) < ∞ and, as di → ∞, cdi → ci < ∞ for all i. Moreover,

limdi→∞ τi/p = a1,i, limdi→∞ tr(Σ−1u ΣδiΣ
−1
u Σδi)/p = a2,i.

Assumption M4 For i = 2, . . . ,m, define ∆i = LRi−1(R
′
i−1V Ri−1)

−1R′i−1 −
LRi(R

′
iV Ri)

−1R′i, ∆1 = −LR1(R
′
1V R1)

−1R′1, and P LG = LG(G′V G)−1G′L′.

Then, P LG∆i = ∆i.

Assumption M1–M3 parallel Assumption A1–A3 stated before. Combining (27)

with (33) ensures that a restricted estimator has zero covariance with its difference

from an estimator under fewer restrictions. Assumption M4 is new. Technically,

it ensures that in the (n)-asymptotic limit, the cross terms δ̂i,nΣ̂
−1
u,nδ̂j,n vanish

for i 6= j. This is sufficient to prove a reduction in the both the risk and the

geometrical risk of the averaging estimator over the unrestricted estimator in the

(d, n)-asymptotic limit. The leading case where Assumption M4 is satisfied is when

G = I, i.e. when restrictions are directly imposed on parameters of interest.

The theorems below follow by applying the techniques developed to establish

Theorem 1 and Theorem 2. First Lemma 3 is extended,
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Lemma 4 Suppose Assumption M1–M4 hold. To estimate (17), consider the

following risk estimate and its (n)-asymptotic analogue,

ρ̂
(
β̂
a

n,βn

)
= p−

m∑
i=1

2τ̂ (i)n

 ŝ
(i)
n

nq̂
(i)
n

− 2
nδ̂

(i)′

n Σ̂
−1
u,nΣ̂δ(i),nΣ̂

−1
u,nδ̂

(i)

n(
nq̂

(i)
n

)2
−

(
τ̂
(i)
n

)2
nq̂

(i)
n

 ,

ρ̂
(
β̂
a
,β
)

= p−
m∑
i=1

{
2τi

[
si
q̂i
− 2

δ̂iΣ
−1
u ΣδiΣ

−1
u δ̂i

q̂2i

]
− τ 2i
q̂i

}
. (36)

Then, as n→∞, ρ̂
(
β̂
a

n,βn

)
⇒ ρ̂

(
β̂
a
,β
)

, and E
[
ρ̂(β̂

a
,β)
]

= ρ
(
β̂
a
,β
)

.

A proof is provided in Appendix A.5.

The following theorem provides the distribution of (25), the difference between

the mean squared error and the unbiased estimator of the risk of the averaging

estimator given in Lemma 4. We denote by (d, n→∞)seq sequential limits where

first n→∞, and then di →∞ for all i.

Theorem 3 Suppose that Assumption M1–M4 hold. Define c = (c1, . . . , cm).

Then, as (d, n→∞)seq,

Dn(β̂
a

n,βn)⇒ N
(
0, σ2(c)

)
, σ2(c) = 2− 4

m∑
i=1

[
a1,i
ci + 1

− a2,i
(ci + 1)2

]
. (37)

with (ci, a1,i, a2,i) defined in Assumption M3.

A consistent estimator for the parameters ci is given by the following corollary.

Corollary 2 Let δ̃i,n = max
(

0, 1− ŝ(i)n /
[
nq̂

(i)
n

])1/2
δ̂i,n and ĉi,n = δ̃

′
i,nΣ̂

−1
u,nδ̃i,n/ŝ

(i)
n .

By Assumption M2–M3, as (d, n→∞)seq, ĉi,n →p ci.

The proof follows directly from the proof for the case with a single restricted

estimator presented in Appendix A.1.

We consider the following estimator for σ̂2(c),

σ̂2(ĉ) = 2− 4
m∑
i=1

(τ̂
(i)
n )2

p

[
tr(Σ̂

−1
u,nΣ̂δ(i),n)−1

ĉi,n + 1
−

tr(Σ̂
−1
u,nΣ̂δ(i),nΣ̂

−1
u,nΣ̂δ(i),n)

(ĉi,n + 1)2tr(Σ̂
−1
u,nΣ̂δ(i),n)2

]
. (38)

We then obtain the following theorem.

Theorem 4 Suppose that Assumption M1–M4 hold. Consider the confidence re-

gion Cn

(
β̂
a

n, b̂n

)
with b̂2n = max(0, ên), ên = ρ̂(β̂

a

n,βn) + p1/2σ̂(ĉ)Φ−1(1 − α),
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where ρ̂(β̂
a

n,βn) as in (36), and σ̂(ĉ) from (37). Then, Cn

(
β̂
a

n, b̂n

)
is (d, n)-

asymptotically valid with (d, n)-asymptotic geometrical risk 2
(

1−
∑m

i=1
a1,i
ci+1

)1/2
.

Appendix A.6 gives the proof of Theorem 3–4, which is a component-wise appli-

cation of the proofs for Theorem 1–2 facilitated by Assumption M4.

3.6 Joint limits in the linear regression model

In this section we establish under what conditions the developed sequential limit

theory remains valid under joint limits, denoted by (d, n → ∞), in the linear

regression model (12). Throughout this section, we suppress the dependence of

the (estimated) parameter vectors on the sample size n. We consider restrictions

R′β̃ = c, where R ∈ Rp×r and rank(R) = r.

We make the following assumptions, where M > 0 denotes a generic finite

constant that can differ across equations. Here, a.s. denotes almost surely, and

a.s.n. almost surely for n large enough (Chao et al., 2012).

Assumption LR1 The regressors and error terms satisfy the following:

(a) {xi} is an i.i.d. sequence with E[xix
′
i] = QX and QX positive definite. More-

over, p−1var(x′ixi) ≤M , and E[x4ij] ≤M <∞ for all j = 1, . . . , p.

(b) Let λ1, . . . , λp be the eigenvalues of n−1X ′X sorted in decreasing order. There

exist finite positive constants b and B such that b ≤ λp ≤ λ1 ≤ B a.s.n.

(c) Conditional on X, {εi} is an i.i.d. sequence with E[εi|X] = 0, E[ε2i |X] = σ2,

E[ε4i |X] = E[ε4i ] ≤M <∞.

Assumption LR2 Let h ∈ Rp. The restrictions satisfy the following:

(a) R′β − c = n−1/2R′h.

(b) d−1σ−2h′h <∞.

(c) Define cd,n = d−1σ−2h′R(R′(n−1X ′X)−1R)−1R′h. Then, as (d, n → ∞),

cd,n →p c for some constant c ≥ 0.

Assumption LR3 As (d, n)→∞, (a) d
n
→ 0, and (b) d

p
→ a with a ∈ (0, 1].

Assumption LR1 replaces Assumption A2. Assumption LR2 combines Assump-

tion A1 and Assumption A3. Note that in part (c) cd,n <∞ a.s.n. by part (b) of

Assumption LR1 and part (b) of Assumption LR2. When R = I, part (c) follows

from Assumption LR1 and part (b) of Assumption LR2. Finally, Assumption LR3

is the rate condition needed for the sequential limit distribution to coincide with

the joint limit distribution. Since d ≤ p, the fact that d → ∞ implies p → ∞.
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Part (b) rules out the case where the number of restrictions is negligible compared

to the number of parameters, in which case the effect from averaging is negligible.

Estimators and averaging weights The unrestricted estimator of β in (12)

is the least squares estimator, which is also used to estimate the noise level σ2, i.e.

β̂ = (X ′X)−1X ′y, Σ̂u = σ̂2
(
n−1X ′X

)−1
, σ̂2 = (n− p)−1ε′MXε. (39)

In Appendix A.7, we show that σ̂2 is consistent for σ2. The results do not require

Σ̂u to converge in probability. ImposingR′β̃ = c, leads to the restricted estimator

β̃ = β̂ − (X ′X)−1R(R′(X ′X)−1R)−1R′(X ′X)−1X ′(Rβ̂ − c),

Σ̂r = Σ̂u − Σ̂uR(R′Σ̂uR)−1R′Σ̂u.
(40)

The difference δ̂ = β̂− β̃, and Σ̂δ = Σ̂uR(R′Σ̂uR)−1R′Σ̂u. The effective number

of restrictions in this set-up is equal to the number of restrictions, as

d =
tr(R(R′Σ̂uR)−1RΣ̂u)

||R(R′Σ̂uR)−1RΣ̂u||
= r. (41)

The averaging estimator is as in (1), i.e. β̂
a

= ω̂β̃+(1−ω̂)β̂. Using the expres-

sions for the restricted and unrestricted estimator above, the averaging weights

are a function of the inverse F -statistic associated with the imposed restrictions,

ŵ =
r − 2

r · F̂
, F̂ =

δ̂
′
X ′Xδ̂/r

σ̂2
.

Appendix A.7 shows that plim(d,n→∞) F̂ = c + 1, with c as in Assumption LR2.

This is also found by Calhoun (2011) and Anatolyev (2012), who consider testing

many restrictions in the linear regression model.

Using the above expressions and Lemma 3, we find ρ̂(β̂
a
,β) = p − (r − 2)ω̂,

and subsequently

D(β̂
a
,β) = p−1/2

[
n(β̂

a
− β)Σ̂

−1
u (β̂

a
− β)− p+ (r − 2)ω̂

]
. (42)

The following lemma that states that the distribution of D(β̂
a
,β) as given in

Theorem 1 holds under joint limits.
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Lemma 5 Under Assumption LR1–LR3, as (d, n→∞),

D(β̂
a
,β)⇒ N(0, σ2(c)), σ2(c) = 2− 4a

[
1

c+ 1
− 1

(c+ 1)2

]
,

with c defined in Assumption LR2 and a in Assumption LR3.

The proof is provided in Appendix A.7. Key underlying results are Theorem 2

from Phillips and Moon (1999) and Lemma A2 from Chao et al. (2012).

4 Numerical analysis

4.1 Implementation

The geometrical argument in Section 2.3 highlights the importance of the choice for

the restricted estimator when using the confidence regions for hypothesis testing.

To increase power against H0 : β = 0, we need to control the sign and magnitude

of the restricted estimator. The most convenient way to control the sign of the

restricted estimates is by using direct restrictions that set the signs in accordance

with prior knowledge and/or economic theory. We propose to set the restricted

estimator as

β̃n = Lc · m

p1/4n1/2
, LL′ = Σ̂u,n (43)

where c is a vector with elements in {−1, 1} that ensure that β̃n has the expected

coefficient signs. To obtain L, we use a Cholesky decomposition. The scaling of

the estimator is such that the corresponding Wald statistic is local-to-zero, which

is reasonable in empirical settings. The parameter m determines how far away

from zero the restrictions are. We investigate the choice of m below.

A second practical consideration is the following. When the difference between

the restricted and unrestricted estimator is large, the weight on the restricted esti-

mator goes to zero, and the averaging estimator equals the unrestricted estimator.

To get (n)-asymptotically correct coverage, the critical values should be equal to

that of the χ2(p)-distribution, denoted by b2χ. However, we approximate b2χ by

bN = p+
√

2pΦ−1(α). Although valid for large p, for practically relevant values of

p, this will lead to undercoverage. Following the suggestion of Stein (1981), this

can be corrected by choosing a higher value for α to achieve the desired nominal

coverage rate. Setting bN = b2χ, and solving for α, we find α = Φ((b2χ − p)/
√

2p),

with Φ(·) the standard normal CDF. These adjusted levels are used throughout.

This prevents that power differences result from incorrect size of the test.
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4.2 Low- and high-dimensional models

We consider the case where we are interested in a parameter vector β, and we

need to include a large set of control variables to ensure that our estimates for β

are unbiased. An application to instrumental variables regression is given in the

appendix. The data generating process is given by

y = Xβ +Zγ + ε, ε ∼ N(0, I), xi

zi

0

 ∼ N

0,

 Ip ρIp Op×k−2p

ρIp Ip Op×k−2p

Ok−2p×p Ok−2p×p Ik−2p


 . (44)

The parameter vector β is of interest, while the parameters γ are nuisance

parameters. The number of parameters of interest is p = {6, 12, 24} and the

number of nuisance parameters k−p = 24. The sample size equals n = {150, 500}.
The correlation ρ is varied as ρ = {0.2, 0.9}. For j = 1, . . . , p,

βj =

[
cβ

np1/2(1− ρ2)

]1/2
j−1

(
∑p

i=1 i
−2)

1/2
, cβ = {−12, . . . , 12} (45)

γj =

[
cγ

n(k − p)1/2(1− ρ2)

]1/2
j−1(∑k−p

i=1 i
−2
)1/2 , cγ = 10.

The unrestricted estimator is β̂ = (X ′MZX)−1X ′MZy. We consider the

indirectly restricted estimator β̃ = (X ′X)−1X ′y as well as the direct restricted

vector (43). For the latter, we set ci = 1 for i = 1, . . . , p. We vary m = {−3, 0, 3}.
Note that when m > 0 and cβ > 0, the restricted vector has the correct sign,

as well as when m < 0 and cβ < 0. The choice for m = ±3 is motivated in

Appendix B.2, where we find that this choice yields the highest power. All results

are averaged over 100,000 draws of the set {X,Z, ε}.
In Table 1, we show the coverage rate for the proposed confidence regions.

Throughout the coverage rate is close to the nominal level of 0.95. When n = 150,

choosing the fixed restricted vector with m = ±3 yields in slight undercoverage

that largely disappears when increasing the sample size to n = 500. The corre-

lation parameter ρ only affects the coverage under indirect restrictions, although

this effect disappears when the sample size increases to n = 500.

Figure 2 shows the power compared to the power of the standard F -test on

the parameters of interest. In the left upper panel, we consider the case with

p = 12 variables of interest, and we have weak correlation between the regressors
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Table 1: Linear regression model: coverage rate.

p = 6 p = 12 p = 24

n ρ = 0.2 ρ = 0.9 ρ = 0.2 ρ = 0.9 ρ = 0.2 ρ = 0.9

150 m = −3 0.942 0.943 0.941 0.941 0.938 0.938
m = 0 0.964 0.964 0.961 0.960 0.951 0.951
m = 3 0.942 0.943 0.940 0.942 0.938 0.939
OLS 0.946 0.946 0.942 0.947 0.931 0.948

500 m = −3 0.949 0.948 0.948 0.948 0.948 0.946
m = 0 0.966 0.965 0.963 0.964 0.959 0.959
m = 3 0.949 0.948 0.948 0.949 0.949 0.948
OLS 0.950 0.949 0.949 0.949 0.946 0.951

Note: coverage rate under (44) at β = 0, sample size n = {150, 500}, number
of parameters of interest p = {6, 12, 24}, and correlation between nuisance
variables and variables of interest ρ = {0.2, 0.9}. Coverage rates are reported
for averaging with (43) choosing m = {−3, 0, 3}, and averaging with the OLS
estimator that ignores the control variables. Nominal coverage equals 0.95.

in X and Z (ρ = 0.2). Power under the standard F -test is depicted by the black

solid line. The restricted estimator (43) with m = {−3, 0, 3} is displayed by the

blue solid, dash-dotted and dashed line. We see that for power improvements,

visualized by the gray area, it is essential to get the sign of the coefficient vector

right. Setting m = 0, a common choice when the interest is in risk reduction,

substantially lowers power. When we use the indirectly restricted estimator, we

see a power improvement when cβ > 0, and a slight power loss when cβ < 0. The

reason is that because of the positive correlation, omitting the control variables

leads tp an upward bias in the coefficients. When cβ > 0 this results in a power

increase, but the upward bias similarly reduces power when cβ < 0.

In the right upper panel, we increase correlation between the regressors to

ρ = 0.9. This does not affect the averaging estimator when a fixed restricted

estimator is used. However, when the restricted least squares estimator is used, a

larger power gain is observed when cβ > 0 and a larger loss when cβ < 0.

In the left lower panel, we decrease the number of parameters of interest to

p = 6. The blue lines are again the power curves using the fixed restricted vector.

Decreasing the number of parameters of interest also decreases both the power

gains when the correct sign is used, and losses when the wrong sign is used. The

positive correlation between the regressors again makes using the restricted least

squares estimator useful only when cβ > 0.

Finally, in the right lower panel, we consider the same setting as in the upper
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Figure 2: Linear regression model: power.

Note: the figure shows power against H0 : β = 0 at a sample size of n = 500. The black solid
line corresponds to the usual F -test, the black dashed line to averaging with the least squares
estimator that ignores the control variables. The blue lines correspond to averaging with the
restricted estimator (43) with ci = 1 for i = 1, . . . , p, m = −3 (solid), m = 0 (dash-dotted),
m = 3 (dashed). In the left upper panel, the correlation ρ = 0.2 and there are p = 12 parameters
of interest. In the right upper panel, ρ = 0.9. The left lower panel is the same as the right upper
panel, but now p = 6. The right lower panel again has p = 12, but the blue lines correspond to
the multiple restricted estimator where the first set of restrictions sets β7, . . . β12 equal to (43),
and the second set of restrictions sets β1, . . . , β6 equal to (43).

right panel, but now we use the multiple averaging estimator from Section 3.5.

We choose a directly restricted estimator that sets only the final p/2 parameters

equal to according to (43), but leaves the others unrestricted, as well as one that

sets all parameters according to (43). We see that the both power gains and losses

are smaller compared to using a single restricted estimator.

Alternative confidence regions In Figure 3, we compare the power under the

critical values derived here to the confidence regions by Casella and Hwang (1983)

and Samworth (2005). All average with the fixed restricted vector with m = 3

when cβ > 0 and m = −3 when cβ < 0. That is, we assume that the correct sign of
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Figure 3: Linear regression model: comparison to alternative procedures.

Note: the figure shows power against H0 : β = 0 at a sample size of n = 500. In the upper panels,
the black solid line is the power from the usual F-test, the black dashed line when averaging with
the restricted least squares estimator. The solid blue line corresponds to the restricted estimator
(43) with m = 3 and the correct sign. The dash-dotted blue line is power under the procedure
by Casella and Hwang (1983), the dashed blue line using Samworth (2005). Both panels have
ρ = 0.9. The left panel has p = 12, the right panel p = 24.

the coefficients is chosen. The construction of the confidence regions is discussed

in Appendix B.1. The solid blue line corresponds to the regions developed in this

paper, the dash-dotted blue line by those of Casella and Hwang (1983), and the

dashed blue line by Samworth (2005). The black solid line is again the power from

the standard F -test, and the black dashed line from using the indirectly restricted

estimator. We find that the confidence regions developed in this paper offer higher

power, especially when the number of parameters is large. From the numerical

results in Casella and Hwang (1983) and Samworth (2005) this can be expected,

as these regions generally lead to substantial overcoverage when p is large.

Skewed, heavy-tailed distributions and joint limits In Section 3.6, we

studied the asymptotic theory under joint limits in the number of restrictions and

the sample size. To test this theory empirically, we consider the same model as

above with β = 0. We only consider averaging with the fixed restricted vector (43),

so that p = r = d. We set m = 3. We now consider regressors X = X̃Σ1/2. Here

the covariance matrix Σ is as before, but the elements from X̃ are generated by

squaring independent t(10) random variables and standardizing the columns. The

elements of ε are also standardized squared t(10) random variables. The number

of degrees of freedom is chosen according to the requirements in Assumption LR1.

Squaring induces skewness in both the regressors and the errors. We consider

p = {6, 12, 24} and n = {150, 500, 1500, 5000}. In this way, n grows faster than

22



Table 2: Linear regression model: coverage rate sensitivity

ρ = 0.2 ρ = 0.9

{X, ε} n p = 6 p = 12 p = 24 p = 6 p = 12 p = 24

t2(10) 150 0.916 0.910 0.906 0.926 0.920 0.914
500 0.928 0.921 0.923 0.937 0.933 0.930
1500 0.935 0.931 0.932 0.943 0.940 0.938
5000 0.940 0.937 0.940 0.947 0.946 0.944

N 150 0.942 0.940 0.938 0.943 0.942 0.939
500 0.949 0.948 0.949 0.948 0.949 0.948
1500 0.950 0.950 0.949 0.950 0.948 0.949
5000 0.950 0.949 0.950 0.951 0.949 0.950

Note: coverage rate under (44) at β = 0, sample size n = {150, 500, 1500, 5000},
number of parameters of interest p = {6, 12, 24}, and correlation between nuis-
ance variables and variables of interest ρ = {0.2, 0.9}. Coverage rates are
reported for averaging with (43) choosing m = 3. Regressors and errors are
standardized squared t(10) random variables (upper panel), or normal random
variables (lower panel). Nominal coverage equals 0.95.

p, in line with Assumption LR3. For comparison, we also show the results for

normally distributed regressors and errors.

The results are displayed in Table 2. For small n and large p, coverage drops

slightly as a result of changing the distribution of the regressors and errors. Ne-

vertheless, by moving diagonally across the table, we see that the coverage under

skewed, heavy-tailed regressors and errors increases towards the nominal coverage

as n increases faster than p.

4.3 Empirical illustration

As an illustration we consider the growth regression comparison of Magnus et al.

(2010). Following the sets of auxiliary regressors in their Models 1 and 2, we divide

twelve available regressors in three groups. The first group contains variables

that approximate the Solow determinants: the log of GDP per capita in 1960

(abbreviation: GDP60, expected sign: –), the equipment investment share of GDP

between 1960-1985 (EQUIPINV, +), total gross enrollment in primary school in

1960 (SCHOOL60, +), life expectancy at age zero in 1960 (LIFE60, +).

The second group is a set of variables that aims to capture the fundamentals

of different countries: a rule of law index (LAW, +), the fraction of tropical

area (TROPICS, –), ethnolinguistic fractionalization index (AVELF, –), and the

fraction of Confucian population (CONFUCIAN, +).
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Table 3: Empirical illustration: averaging estimates and test statistics

Unrestricted Restricted ŵ Average

GDP60 -0.0173 (0.0033) -0.0071 0.1746 -0.0155
EQUIPINV 0.1324 (0.0579) 0.0996 0.1267
SCHOOL60 0.0144 (0.0096) 0.0215 0.0156

LIFE60 0.0006 (0.0004) 0.0002 0.0005

W 42.5347 36.5996
Wc 9.4877 7.7037

LAW 0.0200 (0.0068) 0.0144 0.2614 0.0191
TROPICS -0.0055 (0.0041) -0.0086 -0.0063

AVELF -0.0040 (0.0060) -0.0120 -0.0061
CONFUC 0.0538 (0.0169) 0.0221 0.0455

W 29.0063 24.6519
Wc 9.4877 7.3616

MINING -0.0090 (0.0192) -0.0407 0.1518 -0.0138
PRIGHTS -0.0013 (0.0012) 0.0021 -0.0007
MALFAL -0.0104 (0.0052) -0.0121 -0.0107

DPOP 0.3352 (0.2542) 0.5212 0.3635

W 8.2393 8.0247
Wc 9.4877 7.8654

Note: the table reports the estimated coefficients and standard errors
using the unrestricted estimator, the restricted estimator (43), the aver-
aging weight (ŵ), and the averaging estimator. For each variable group,
we report the Wald statistic (W ) with the 5% critical value (Wc), and
the corresponding analogues based on the averaging estimator.

The third group is a set of additional control variables whose relevance is

unclear: population growth between 1960 and 1990 (DPOP, +), a political rights

index (PRIGHTS, +), malaria prevalence in 1966 (MALARIA, –), and the fraction

of GDP produced in mining (MINING, –).

For each group we construct a restricted estimator using (43) and the signs as

indicated above. Following the simulation results from Section 4, we set m = 3.

We then calculate the averaging estimator (1) together with the critical values

(8)–(11) to determine whether each of the three groups is jointly significant.

The coefficient estimates are provided in Table 3. We report the unrestricted

estimator, with the corresponding standard errors, the restricted estimator, and

the averaging estimator. Except for the variable PRIGHTS, the unrestricted and

restricted estimates agree on the sign of the coefficients. The weight w assigned to

the restricted model is substantial for all groups. This implies that the restricted
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estimator (43) is a reasonable choice.

In terms of significance, we see that the first two groups are highly jointly

significant according to a standard Wald test (W � Wc) at a 5% level. The test

statistic based on the averaging estimator is slightly smaller that the standard test

statistic, but this also holds for the relevant critical values. For the third group of

variables, we see that the standard Wald test is insignificant at a 5% level, while

test based on the recentered confidence region exceeds the critical value.

5 Conclusion

We construct confidence regions centered at averaging estimators. The regions

yield correct coverage under sequential limits in the number of observations (n)

and the number of effective restrictions (d). Specializing to the linear regression

model, we find that the limit distribution is valid under joint limits in d and n

as long as d/n → 0. When using the confidence regions for hypothesis testing,

the model restrictions play a crucial role. Power gains are observed when using a

fixed restricted vector where the sign of the coefficients corresponds to that of the

true parameter vector. In this case, the confidence regions can be used to increase

power over standard F -tests.
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Appendix A Mathematical details

A.1 Preliminary lemma’s

Lemma A.1 Suppose Assumption A2 and Assumption A3 hold. Then,

plim
d→∞

q̂

tr(Σ−1u Σδ)
= c+ 1. (A.1)

Proof: By Assumption A3

cd =
q

tr(Σ−1u Σδ)
<∞. (A.2)

Under Assumption A2, using standard results on quadratic forms in normally

distributed random vectors,

E

[
q̂

tr(Σ−1u Σδ)

]
= cd + 1,

Var

[
q̂

tr(Σ−1u Σδ)

]
= 2

tr(Σ−1u ΣδΣ
−1
u Σδ)

tr(Σ−1u Σδ)2
+ 4

δ′Σ−1u ΣδΣ
−1
u δ

tr(Σ−1u Σδ)2
≤ 2

d
+

4c

d
.

(A.3)

When d→∞, Chebyshev’s inequality implies (A.1). �

Lemma A.2 (Special case of Chao et al. (2012), Lemma A2) Suppose that

the following conditions hold a.s.

(i) P is a symmetric idempotent matrix with [P ]ii < 1,
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(ii) Conditional on X, {εi} is an i.i.d. sequence,

(iii) E[εi|X] = 0, E[ε2i |X] = E[ε2i ] = σ2, and E[ε4i |X] ≤M ,

(iv) rk(P )→∞ as n→∞.

Then for

Vn =
2σ4

rk(P )

∑
i 6=j

P 2
ij, (A.4)

with Vn > M a.s.n., it follows that

V −1/2n

1√
rk(P )

∑
i 6=j

εiεjPij ⇒ N(0, 1), a.s. (A.5)

A.2 Proof of Lemma 3

The first part follows from Assumption A2 and the continuous mapping theorem.

What remains to be shown is that E
[
ρ̂
(
β̂
a
,β
)]

= ρ
(
β̂
a
,β
)

. Note first that by

Assumption A2 the following weak convergence holds for δ̂n defined in (2)

√
n(δ̂n − δn)⇒n δ̂ − δ = G′V R(R′V R)−1R′z,

δ = G′V R(R′V R)−1R′h.
(A.6)

The (n)-asymptotic representation of the averaging estimator (1) is then given by

β̂
a
− β = β̃ − (β − δ) + (1− ŵd)δ̂ − δ, (A.7)

By Assumption A2, we have

β̃ − (β − δ) = G′L′MLRu, δ̂ − δ = G′L′P LRu, (A.8)

where u ∼ N(0, I), P LR = LR(R′V R)−1R′L′, and MLR = I − P LR.

From (A.8), it is clear that the covariance between β̃ and δ̂ is zero, and since

they are normal, this implies independence. As the weight ŵd only depends on δ̂,

the (n)-asymptotic risk of the averaging estimator consists of two terms

ρ(β̂
a
,β) = E

[
(β̃ − (β − δ))′Σ−1u (β̃ − (β − δ))

]
+ ρ(δ̂

JS
, δ), (A.9)

where

ρ(δ̂
JS
, δ) = E

[
(δ̂

JS
− δ)′Σ−1u (δ̂

JS
− δ)

]
, δ̂

JS
= (1− ŵd)δ̂. (A.10)
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To apply Stein’s lemma to (A.10), we introduce the notation

δ̂ = Σ
1/2
δ m, m ∼ N(µ, Ip), µ = Σ

−1/2
δ δ. (A.11)

The following quantities are helpful in the derivations below

S = Σ
1/2
δ Σ−1u Σ

1/2
δ , ŵd =

τ

q̂
=

τ

m′Sm
,

g(m) = −ŵdδ̂ = −τ
q̂
δ̂ = − τ

m′Sm
m, h(m) = − τ

m′Sm
Sm.

(A.12)

In terms of the quantities in (A.12), the risk (A.10) is

ρ(δ̂
JS
, δ) = E [(m+ g(m)− µ)′S(m+ g(m)− µ)]

= E
[
(m− µ)′S(m− µ) + 2h(m)′(m− µ) + h(m)′S−1h(m)

]
= tr(S) + 2E[∇′h(m)] + E[h(m)′S−1h(m)], (A.13)

where the second term in the last line is obtained by applying Stein’s lemma to

the second term on the second line.

From (A.12),

∂hi(m)

∂mk

= −τ
[

Sik
m′Sm

− 2

∑
l,n SilmlSkmmn

(m′Sm)2

]
, (A.14)

such that

∇′h(m) = −τ
[

tr(S)

m′Sm
− 2

m′S2m

(m′Sm)2

]
. (A.15)

The risk of the averaging estimator is then given by

ρ(β̂
a
,β) = tr(ΣrΣ

−1
u + S)− 2τE

[
tr(S)

m′Sm
− 2

m′S2m

(m′Sm)2

]
+ τ 2E

[
1

m′Sm

]
.

(A.16)

Using the definitions in (A.12), yields Lemma 3.

A.3 Proof of Theorem 1

By Assumption A2 and with ρ̂(β̂
a
,β) given by (24)

Dn(β̂
a

n,βn)⇒n D(β̂
a
,β) = p−

1
2

{
(β̂

a
− β)′Σ−1u (β̂

a
− β)− ρ̂

(
β̂
a
,β
)}

. (A.17)

It is immediately clear that E[D(β̂
a
,β)] = 0, since ρ̂(β̂

a
,β) is an unbiased esti-

mator of the (n)-asymptotic risk. For the variance, first use (A.9) and (A.13) to
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write

D(β̂
a
,β) = Arr + 2Arδ + Aδδ, (A.18)

where

Arr = p−
1
2

[
(β̃ − E[β̃])′Σ−1u (β̃ − E[β̃])− tr(Σ−1u Σr)

]
,

Arδ = p−
1
2 (β̃ − E[β̃])′Σ−1u ((1− ŵd)δ̂ − δ)

= p−
1
2

[
(1− ŵd)(β̃ − E[β̃])′Σ−1u (δ̂ − δ)− ŵd(β̃ − E[β̃])′Σ−1u δ

]
, (A.19)

Aδδ = p−
1
2

[
(δ̂ − δ)′Σ−1u (δ̂ − δ)− s− 2ŵd

(
δ̂
′
Σ−1u (δ̂ − δ)− s+ 2

δ̂
′
Σ−1u ΣδΣ

−1
u δ̂

q̂

)]
,

and ŵd =
τ

q̂
, τ = s− 2λ, s = tr(Σ−1u Σδ), and λ = ||Σ−1u Σδ||.

Under Assumption A2 β̃ and δ̂ are independent and asymptotically normal,

and hence, Arr, Arδ, Aδδ have zero covariance. It is therefore sufficient to deter-

mine the variance of the individual terms. Since each of the terms in (A.19) has

expectation zero, we need to calculate E[A2
rr], E[A2

rδ], E[A2
δδ].

The variance of Arr follows from results on quadratic forms in normal vectors.

E[A2
rr] = 2p−1tr(Σ−1u ΣrΣ

−1
u Σr). (A.20)

To calculate the variance of Arδ, define the matrix A = Σ−1u ΣrΣ
−1
u . Then,

E(A2
rδ) = p−1E

{[
(1− ω̂)δ̂ − δ

]′
Σ−1u (β̃ − E[β̃])′(β̃ − E[β̃])Σ−1u

[
(1− ω̂)δ̂ − δ

]}
= p−1E

{[
(1− ŵd)δ̂ − δ

]′
A
[
(1− ŵd)δ̂ − δ

]}
(A.21)

= p−1E
[
(δ̂ − δ)A(δ̂ − δ)

]
− 2p−1E

[
ŵdδ̂

′
A(δ̂ − δ)

]
+ p−1E

[
ŵ2
dδ̂
′
Aδ̂
]

=
tr(AΣδ)

p
− 2τ

p
E

[
tr(AΣδ)

q̂
− 2

δ̂
′
Σ−1u ΣδAδ̂

q̂2

]
+
τ 2

p
E

[
δ̂Aδ̂

q̂2

]
,

where we applied Stein’s lemma to the second term on the second to last line.
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Finally, for the variance of Aδδ, we use definitions (A.11) and (A.12) to write

E[A2
δδ] = p−1E

{
[(m+ g(m)− µ)′S(m+ g(m)− µ)− tr(S) (A.22)

−2∇′h(m)− h(m)′S−1h(m)
]2}

= p−1E
{

[(m− µ)′S(m− µ)− tr(S) + 2 (h(m)′(m− µ)−∇′h(m))]
2
}

= p−1E
{

[(m− µ)′S(m− µ)− tr(S)]
2

+ 4 (h(m)′(m− µ)−∇′h(m))
2

+ 4 (h(m)′(m− µ)−∇′h(m)) [(m− µ)′S(m− µ)− tr(S)]
}

= 2p−1tr(S2) + 4p−1E
{

(h(m)′(m− µ))
2

+ (∇′h(m))
2

− 2(m− µ)′h(m)∇′h(m) + h(m)′(m− µ)(m− µ)′S(m− µ)

− (m− µ)′S(m− µ)∇′h(m)
}
.

To proceed, we use the following result derived in Theorem 3 of Stein (1981) by

repeatedly applying Stein’s lemma.

E
[
(h(m)′(m− µ))2

]
= E

[
h(m)′h(m) + (∇′h(m))2 (A.23)

+ tr[(∇h(m)′)2] + 2

p∑
i=1

p∑
j=1

hi(m)∇j∇ihj(m)
]
,

E [h(m)′(m− µ)∇′h(m)] = E

[
(∇′h(m))2 +

p∑
i=1

p∑
j=1

hi(m)∇j∇ihj(m)

]

The final two terms of (A.22) require an extension to the results presented by

Stein (1981). Applying Stein’s lemma twice, we have

E[(m− µ)′S(m− µ)h(m)′(m− µ)]

= E [(∇′h(m)(m− µ)′S(m− µ) + 2h(m)′S(m− µ)]

= E [∇′h(m)(m− µ)′S(m− µ) + 2∇′Sh(m)] ,

(A.24)

where the first term will cancel against the last term of (A.22).

In total, we now have

E[A2
δδ] =

2tr(S2)

p
+

4

p
E
[
h(m)′h(m) + tr

[
(∇h(m)′)

2
]

+ 2∇′Sh(m)
]

(A.25)
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We can work out the final two terms explicitly,

tr
[
(∇h(m)′)2

]
= τ 2

[
tr(S2)

(mSm)2
+ 4

(mS2m)2

(m′Sm)4
− 4

m′S3m

(m′Sm)3

]
∇′Sh(m) = −τ

[
tr(S2)

m′Sm
− 2

m′S3m

(m′Sm)2

] (A.26)

Substituting this into (A.25) and using the definitions (A.11) and (A.12) gives

E[A2
δδ] =

2tr(Σ−1u ΣδΣ
−1
u Σδ)

p
(A.27)

+
4

p
E

1

q̂

[
τ 2
δ̂
′
Σ−1u ΣδΣ

−1
u δ̂

q̂
− 2τ

[
tr(Σ−1u ΣδΣ

−1
u Σδ)− 2

δ̂
′
Σ−1u ΣδΣ

−1
u ΣδΣ

−1
u δ̂

q̂

]]

+
4

p
τ 2E

tr(Σ−1u ΣδΣ
−1
u Σδ)

q̂2
+ E

16τ 2

pq̂3

[
(δ̂
′
Σ−1u ΣδΣ

−1
u δ̂)2

q̂
− δ̂

′
Σ−1u ΣδΣ

−1
u ΣδΣ

−1
u δ̂

]

Adding the variances of Arr, 2Arδ, and Aδδ, we obtain

V[D(β̂
a
,β)] =

1

p

{
2tr
[
Σ−1u (Σr + Σδ)Σ

−1
u (Σr + Σδ)

]
− 8τE

[
tr
[
Σ−1u ΣδΣ

−1
u (Σr + Σδ)

]
q̂

− 2
δ̂
′
Σ−1u ΣδΣ

−1
u δ̂

q̂2

]

+ 4τ 2E

[
δ̂
′
Σ−1u (Σδ + Σr)Σ

−1
u δ̂

q̂2
+

tr(Σ−1u ΣδΣ
−1
u Σδ)

q̂2

]

+ 16τ 2E

[
(δ̂
′
Σ−1u ΣδΣ

−1
u δ̂)2

q̂4
− δ̂

′
Σ−1u ΣδΣ

−1
u ΣδΣ

−1
u δ̂

q̂3

]}
(A.28)

Choosing τ = tr(Σ−1u Σδ)− 2||Σ−1u Σδ||, and using Lemma A.1, we have

plim
d→∞

V[D(β̂
a
,β)] = 2− 4

[
a1
c+ 1

− a2
(c+ 1)2

]
(A.29)

with (c, a1, a2) defined in Assumption A3. �

Normality of Dn(β̂
a

n,βn) What remains to prove Theorem 1 is the (d, n)-

asymptotic normality of Dn(β̂
a

n,βn). Following (A.17), it suffices to show the
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(d)-asymptotic normality of D(β̂
a
,β). We start by noting that

Σ−1/2u (δ̂ − δ) ∼ N(0, I −Σ−1/2u ΣrΣ
−1/2
u )

Σ−1/2u (β̃ − E[β̃]) ∼ N(0,Σ−1/2u ΣrΣ
−1/2
u ).

(A.30)

Using the eigenvalue decomposition I −Σ−1/2u ΣrΣ
−1/2
u = UDU ′,

U ′Σ−1/2u (δ̂ − δ) ∼ N(0,D), U ′Σ−1/2u (β̃ − E[β̃]) ∼ N(0, I −D). (A.31)

Define the vectors

zβ = U ′Σ−1/2u (β̃ − E[β̃]), zδ = U ′Σ−1/2u (δ̂ − δ), νδ = U ′Σ−1/2u δ. (A.32)

The random vectors zβ and zδ are independent by the independence between β̃

and δ̂. Also the elements within the random vectors are independent by (A.31).

In terms of the quantities defined in (A.32),

D(β̂
a
,β) = p−1/2

p∑
i=1

Xi,

where

Xi = z2i,β−E[z2i,β]+2(1−ŵd)zi,βzi,δ−2ŵdνi,δzi,β+(1−2ŵd)(z
2
i,δ−E[z2i,δ])−2ŵdνi,δzi,δ.

Lemma A.1 implies plimd→∞ ŵd = 1
c+1

, so that by Slutsky’s theorem, we can

replace ŵd by its probability limit 1
c+1

. Then {X1, . . . Xp} is a sequence of asymp-

totically independent random variables, with mean zero and finite variance. Ly-

apunov’s central limit theorem applies if E[|Xi|2+ε] = ∆ < ∞ for some ε > 0.

Using |a + b|2+ε ≤ 21+ε(|a|2+ε + |b|2+ε), and the fact that zβ and zδ are normally

distributed, this condition is indeed satisfied. �

A.4 Proof of Theorem 2

Since plimd→∞ ĉ = c, as (d, n→∞)seq, σ(ĉ)−1D(β̂
a
,β,W )⇒ N(0, 1).

Calculating the geometric risk is similar to the approach used in Lemma 2.

Choose ξ = 3. Since we trim the geometric risk by ξ, we can immediately analyze

the (n)-asymptotic limit. Define t̂2 = 1
p
(β̂

a
− β)Σ−1u (β̂

a
− β).

Rescaling the (n)-asymptotic unbiased risk estimate given in Lemma 3 by p−1

and using Lemma A.1, we know that limd→∞ t̂ = c+1−a1
c+1

. Since the leading term
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of p−1/2b̂ is the (n)-asymptotic risk, we also know that

plim
d→∞

p−1/2b̂ = plim
d→∞

√
max(0, ê/p) =

c+ 1− a1
c+ 1

. (A.33)

We then have,

lim
d→∞

E[min(t̂+ p−1/2b̂, ξ)] = 2
c+ 1− a1
c+ 1

. (A.34)

This completes the proof of Theorem 2. �

A.5 Proof of Lemma 4

For any matrix A, define throughout P A = A(A′A)−1A′, and MA = I − P A.

We first derive the covariance of two restricted estimators.

cov(β̂i, β̂j) = G′
[
I − V Ri(R

′
iV Ri)

−1R′i
]
V
[
I −Rj(R

′
jV Rj)

−1R′jV
]
G

= G′L′ (I − P LRi)
(
I − P LRj

)
LG, (A.35)

where we used V = L′L.

Write Rj = [Ri,S], and define Ai = Ri(R
′
iV Ri)

−1R′i. Then,

Aj = Ai + (AiV − I)S [S′(V − V AiV )S]
−1
S′ (V Ai − I) , (A.36)

and hence P LRj = P LRi +MLRiLS [S′L′MLRiLS]
−1
S′LMLRi . For the covari-

ance between two restricted estimators, this gives

cov(β̂i, β̂j) = G′L′(I − 2P LRi − PMLRi
LS + P LRi)LG = V(β̂j). (A.37)

Hence, for δ̂j defined in Assumption M3,

cov(δ̂i, δ̂j) = 0, cov(β̃
m
, δ̂j) = 0. (A.38)

Combining this with the (n)-asymptotic normality of δ̂i and β̃
m

shows that the

averaging estimator (30) is a sum of independent components. Similar to the case
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of a single restricted estimator, the risk factorizes as

ρ(β̂
a
,β) = p−1E

[
(β̂

a
− β)Σ−1u (β̂

a
− β)

]
= p−1E

[
(β̂m − E[β̂m])Σ−1u (β̂m − E[β̂m])

]
+ p−1

m∑
i 6=j

E
[
ŵdi,iŵdj ,j δ̂

′
iΣ
−1
u δ̂j

]
+ p−1

m∑
i=1

E
[
((1− ŵdi,i)δ̂i − δi)′Σ−1u ((1− ŵdi,i)δ̂i − δi)

]
. (A.39)

By Assumption M4, the second term is equal to zero. To the third term, we can

apply Stein’s lemma to each summand as before. This yields

ρ(β̂
a
) = 1− 1

p

m∑
i=1

E

{
2τi

[
si
q̂i
− 2

δ̂iΣ
−1
u ΣδiΣ

−1
u δ̂i

q̂2i

]
− τ 2i

1

q̂i

}
. (A.40)

A.6 Proof of Theorem 3 and Theorem 4

Define the difference between the mean squared error and the unbiased estimator

for the risk of the averaging estimator (30) derived in (A.40) as

D(β̂
a
,β) = p−1/2

{
(β̂

a
− β)′Σ−1u (β̂

a
− β)− p (A.41)

+
m∑
i=1

E

{
2τi

[
si
q̂i
− 2

δ̂iΣ
−1
u ΣδiΣ

−1
u δ̂i

q̂2i

]
− τ 2i

1

q̂i

}}
.

Rewrite the averaging estimator as

β̂
a
− β = β̂m − E

[
β̂
m
]

+
m∑
i=1

[
(1− ω̂i)δ̂i − δi

]
. (A.42)

Then, note that p = tr
(
Σ−1u [Σk +

∑m
i=1 Σδi ]

)
, and

m∑
i=1

m∑
j=1

[
(1− ω̂i)δ̂i − δi

]′
Σ−1u

[
(1− ω̂i)δ̂i − δi

]
=
∑
i,j

(δ̂i − δi)′Σ−1u (δ̂j − δj) +
∑
i,j

ω̂iω̂j δ̂
′
iΣ
−1
u δ̂j − 2

∑
i,j

ω̂iδ̂iΣ
−1
u (δ̂j − δj)

=
m∑
i=1

(δ̂i − δi)′Σ−1u (δ̂i − δi)− 2
∑
i=1

ω̂iδ̂iΣ
−1
u (δ̂i − δi). (A.43)
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This gives for the difference D(β̂
a
,β)

D(β̂
a
,β) = p−1/2

{
(β̂m − E[β̂m])′Σ−1u (β̂m − E[β̂m])− tr(ΣkΣ

−1
u )

− 2
m∑
i=1

(β̂m − E[β̂m])′Σ−1u [(1− wi)δ̂i − δi] (A.44)

+
m∑
i=1

{
[δ̂i − δi]Σ−1u [δ̂i − δi]− tr(Σ−1u Σδi)

}
−2

m∑
i=1

τi

{
δ̂iΣ

−1
u (δ̂i − δi)
q̂i

− si
q̂i

+ 2
δ̂iΣ

−1
u ΣδiΣ

−1
u δ̂i

q̂2i

}}

Equation (A.38) shows that the variance of D(β̂
a
,β) is the sum of the variances

of the individual components. These are provided by the proof of Theorem 1 in

Appendix A.3. Asymptotic normality follows as before using the consistency of

the averaging weights. The proof in Appendix A.4 can be applied term by term

to obtain Theorem 4. �

A.7 Proof of Lemma 5

The proof of Lemma 5 consists of five steps: (1) derive the expression for D(β̂
a
,β),

(2) show consistency of the estimator of the error variance and averaging weights,

(3) derive the limiting distribution of the key quantities appearing in D(β̂
a
,β), (4)

show that the quantities in step (3) are asymptotically uncorrelated, (5) conclude.

Throughout, we will use the notation (d, n → ∞) to indicate joint limits. Since

d = r, this is equivalent to (r, n→∞).

Throughout, the scalar M is a finite constant that can differ between lines.

Step 1: D(β̂
a
,β)

The unrestricted estimator and the restricted estimator are given by

β̂ − β = (X ′X)−1X ′ε

β̃ − β = β̂ − β − (X ′X)−1R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε

− n−1/2(X ′X)−1R(R′(X ′X)−1R)−1R′h.

(A.45)

The difference δ̂ = β̂ − β̃ then satisfies,

δ̂ − δ = (X ′X)−1R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε. (A.46)
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Define the following three quantities

D1 = σ̂−2(β̃ − E[β̃])′X ′X(β̃ − E[β̃])− (p− r),

D2 = (1− 2ω̂)
[
σ̂−2(δ̂ − δ)′X ′X(δ̂ − δ)− r

]
,

D3 = −2σ̂−2ω̂δ′X ′ε− 4ω̂.

(A.47)

We now show that the difference between the mean squared error and the unbiased

risk estimate is the sum of D1, D2, and D3. Write the averaging estimator as

β̂
a
− β = β̃ − E[β̃] + (1− ω̂)(δ̂ − δ)− ω̂δ. (A.48)

Then,

p1/2D(β̂
a
,β) = σ̂−2(β̂

a
− β)X ′X(β̂

a
− β)− p+ (r − 2)ω̂

= D1 + σ̂−2(1− ω̂)2(δ̂ − δ)′X ′X(δ̂ − δ) + σ̂−2ω̂2δ′X ′Xδ

− 2σ̂−2ω̂δ′X ′X(β̃ − E[β̃])

− 2σ̂−2ω̂(1− ω̂)(δ̂ − δ)′X ′Xδ − r + (r − 2)ω̂

= D1 +D2 + σ̂−2ω̂2
[
δ′X ′Xδ + (δ̂ − δ)′X ′X(δ̂ − δ) + 2(δ̂ − δ)X ′Xδ

]
− 2σ̂−2ω̂δ′X ′X(β̃ − E[β̃] + δ̂ − δ)− r + (r − 2)ω̂ + r(1− 2ω̂)

= D1 +D2 + σ̂−2ω̂2δ̂
′
X ′Xδ̂ − (r − 2)ω̂ +D3

= D1 +D2 +D3,

(A.49)

where to obtain the second line we use that (δ̂ − δ)′X ′X(β̃ − E[β̃]) = 0, and to

obtain the final line we use that ω̂ = (r − 2)σ̂2/δ̂
′
X ′Xδ̂.

Using the expressions for the restricted estimator (A.45) and the difference δ̂

in (A.46), we have

D(β̂
a
,β) =

(
p− r
p

)1/2

G1 +

(
r

p

)1/2

[(1− 2ω̂)G2 − 2ω̂N1]− 4p−1/2ω̂, (A.50)

where, defining P LR = LR(R′L′LR)−1R′L′ with L such that (X ′X)−1 = L′L,

and MLR = I − P LR,

G1 = (p− r)−1/2
[
σ̂−2ε′X(X ′X)−1/2MLR(X ′X)−1/2X ′ε− (p− r)

]
,

G2 = r−1/2
[
σ̂−2ε′X(X ′X)−1/2P LR(X ′X)−1/2X ′ε− r

]
,

N1 = (nr)−1/2σ̂−2h′R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε.

(A.51)
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Below we show that the weights converge to a finite constant, and hence, the last

term of (A.50) is Op(p
−1/2).

Step 2: Consistency of error variance estimator and averaging weights

Lemma A.3 Under Assumption LR1–LR3, as (d, n→∞),

(a) σ̂2 →p σ
2,

(b) ω̂ →p ω = (c+ 1)−1 with c defined in Assumption LR2.

Proof: Part (a). The error variance estimator is σ̂2 = 1
n−pε

′MXε. We have

E[σ̂2] = σ2, (A.52)

var(σ̂2) =
1

(n− p)2
[
(E[(ε′MXε)

2]− E[ε′MXε]
2
]

(A.53)

≤ 1

(n− p)2
[
E[(ε′ε)2]− σ4(n− p)2

]
≤ 1

n2(1− p/n)2
[
(E[ε4i ]− 3E[ε2i ]

2)n+ σ4n2 + 2σ4n− σ4n2(1− p/n)2
]

= O(n−1),

where the last line uses that p/n → 0 and the fact that εi has bounded fourth

moment. Part (a) now follows from Chebyshev’s inequality.

Part(b). Consider

r−1δ̂
′
X ′Xδ̂ = r−1ε′X(X ′X)−1R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε

+ (rn)−1h′R(R′(X ′X)−1R)−1R′h

+ 2r−1n−1/2h′(R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε.

(A.54)

The limit of the second term is σ2c by Assumption LR2. For the first term, define

A = X(X ′X)−1R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ and note that tr(A) = r.

Then,

r−1E[ε′Aε] = r−1E[E[ε′Aε|X]]

= r−1σ2E[tr(A)]

= σ2.

(A.55)

For the variance, by Ullah (2004) Appendix A5, and using that conditional on X,
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εi has bounded fourth moment,

var(r−1ε′Aε) = r−2E
[
E[(ε′Aε)2|X]

]
− σ4

≤ r−2ME[tr(A(In �A))] + 2σ4r−1

= r−2ME[tr((In �A)1/2A(In �A)1/2)] + 2σ4r−1

≤ r−2ME[tr(A)] + 2σ4r−1

= O(r−1),

(A.56)

where the inequality on the fourth line uses that

A = X(X ′X)−1/2P (X′X)−1/2R(X ′X)−1/2X ′ � PX � In. (A.57)

By Chebyshev’s inequality, as (d, n→∞), r−1ε′Aε→p σ
2.

The final term of (A.54) has expected value equal to zero, and

var(r−1n−1/2h′(R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε)

= σ2 · r−1 · E
[
r−1h′R(R′(n−1X ′X)−1R)−1R′h

]
= O(r−1).

(A.58)

Then, as (d, n→∞), r−1n−1/2h′(R(R′(X ′X)−1R)−1R′(X ′X)−1X ′ε→p 0.

We have now established that, as (d, n→∞), r−1δ̂
′
X ′Xδ̂ →p c+ 1 and hence

ω̂ =
r − 2

r

σ̂2r

δ̂
′
X ′Xδ̂

→p
1

c+ 1
. (A.59)

This concludes the proof of Lemma A.3. �

Step 2: Limiting distribution of G1, G2, and N1 in (A.51)

Define PX = X(X ′X)−1X ′, and PG2 = X(X ′X)−1/2P LR(X ′X)−1/2X ′, and

PG1 = PX −PG2. We have PG1,PG2 � PX . Also, P 2
G1 = PG1 and P 2

G2 = PG2.

Finally, rk(PX) = tr(PX) = p, rk(PG2) = tr(PG2) = tr(P LR) = rk(P LR) = r,

and rk(PG1) = tr(PG1) = p− r.
G1 only contributes to D(β̂

a
,β) when r/p → c with c ∈ (0, 1). In deriving

the distribution of G1, we therefore make this assumption. This implies that

p − r → ∞. If r = p, then G1 does not appear, but the arguments below still

apply to G2 and N1.
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Both in G1 and G2 there is a quadratic form that can be split schematically as

σ−2ε′Pε− rk(P )√
rk(P )

=

∑n
i=1 Pii

(
ε2i
σ2 − 1

)
+
∑

i 6=j εiεjPij√
rk(P )

= A1 + A2. (A.60)

where P can be PG1 or PG2 and Pij denotes the i, j-th element of P . We will first

show that A1 = op(1), and then apply Lemma A.2 to A2. Notice that E[A1] = 0.

Also, PG1,PG2 � PX , and by Assumption LR1,

[PX ]ii ≤
p

nb

1

p
x′ixi, a.s.n. (A.61)

We can then bound the variance of A1 as

var(A1) = rk(P )−1var

(
n∑
i=1

Pii
(
ε2i /σ

2 − 1
))

= rk(P )−1
n∑
i=1

E[P 2
ii]E

[
E
[(
ε2i /σ

2 − 1
)2∣∣∣X]]

≤Mrk(P )−1
n∑
i=1

E[P 2
ii]

≤Mrk(P )−1
n∑
i=1

E[[PX ]2ii]

≤M
p2

rk(P )n
E[(p−1x′ixi)

2]

≤M
p2

rk(P )n
.

(A.62)

where to obtain the fourth line, we use that Pii = e′iPei ≤ e′iPXei. For G1,

rk(PG1) = p(1 − r/p), so that when p/n → 0, A1 = op(1). For G2, rk(PG2) = r.

By Assumption LR3, r/p → c with c ∈ (0, 1], so that again A1 = op(1) when

p/n→ 0.

We now turn to the distribution of A2. Notice that for PG1 and PG2,

∑
i 6=j

P 2
ij = tr(P 2)−

n∑
i=1

P 2
ii = rk(P )−

n∑
i=1

P 2
ii. (A.63)
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Using Markov’s inequality, we have that both for G1 and G2,

P

(
rk(P )−1

n∑
i=1

P 2
ii ≥ ε

)
≤ rk(P )−1

∑n
i=1 E[P 2

ii]

ε

≤ p2

n · rk(P )

1

ε · b
E[(p−1x′ixi)

2]

≤ M

ε

p2

n · rk(P )
.

(A.64)

Since for both G1 and G2, p/rk(P ) → c, by Assumption LR3, the r.h.s. goes to

zero as p/n→ 0 for any ε > 0. This then implies that

1

rk(P )

∑
i 6=j

P 2
ij = 1 + op(1), (A.65)

which simplifies the variance in Lemma A.2 to Vn = 2σ4. We now check conditions

(i)–(iv) of Lemma A.2 for PG1 and PG2. Conditions (ii)–(iv) hold by Assump-

tion LR2 and Assumption LR3. From condition (i), we only need to verify the

last part.

[P ]ii ≤ x′i(X ′X)−1xi

= x′i(xix
′
i +X ′−iX−i)

−1xi

= x′i

[
(X ′−iX−i)

−1 −
(X ′−iX−i)

−1xix
′
i(X

′
−iX−i)

−1

1 + x′i(X
′
−iX−i)

−1xi

]
xi

=
x′i(X

′
−iX−i)

−1xi
1 + x′i(X

′
−iX−i)

−1xi

< 1 a.s.n.

(A.66)

By Lemma A.2 and the consistency of σ̂2, we now have

G1 ⇒ N(0, 2), G2 ⇒ N(0, 2). (A.67)

It remains to derive the distribution of N1 for which we use Theorem 2 of Phillips

and Moon (1999). Define

Yi,p =
1√
n
winεi

win =
1√
r
h′R(R′(n−1X ′X)−1R)−1R′(n−1X ′X)−1xi,

(A.68)
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with variance

Ωi,p = E
[
Y 2
i,p

]
= σ2n−1r−1E

[(
h′R(R′(n−1X ′X)−1R)−1R′(n−1X ′X)−1xi

)2]
.

(A.69)

We only have to consider the case where h 6= 0, since otherwise N1 does not

appear in the expression for D(β̂
a
,β). Let

s2n,p =
n∑
i=1

Ωi,p = σ2r−1E[h′(R(R′(n−1X ′X)−1R)−1R′h)] = σ2E[cd,n], (A.70)

and define

ξi,n,p =
Yi,p
sn,p

. (A.71)

Case 1: R = I. In this case,

win = wi =
1√
r
h′xi, (A.72)

and wiεi is an i.i.d. sequence. Via standard arguments, we can directly verify the

Lindeberg condition in Theorem 2 of Phillips and Moon (1999), which in our case

is

1

nE[cd,n]

n∑
i=1

E

[
w2
i

ε2i
σ2
I

[
1

E[cd,n]
w2
i

ε2i
σ2

> ε2n

]]
→ 0. (A.73)

Since cd,n is bounded, it is sufficient to show

1

n

n∑
i=1

E

[
w2
i
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→ 0. (A.74)

As wiεi is i.i.d., this holds if
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→ 0. (A.75)

Using Markov’s inequality,

P
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(A.76)
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By Assumption LR2, E[w2
1nε

2
1/σ

2] = E[w2
1] < ∞, so that by the dominated con-

vergence theorem the Lindeberg condition (A.75) holds.

Case 2: R 6= I. In this case, we use part (c) of Assumption LR1 and condition

on X. We then need to show that

1

ncd,n
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Write mn = maxi=1,...,n
w2
in

ncd,n
, then it is sufficient to show that
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Since E[ε2i /σ
2] = 1 <∞, this holds if mn → 0. Using the Cauchy-Schwarz inequa-

lity, it is sufficient to show that,

max
i=1,...,n

x′i(X
′X)−1xi → 0. (A.79)

This condition was already noted by Huber et al. (1973) to ensure normality of

linear combinations of the least squares estimator in a linear regression model. The

following shows that this condition indeed holds a.s.n. under Assumption LR1.

Since by Assumption LR1, bIp � n−1X ′X a.s.n. for some constant b > 0, it

is sufficient to show that

max
i=1,...,n

x′ixi/n→ 0, a.s. (A.80)

Denote Mn = maxi=1,...,n |x′ixi/n− tr(QX)/n|. We have

P(Mn > ε) = 1− P(Mn ≤ ε)

= 1− P (|x′ixi/n− tr(QX)/n| ≤ ε)
n

= 1− [1− P (|x′ixi/n− tr(QX)/n| > ε)]
n

≤ 1−
[
1− (M · p)/(n2 · ε2)

]n
= 1− exp(n log(1− (M/ε2)p/n2))

= 1− exp(o(1))

= o(1),

(A.81)

where the inequality uses Chebyshev’s inequality and the fact that p−1var(x′ixi) ≤
M by Assumption LR1. We have established that as (p, n → ∞), Mn →p 0.
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Since the sequence Mn is monotone increasing, this implies Mn → 0 a.s. and the

Lindeberg condition (A.78) holds a.s.n.

The above establishes that P(
∑n

i=1 ξi,n,p ≤ y|X) → Φ(y) a.s., with Φ(y) the

standard normal CDF evaluated at y. We now follow the argument at the top

of p. 81 of Chao et al. (2012). The unconditional probability P(
∑n

i=1 ξi,n,p) =

E[P(
∑n

i=1 ξi,n,p ≤ y|X)]. Since for some ε > 0, supn E[|P(
∑n

i=1 ξi,n,p ≤ y)|1+ε] <
∞, the convergence also holds unconditionally, i.e. P(

∑n
i=1 ξi,n,p)→ Φ(y). Finally,

since plim(d,n→∞) cd,n = c, we have that as (d, n→∞), N1 ⇒ N(0, c) a.s.

Step 3: Covariance between G1, G2, and N1

What remains is to bound the covariance between G1, G2, and N1. Note that this

covariance is identically zero when the errors are normal. Under non-normality,

using Ullah (2004) Appendix A5, we have that the covariance between N1 and G2

is
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where the first inequality uses Cauchy-Schwarz inequality, the second inequality

the definition of cd,n, the fact that P LR is a projection matrix, and the fact that

the eigenvalues of n−1X ′X are bounded, the third inequality used that cd,n is

finite by assumption, the fourth inequality uses Jensen’s inequality, and finally
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the expected value is finite by Assumption LR1.

The same argument holds for the covariance betweenG1 andN1. What remains

is the covariance between G1 and G2. Again using Ullah (2004) Appendix A5 gives(
p− r
p
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Conclusion

Using the results above, we have that as (d, n→∞),

D(β̂
a
,β)⇒ N(0, σ2(c)) a.s. (A.82)

The variance is the sum of the variances of G1, G2 and N1, as scaled in (A.50),

σ2(c) = 2(1− a) + a

[
2
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1− 2
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)2

+ 4
c

(c+ 1)2

]

= 2− 4a

[
1

c+ 1
− 1

(c+ 1)2

]
,

(A.83)

which corresponds to Theorem 1. �

Appendix B Simulations: additional results

B.1 Benchmark confidence regions

The confidence regions by Casella and Hwang (1983) are given by Definition 1,

with the averaging estimator as in (1)-(4) with the weights restricted to be less or

equal then 1. Defining R(x) = 1− p−2
x2

, the critical values are

b̂2CH =

{
R(bχ)

[
b2χ − p log(R(bχ))

]
if nq̂n ≤ b2χ,

R(nq̂n)[b2χ − p log(R(nq̂n))] if nq̂n > b2χ.
(B.1)
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Figure 4: Restricted estimator magnitude
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Samworth (2005) Taylor expands (β̂
a
− β)′Σ−1u (β̂

a
− β) around β = 0 to get

b̂2S = min
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1
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2(p− 2)(p− 1)
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.

(B.2)

B.2 Restricted estimator magnitude

Figure 4 shows the power difference with the standard F test for the simulation

experiment in Section 4.2. Gray lines correspond to different choices of the mag-

nitude m in (43). The black line corresponds to m = 3. On the left, p = 6, on the

right p = 12. The magnitude of the nuisance parameters and the correlation with

the variables of interest are irrelevant as the fixed restricted vector is averaged with

the unrestricted estimator that is orthogonalized with respect to the variables not

of interest.
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B.3 Instrumental variables model

Consider the following instrumental variables model also used in Hansen (2017).

y = Xβ + ε,

X = ZΠ +U , U = [u1, . . . ,uk]
′, [Z]ij ∼ N.i.d.(0, 1)

(
εi

ui

)
∼ N

0,


1 σuρ/

√
k . . . σuρ/

√
k

σuρ/
√
k σ2

u 0 0
... 0 σ2

u 0

σuρ/
√
k 0 0 σ2

u


 ,

(B.3)

where X and Z are n× (p+ 1) matrices. The first column of both X and Z is a

vector of ones. The remaining elements of Z are independent standard normals.

The sample size n = 150, the number of parameters of interest p = 6, and Π = Ip.

The variance of the first stage error is varied as σ2
u = n

k
F−1, where F = {5, 10, 20}.

The correlation between the error terms is varied over ρ = {0.3, 0.9}. Our goal is

to perform efficient inference on β, which is again given by (45).

For the unrestricted estimator, we consider the 2SLS estimator. Since the

model is exactly identified, this is an appropriate choice. We consider two choices

for the restricted estimator. First, we consider indirect restrictions by averaging

with the OLS estimator β̂ = (X ′X)−1X ′y. Second, we consider direct restrictions

given by (43). Following the previous experiment, we again set m = {−3, 0, 3}.
The error variance σ2

ε is estimated using the 2SLS estimator.

In Table 4, we report the coverage rate under a first stage signal that ranges

over F = {5, 10, 20}. First consider the case where cβ = 0 and ρ = 0.9. The endo-

geneity creates an assymetry between the coverage when choosing the restricted

estimator as in (43) with m = −3 and m = 3. The former results in overcoverage,

while the latter in undercoverage. This effect only slowly decreases when F incre-

ases from 5 to 20. In general, coverage away from cβ = 0 is slightly too large when

the sign of the restricted estimator corresponds to the true sign of cβ. Using the

OLS estimator that ignores the endogeneity results in overcoverage when ρ = 0.3

and undercoverage when ρ = 0.9.

Figure 5 shows the power of the hypothesis test corresponding to the confidence

regions. The left panels have weak endogeneity (ρ = 0.3). The top panel has a first

stage signal strength F = 5, while the lower panel has F = 20. As for the linear

regression model, the power difference when averaging the 2SLS estimator with

the OLS estimator depends on the sign of cβ. Using a fixed restricted estimator
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Table 4: Instrumental variables model: coverage rate.

F = 5 F = 10 F = 20

n ρ = 0.3 ρ = 0.9 ρ = 0.3 ρ = 0.9 ρ = 0.3 ρ = 0.9

150 m = −3 0.996 0.979 0.985 0.978 0.970 0.974
m = 0 0.924 0.890 0.937 0.924 0.939 0.931
m = 3 0.971 0.911 0.960 0.915 0.951 0.920
OLS 0.957 0.915 0.964 0.930 0.960 0.937
F 0.994 0.962 0.984 0.959 0.970 0.956

500 m = −3 0.997 0.981 0.987 0.980 0.974 0.976
m = 0 0.928 0.899 0.939 0.927 0.939 0.932
m = 3 0.971 0.913 0.961 0.918 0.955 0.924
OLS 0.950 0.911 0.962 0.929 0.958 0.939
F 0.995 0.962 0.984 0.959 0.969 0.956

Note: coverage rate at β = 0 under (B.3) with sample size n = {150, 500},
number of parameters of interest p = 6, and first stage signal strength F =
{5, 10, 20}. We report using direct restrictions (43) with m = {−3, 0, 3}, and
indirect restrictions by averaging with the OLS estimator. The standard F -
test is provided for reference. Nominal coverage equals 0.95.

with the correct sign can yield substantial power improvements as indicated by

the gray area. The right panels increase the endogeneity to ρ = 0.9. This creates

a strong asymmetry between cβ > 0 and cβ < 0. It appears that the estimates

for β are upward biased, causing overestimation of the error variance σε when cβ

is slightly below zero. Here, most methods yield overcoverage with the exception

of the restricted estimator with m = 0. This effect disappears when F increases

from F = 5 in the top panel to F = 20 in the bottom panel. The power increase

over the standard F -test based on the 2SLS estimator can be substantial. For

example, in the lower right panel, when cβ = −5, and we use the fixed restricted

estimator with m = −3, the power increases from 0.45 to 0.8.
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Figure 5: Instrumental variables model: power.

Note: The figure shows power against H0 : β = 0 at a sample size of n = 150 and p = 6
parameters of interest. The black solid line shows the power from the usual F -test centered
at the 2SLS estimator. The black dashed line when averaging with the restricted least squares
estimator. The blue lines correspond to the restricted estimator (43) with m = −3 (solid), m = 0
(dash-dotted), m = 3 (dashed). The gray area highlights the power difference between using the
fixed restricted estimator with the correct sign and the standard F-test. In the left panels we
have weak endogeneity (ρ = 0.2), in the right panels ρ = 0.9. The first stage signal strength is
F = 5 in the upper panel and F = 20 in the lower panel.
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