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BANOVA: Bayesian Analysis of   

Experiments in Consumer Psychology 

 

Abstract 

This article introduces Bayesian extension of ANOVA for the analysis of experimental data in 

consumer psychology. The approach, called BANOVA, addresses some common challenges that 

consumer psychologists encounter in their experimental work, and is specifically suited for the 

analysis of repeated measures designs. There appears to be a recent surge in interest in those 

designs based on the recognition that they are sensitive to individual differences in the response 

to experimental treatments and that they offer advantages for assessing causal mediating 

mechanisms, even at the individual level. BANOVA enables the analysis of repeated measures 

data derived from mixed within-between-subjects experiments with Normal and non-Normal 

dependent variables and accommodates unobserved individual differences. It allows for the 

calculation of effect sizes, planned comparisons, simple effects, spotlight and floodlight 

analyses, and includes a wide range of mediation, moderation, and moderated mediation 

analyses. An R software package implements these analyses, and aims to provide a one-stop-

shop for the analysis of experiments in consumer psychology. The package is illustrated through 

applications to a number of data sets from previously published studies.  

 

Keywords: Repeated measures design, Hierarchical Generalized Linear Model, MCMC, 

mediation, moderation, effect size, floodlight analysis, simple effects, R package.   
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This article introduces a Bayesian extension of ANOVA that provides an integral solution 

for the analysis of experimental data in consumer psychology. The approach, called BANOVA 

(Bayesian ANOVA; Dong & Wedel, 2017), addresses some common challenges that consumer 

psychologists encounter in their experimental work. Some of these are that traditional null 

hypothesis significance testing has led to misleading interpretations and misuse of p-values 

(Nuzzo, 2014; Wasserstein & Lazar, 2016), that dependent variables may not be Normally 

distributed and other distributions are preferable given the nature of the data (Micceri, 1989), that 

the data may exhibit outliers (Barnett & Lewis, 1994) or missing values (Rubin, 1987), that the 

observations are not independent but may follow multi-level data structures (Gelman & Hill, 

2007), and that sample sizes are sometimes relatively small. Although existing techniques are 

available that address these challenges on a case-by-case basis, BANOVA addresses them in an 

integrated fashion. An accompanying R-software package provides a one-stop shop to implement 

these analyses, and produces outputs that are tailored to the needs of researchers in consumer 

psychology that are consistent across very different types of analyses, and can be interpreted in 

the same way and with relatively little effort regardless of the model specification. BANOVA 

thus eliminates the need to rely on multiple software packages, macros, websites, and so on, for 

the analysis of a single experiment. This offers not only an advantage of convenience, but it also 

avoids errors in stacking several analyses on top of each other. Floodlight, planned comparisons, 

simple effects, mediation, and moderated mediation analyses are accommodated for a wide range 

of statistical distributions of the measurements and experimental designs. BANOVA is especially 

useful for the analysis of repeated measures designs, but can be applied to between-subject 

designs as well.  
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Repeated Measures Designs 

In consumer psychology repeated measures designs seem to be often been overlooked as 

appropriate and preferable to more popular between-subject designs. Yet, there appears to be a 

renewed interest in the application of repeated measures designs based on the recognition of 

some of their advantages in lab and field experiments (Morgan & Morgan, 2001; Smith, 2012). 

Single-case designs have been applied to assess the effectiveness of experimental treatments by 

repeatedly measuring the behavior of a participant over the course of an intervention (Kazdin, 

2010; Smith, 2012). Despite their name, multiple participants may be included, in wich case the 

designs are referred to as within-subject designs (see for examples, Graf, Mayer & Landwehr, 

2017; Sweldens, Van Osselaer & Janiszewski, 2010). In these designs each participant serves as 

her own control, and multiple participants replicate the effect of the treatment (Horner & 

Spaulding, 2010). When some treatments are administered between-subjects this results in mixed 

designs.  

We will broadly refer to all these types of designs as “repeated measures designs.” Some 

of the foremost appeals of these designs are that they are sensitive to individual differences in the 

response to experimental treatments, and these are therefore more effectively controlled for. In 

addition, repeated measures designs have greater power because treatment effects are tested 

against generally smaller within-subject variability, while the repeated measures afford 

additional data. These designs thus require smaller samples of participants (Cooper, Heron & 

Heward, 2007). Further, repeated measures designs are also advantageous for investigating the 

effect of mediating variables that are hypothesized to transmit the effect of the treatment onto the 

dependent variable. First, because they are cross-sectional, between-subject designs only 
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accommodate mediators that have contemporaneous effects, while in addition they are often only 

measured after the dependent variable. On the contrary, repeated measures designs are preferable 

for assessing causal mechanisms when they allow the measurement of mediators to temporally 

precede that of the dependent variables (MacKinnon, Fairchild & Fritz, 2007). Second, such  

longitudinal repeated measures designs are critical when the underlying mediating mechanism 

takes time to reveal itself and varies in strength as time passes (Selig & Preacher, 2009). Third, 

while between-subject designs assume that the causal effect has the same strength for all 

participants, repeated measures designs allow one to assess whether experimental factors and 

mediators have effects that vary in magnitude across participants (Bullock, Green & Ha, 2010; 

Hutchinson, Kamakura & Lynch, 2000). Fourth,  mechanisms that mediate treatment effects 

within-subjects may be substantively different from those that mediate the effect between-

subjects (MacKinnon, Fairchild & Fritz, 2007), and repeated measures designs allow one to 

disentangle these mechanisms.  

Of course, downsides of repeated measures designs should not be overlooked, which 

primarily result from order (halo, demand, fatigue, learning) effects caused by exposing the 

participants to multiple treatments or stimuli in close temporal proximity. Order effects need to 

be mitigated by randomization, counterbalancing, or controls in the analysis, and may necessitate 

the development additional stimulus material (Howitt & Cramer 2011, p.179-181).  

BANOVA 

More advanced methods than ANOVA are needed to analyze repeated measures designs, 

which might be a barrier towards their application in consumer psychology. Challenges include 

the non-Normal distribution and missing values of the dependent variables (counts, binary 

variables, rating scales), smaller numbers of participants, and the multi-level structure of the data 
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(Rindskopf, 2014; Smith, 2012). Clearly, these challenges make it inappropriate to analyze the 

data from such experiments with the standard ANOVA or regression analyses, and follow-up 

floodlight and mediation analyses (Baron & Kenny, 1986; Gelman & Hill, 2007; Krull & 

MacKinnon, 2001; Pieters, 2017; Spiller et al., 2013). This article therefore proposes a general 

extension of ANOVA for repeated measures designs that provides a unified solution, which 

includes floodlight, simple effects, mediation, and moderated mediation analyses, for a wide 

range of experimental designs and statistical distributions of the measurements. It can be applied 

to simple between-subject designs as well, for which it will provide similar results as standard 

ANOVA if the measurements follow a Normal distribution. While many of the challenges can be 

addressed in the classical statistical framework, the BANOVA approach takes a Bayesian 

perspective on statistical inference, which offers several conceptual advantages (Kruschke, 

2013). The R-software package developed by Dong and Wedel (2017) is extended in this article 

to implement the analyses, and produces outputs that are tailored to the needs of researchers in 

consumer psychology that can be interpreted by them with little effort.  

We begin with a brief outline of some of the benefits of adopting the Bayesian 

framework for statistical inference and hypothesis testing in consumer research (Kruschke, 2013; 

Wagenmakers, 2007). We then provide a high-level overview of the BANOVA methodology for 

the analysis of repeated measures data, and describe how effect sizes, planned comparisons, 

simple effects, and floodlight analyses are calculated. Next, a Bayesian approach to mediation, 

moderation and moderated mediation is discussed. We illustrate the approaches with several 

applications to previously published studies (the data sets are provided with the R package, all R 

commands are provided in the Methodological Details Appendix). 
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Bayesian Analysis of Experimental Data 

The Bayesian statistical framework specifies how a researcher should learn about model 

parameters and hypotheses from data. It formalizes the researcher's uncertainty about model 

parameters via probability distributions (Gill, 2015, p.1-8). Specifically, before any data is 

collected, the prior uncertainty of a researcher about a parameter of a model, say a coefficient 𝛽 

in a regression model, is quantified via the prior probability distribution. It is briefly denoted 

here as 𝑃(𝛽). For example, if the researcher has little or no information about the value of the 

regression coefficient, the prior distribution would be uninformative (or diffuse) to reflect that all 

values of the coefficient are a-priori (almost) equally likely. For a regression coefficient the prior 

could be 𝛽~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝑠), a Normal distribution with a very large variance (say 𝑠 = 10,000). 

In most cases this prior will have a negligible influence on inferences about the parameter, and 

throughout this article we will use such diffuse priors. Nevertheless, in some cases it may make 

sense to choose informative priors, for example if information is available from previous studies 

in the literature, or from earlier studies in a sequence of experiments (Gill 2015, p. 53). Choosing 

informative priors may also increase statistical power in mediation analysis (Miočević, 

MacKinnon & Levy, 2017).  Nevertheless, although the choice of an informative prior should 

receive close scrutiny and be subjected to sensitivity analyses, we refrain from using them here, 

because informative priors have been criticized for their subjectivity from the point of view of 

classical statistics (Efron, 1978).  

In classical statistics, the data are assumed a random sample from a population. The 

model parameter 𝛽 is assumed to be fixed in the population by nature, and uncertainty about its 

value arises because rather than the entire population only a (random) sample of participants is 

included in the experiment. On the contrary, Bayesian statistics is based on the fundamentally 
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different premise that the data is fixed by the experiment and that the uncertainty about the 

parameter 𝛽 is characterized through a probability distribution. Once the data is collected in an 

experiment, Bayes’ rule prescribes how the prior uncertainty about the parameter, 𝑃(𝛽), should 

be updated with the information in the data. The resulting posterior probability distribution, 

briefly denoted as 𝑃(𝛽|𝑑𝑎𝑡𝑎), encapsulates the uncertainty about the parameter value after the 

data is observed. This distribution is central in the Bayesian approach because it is the basis for 

inferences on hypotheses about the parameter. These inferences are predicated only upon the 

data that was collected in the experiment; unlike what is the case in classical statistics 

hypothetical repeated sampling of the data needs not be invoked (Gill, 2015; p.57-61).  

Although it would be wrong to conclude that Bayesian analysis will free the researcher 

from all problems surrounding the misuse of p-values (p-hacking) and the lack of replicability of 

experiments, it has several important properties that make it attractive for applications in 

consumer psychology: 

1. Bayesian inferences are accurate even for small sample sizes (Gill, 2015; p.57-61). This 

is particularly advantageous for single case designs, repeated measures designs with 

relatively few participants, or for making inferences on individual participants.  

2. It has been proven that one may analyze the data before deciding whether or not to collect 

more data (Edwards, Lindeman & Savage, 1963; Wagenmakers, 2007). In the Bayesian 

framework, this is equivalent to increasing the sample size. However, it is assumed that 

the experiment will eventually be published even if a null-result is obtained after more 

data is obtained, while it is good practice to report this “data-peeking” procedure. 

3. The Credible Interval of a parameter is obtained from its posterior distribution, and it is 

the interval that contains the parameter with a certain (usually 95%) probability. This 
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interpretation of the credible interval is intuitive and (unlike the classical confidence 

interval) does not invoke the concept of repeated sampling (Gill 2015; p.57-61). 

4. The probability that a certain hypothesis on the parameter value holds can be directly 

calculated from the posterior distribution. For example, one can calculate the probability 

of the hypotheses 𝐻0 : 𝛽 ≤ 0, which allows one to not only reject the null-hypothesis (as 

is strictly the case in classical statistics), but also quantify the support for it 

(Wagenmakers, 2007).  

5. This probability, 𝑃(𝛽 ≤ 0), is called the Bayesian p-value (Carlin & Louis, 1998; p.53). 

It has been shown that if the prior is symmetric around zero (for example the Normal 

distribution for 𝛽 above) then the Bayesian p-value, unlike its classical counterpart, can 

be directly interpreted as a measure of the strength of evidence for the null-hypothesis 

(Marsman & Wagenmakers, 2017). 

6. The Bayesian approach allows one to calculate posterior distributions not only of 

parameters, but also of quantities derived from them. This is very useful when one wants 

to obtain the posterior distribution of contrasts defining a planned comparison, an indirect 

effect in mediation models (Zhang et al. 2007), of effect sizes, or Johnson-Neyman points 

in floodlight analyses (Spiller et al., 2013). This will be shown later. 

7. In data arising from repeated measures designs, one needs to allow for unobserved 

individual differences in the effect of the treatment, or of a mediator. Failure to do so may 

lead to biased inferences (Hutchinson, Kamakura, & Lynch, 2000). An analysis of such 

data with Hierarchical (Bayes) models naturally allows for this, which offers the benefit 

that each participant’s estimate of the parameter borrows information from all other 

participants’ data, which is called “shrinkage.” Because there is more shrinkage if 
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participants are more similar or if there is little data on a participant (Gelman et al., 2013) 

this greatly helps the parameter estimates.  

For many models, including BANOVA models for repeated measures designs, a challenge in 

Bayesian analyses is that the posterior distribution of the parameters, 𝑃(𝛽|𝑑𝑎𝑡𝑎), does not have 

a known form. Fortunately, so called Markov Chain Monte Carlo (MCMC) algorithms allow one 

to iteratively draw samples from the posterior distribution to obtain an accurate approximation 

(the larger the number of draws, the better the approximation). The technical details are 

described in, for example, Gelman et al. (2013) and Gill (2015) and need not be of concern to the 

applied researcher, although it may take a little more computing time to produce results. An 

important point to keep in mind is that these iterative MCMC algorithms need to converge, and 

this needs to be checked in each application.  If it has been established that the algorithm has 

converged after a certain number of draws, the draws before that point (called burn-in) are 

discarded. The remaining draws of the parameter values are used to calculate summaries of the 

posterior distribution: for example the average of the draws is an estimate of the parameter, their 

standard deviation is a measure of uncertainty about the parameter, and the fraction of draws that 

has a negative value is an estimate of the probability of 𝐻0 : 𝛽 ≤ 0. 

While the implementation of MCMC estimation previously required a significant 

investment in programming, that burden has been eased by freely available software packages 

such as BUGS (Lunn, Best & Spiegelhalter, 2000) and STAN (Carpenter et al., 2016). 

Nevertheless, for many researchers in consumer psychology the effort of writing programs in 

those languages to analyze their data on a case-by-case basis may still pose too much of a barrier 

or burden. The BANOVA R-package provides an interface with the STAN software, with simple 

syntax that makes it easy to specify models and do a range of follow-up analyses. For more 



12 
 

entrepreneurial researchers, BANOVA can produce the STAN code as output for them to modify 

for more advanced analysis of their data. 

 

BANOVA Tutorial 

BANOVA is developed for the analysis of data collected in repeated measures 

experiments with a possibly non-Normal dependent variable, in which participants are exposed 

to between-subject and/or within-subject manipulations, and in which covariates and mediating 

variables may have been measured as well. We first list the most important measurement scales 

(continuous and categorical) for dependent variables measured in those experiments and the 

probability distributions that are associated with them. The choice of a probability distribution is 

most often uniquely determined by the properties of the measurements: for example, count data 

call for the use of a Poisson distribution and binary data for the use of a binomial distribution. 

The tight link between the properties of measurements and statistical distributions greatly 

reduces ambiguity in selecting an appropriate statistical model for the analysis of experimental 

data in consumer psychology, and failure to recognize the correct distributional form may result 

in biases in the inferences from the experiment and errors in significance testing.  

Statistical Distributions 

Continuous responses. To analyze continuous data that is symmetrical, which arise for 

example when measuring participants’ perceptions of processing fluency on a visual analog scale 

with a resolution of 100 increments, one uses the Normal distribution. To analyze data that is 

skewed to the right, for example when response times are measured to study memory, one could 

use the log-Normal distribution (which is equivalent to taking the natural logarithm of the 
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dependent variable and using a Normal distribution). To analyze data with outliers or fatter tails 

than the Normal distribution, one may use a t-distribution. Because the t-distribution has “fatter 

tails” than the Normal (the smaller the degrees of freedom, the fatter the tails), it may be used for 

robust inference, which is less sensitive to extreme observations (Bernardo & Giron, 1992). This 

may eliminate the need to subjectively remove outliers from the data.  

Categorical variables.  To model count data that can take on values 0, 1, 2, 3, etc. which 

may occur for example when one counts eye fixations on an area of interest in eye tracking 

studies, or jelly beans in studies of variety seeking, the Poisson distribution is used. To model 

data that take on the values 0 or 1, for example whether or not a participant recognizes an ad in 

an implicit memory task, a Bernoulli distribution is used.  Alternatively, if the data represents the 

number of successes in 𝐾 trials the outcome of which can be zero or one, for example how many 

out of K = 20 advertisements a participant correctly identifies, a Binomial distribution is used. 

For 0/1 data with more than two categories, for example when each participant chooses one out 

of four brands, the Multinomial distribution is used.  Categorical measurements that take on 

ordered values 1, 2, 3, …, arise, for example, when attitudes are measured on a 5-point rating 

scale. The ordered Multinomial distribution would be used in this case. BANOVA 

accommodates all of these distributions.  

Missing values. Some values of the outcome or mediator variables measured in an 

experiment may be missing. For example, in eye movement data the eye tracker may fail to 

record the point of regard because of blinks or large head movements. Removing outliers creates 

a missing data record. The large literature on missing data imputation has shown that multiple 

imputation procedures, which involve repeatedly filling in each missing data point to reflect the 

uncertainty in its true value, are preferable to simply ignoring the missing observations or 
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replacing them with the sample average of that variable (Rubin, 1987). Bayesian methods allow 

one to repeatedly impute missing data at the same time the model is estimated. Enders, Fairchild 

and MacKinnon (2013) demonstrate the benefits of such procedures in mediation analysis. In 

BANOVA, missing values of the dependent variable are imputed automatically along with the 

estimation of the model, using all information available in the data.  

Within- and Between-Subjects Models 

BANOVA models are so called Hierarchical Generalized Linear Models (Lee & Nelder, 

1996; McCullagh & Nelder, 1989), which extend linear regression (and thus ANOVA) to 

situations where measurements of a dependent variable may follow, amongst others, a Normal, 

Poisson, Bernoulli, Binomial, Multinomial, or rank-Multinomial distribution. While these 

models do not need to be estimated in a Bayesian framework, MCMC estimation procedures 

make that particularly convenient. In these models the expected values of the measurements of 

the dependent variable are linked to two sub-models: a within-subjects and a between-subjects 

model (Dong & Wedel, 2017; MacKinnon, 2013, p.237; default canonical link functions are 

used, see for details McCullagh & Nelder, 1989). Many well-known models arise as special 

cases. For example, in the case of a Bernoulli dependent variable, the BANOVA model is a 

(hierarchical or mixed) logistic regression model. We provide details of the within-and between-

subject models next. 

 At the within-subjects level, there are (categorical) factors denoted as 𝑥1, 𝑥2, 𝑥3, …, and 

(continuous) covariates and/or mediators denoted as 𝑧1, 𝑧2, 𝑧3, …,  which vary within and across 

participants. We use lower case symbols for them. It is important to note that in BANOVA all 

continuous covariates 𝑧1, 𝑧2, 𝑧3, …,  are automatically mean-centered, and that effect-coding is 

automatically used for all factors, creating K-1 variables for a factor with K levels.  
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As an example, assume one 2-level within-subjects factor, say product category (bath 

towels and paper towels), effect-coded as 𝑥1, and a continuous (mean-centered) within-subjects 

covariate 𝑧1, say perceived quality, which may have a possible interactive effect on the 

dependent variable, willingness to pay (Morales, 2005; study 1).  We use the symbol 𝜃 for the 

parameters of the within-subjects model and omit subscripts that indicate participants and 

repeated measures for convenience. The within-subjects model is then: 

𝑦 ~ 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑧1 + 𝜃3𝑥1𝑧1.                                                                      (1) 

The “~” links the dependent variable, 𝑦,  to the explanatory variables in the within-subjects 

model (more precisely, the ~ links a function of the expectation of 𝑦 to the explanatory 

variables, for example the natural logarithm of the expectation in the case of a Poisson regression 

model; see for details McCullagh & Nelder, 1989). The within-subjects model applies to each 

individual participant separately, so that the values of the parameters 𝜃0, 𝜃1, 𝜃2, and 𝜃3 may be 

different for each participant. Model 1 therefore accounts for unobserved differences between 

participants in the effect of the within-subjects variables, product category and quality.  

At the between-subjects level there are (categorical) factors denoted as 𝑋1, 𝑋2, 𝑋3, …, and 

continuous covariates and/or mediators denoted as 𝑍1, 𝑍2, 𝑍3, …,  which vary across participants 

only. We label all these between-subjects variables with upper case symbols and use 𝛽 to 

indicate the corresponding parameters. It is important to note that all continuous covariates 

𝑍1, 𝑍2, 𝑍3, …,  are automatically mean-centered. 

To continue the example, study 1 of Morales (2005) investigated whether people are 

more willing to pay for products from firms that exert more effort in marketing them and if this 

effect disappears when they perceive the firm’s motive as one of persuasion, across the two 
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categories (𝑥1) and controlling for product quality (𝑧1). Effort (𝑋1; low versus high) and motive 

(𝑋2; neutral versus persuasion) are both manipulated at two levels between-subjects and effect-

coded, with an interactive effect denoted by 𝑋1𝑋2. In a hierarchical model, these two between-

subjects variables may affect (moderate) each of the coefficients of the within-subject model in 

equation 1: 𝜃0, 𝜃1, 𝜃2, and 𝜃3.  In the example there are thus four between-subjects models: 

𝜃0 = 𝛽00 + 𝛽01𝑋1 + 𝛽02𝑋2 + 𝛽03𝑋1𝑋2 + 𝑒0

𝜃1 = 𝛽10 + 𝛽11𝑋1 + 𝛽12𝑋2 + 𝛽13𝑋1𝑋2 + 𝑒1

𝜃2 = 𝛽20 + 𝛽21𝑋1 + 𝛽22𝑋2 + 𝛽23𝑋1𝑋2 + 𝑒2

𝜃3 = 𝛽30 + 𝛽31𝑋1 + 𝛽32𝑋2 + 𝛽33𝑋1𝑋2 + 𝑒3

.                                                       (2) 

Here, 𝑒0, 𝑒1, 𝑒2, and 𝑒3 are error terms that are assumed to follow a Normal distribution 

(currently in the BANOVA package they are assumed to be uncorrelated, which is somewhat 

restrictive). These error terms capture unobserved differences in the parameters 𝜃0, 𝜃1, 𝜃2, and 𝜃3 

between participants. The first equation regresses the individual-specific intercepts (𝜃0) on an 

overall intercept (𝛽00) and on the between-subjects terms. The parameters in question represent 

the main effects of 𝑋1, effort (𝛽01), of 𝑋2, motive (𝛽02), and of the 𝑋1𝑋2 interaction (𝛽03).  The 

second equation regresses the participant-specific parameters of the variable 𝑥1, product category 

(𝜃1),  on an intercept (𝛽10) representing the main effect of product category, and on the between-

subjects terms. The latter parameters represent the interactions of product category with 

marketing effort 𝑥1𝑋1 (𝛽11) and with motive 𝑥1𝑋2 (𝛽12), and the three-way interaction  𝑥1𝑋1𝑋2 

(𝛽13).  The third equation captures the main effect of 𝑧1, product quality (𝛽20), and its 

interactions with marketing effort 𝑧1𝑋1 (𝛽21) and with the persuasion motive 𝑧1𝑋2 (𝛽22), and the 

three-way interaction  𝑧1𝑋1𝑋2 (𝛽23). The fourth equation captures the interaction between 

category and product quality 𝑥1𝑧1 (𝛽30), the three-way interactions 𝑧1𝑥1𝑋1 (𝛽31) and 𝑧1𝑥1𝑋2 

(𝛽32), and the four-way interaction  𝑧1𝑥1𝑋1𝑋2 (𝛽33).    
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It is important to note that in BANOVA, all inferences of interest (effect sizes, p-values 

and so on) are derived from the between-subjects model 2. The within-subjects model is 

estimated, but the parameter estimates of the within-subject model are not used any further (with 

the exception of the calculation of individual-specific indirect effects as is explained later). 

Model Syntax 

BANOVA models are specified in convenient shorthand notation (following standard R 

syntax). The full model in the example above is specified as   (𝑦 ~ 𝑥1 ∗ 𝑧1, ~𝑋1 ∗ 𝑋2). The “~” 

separates the dependent from the independent variables, and the  “,” separates the within- and 

between-subjects models. The “∗” sign expands the term in question into all main effects and all 

interactions of its arguments: 𝑋1 ∗ 𝑋2 = 𝑋1 + 𝑋2 +  𝑋1: 𝑋2 (interactions are denoted as 𝑋1: 𝑋2).  

If in the application there had not been any between-subjects variables the model would have 

been specified as (𝑦~𝑥1 ∗ 𝑧1, ~1). If it had been a between-subjects experiment without the 

within-subjects variables, the within-subjects model would simply be omitted (𝑦~𝑋1 ∗ 𝑋2). Note 

that in a between-subjects experiment the parameters are the same for all participants 

(unobserved heterogeneity cannot be accommodated). Table 1 lists examples of the syntax for 

several commonly used models. If 𝑦 follows a Normal distribution the model is a (hierarchical) 

linear regression, and a logistic regression if 𝑦 follows a Bernoulli distribution.  

Credible Intervals and P-Values 

Once a model such as the one in equations 1 and 2 has been specified, the MCMC estimation 

machinery in the R package draws samples from the posterior distribution of each parameter, 

𝑃(𝛽|𝑑𝑎𝑡𝑎). If for example 10,000 draws, 𝛽𝑟, for 𝑟 = 1 𝑡𝑜 10,000 have been obtained, then 

these tenthousand values are used to calculate an estimate of the parameter and to conduct 
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statistical tests. The average of the draws is the parameter estimate (the “posterior mean”), the 

standard deviation of the draws is a measure of uncertainty about the parameter (the “posterior 

standard deviation”). The Credible Interval (CI), is the interval that contains the parameter with a 

certain (usually 95%) probability, and is obtained as the 2.5 and 97.5 percentile points of the 

draws 𝛽𝑟.  

The one-sided p-value is calculated as the fraction of draws 𝛽𝑟 that has a negative (or 

positive) value. It is an estimate of the probability: 𝑃(𝛽 ≤ 0). This probability is often called the 

“Bayesian p-value,” because if it is small then 𝐻0: 𝛽 ≤ 0 is unlikely (Carlin & Louis, 1998, 

p.53). The two sided Bayesian p-value is calculated as two times 𝑃(𝛽 ≤ 0|𝐷𝑎𝑡𝑎) or 

𝑃(𝛽 > 0|𝐷𝑎𝑡𝑎) whichever is smaller (it is the p-value reported by the BANOVA package).  

Unfortunately, the classical p-value is often misinterpreted: it is not the probability that 

the null-hypothesis is true and does not quantify the evidence for the hypothesis. It only allows 

one to reject the null-hypothesis. It has been argued that it should therefore be supplemented or 

replaced with statistical measures of evidence, in particular the likelihood ratio (Nuzzo, 2014; 

Wasserstein & Lazar, 2016). The likelihood ratio, alternatively called the Bayes Factor (BF), is 

the most widely accepted measure to quantify how much evidence a data set provides for a 

hypothesis (Edwards, Lindeman & Savage, 1963). When the prior is symmetric (for example the 

diffuse Normal distribution for the coefficient 𝛽 proposed above) and the hypothesis is 

directional, then the Bayesian p-value is a transformation of the Bayes Factor (𝑙𝑜𝑔𝑖𝑡(𝑝)  =

log (𝐵𝐹); Marsman & Wagenmakers, 2017). This means that in those common cases not only is 

the Bayesian p-value the probability that the null-hypothesis is true, but it can also be directly 

interpreted as the strength of evidence for the null-, or conversely, the alternative hypothesis. 

Jeffreys (1961) and Kass and Raftery (1995) provide guidelines for the interpretation of the 
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Bayes factor. These guidelines roughly imply that below the commonly used cutoff of p = 0.05 

the Bayesian p-value indicates strong evidence, below p = 0.01 it indicates very strong evidence, 

and below p = 0.001 decisive evidence for the effect. 

Effect Sizes and Model Fit 

We propose to calculate effect sizes for these hierarchical models building on Gelman and 

Pardoe (2006). The sums-of-squares (SS) for any effect in a between-subjects equation such as 2,  

is defined as the difference between the SS of the residuals obtained by setting the coefficient(s) 

for that effect to zero (SS0) and the SS of the residuals of the full model (SS𝑒). Say that in the 

example used above we want to obtain the effect size of the 3-way interaction: 𝑥1𝑋1𝑋2. We first 

obtain SS𝑒, the SS of the residuals 𝑒1 of the full model. We then set  𝛽13 = 0 and recalculate the 

residuals 𝑒1 and their SS, which is denoted as SS0. The SS for the effect is then: 𝑆𝑆𝛽 = SS0 −

SS𝑒. The proposed generalized partial eta-squared effect size measure is then calculated as 

follows:  𝜂𝑃
2   =

𝑆𝑆𝛽

𝑠𝑦+𝑆𝑆𝛽+𝑆𝑆𝑒
  .  Here, 𝑠𝑦 is a “correction term” that accounts for the error variance 

of the within-subjects model in equation 1 (Nakagawa & Schielzeth, 2013; Table 2 p. 139; for 

example, for the binomial the distribution-specific variance is 
𝜋2

3
). We use partial eta-squared 

because it is not very sensitive to other terms included in the model and therefore generalizable 

across studies (Lakens, 2013). MCMC estimation automatically adjusts it to account for 

uncertainty in all parameters (Lakens, 2013; Gelman & Pardoe, 2006), and allows its Credible 

Interval to be calculated. These partial eta-squared effect sizes can be calculated for any model 

within the BANOVA family. The SS’s thus obtained also allow for the calculation of an R2 

measure of fit for all BANOVA models (see for details Gelman & Pardoe, 2006; Nakagawa & 

Schielzeth, 2013).  
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Tables of Predictions 

The draws of parameter values, 𝛽𝑟, obtained with MCMC can be used to calculate “tables of 

predictions.” These tables contain the predicted values of the dependent variable, 𝑦̂, at all 

possible combinations of the levels of the experimental factors: one-way, two-way, or three-way 

tables. In calculating these tables continuous covariates are set to their mean value (which is zero 

because of mean centering). In the example above, these would be the tables classified by 𝑥1, by 

𝑋1, by 𝑋2, by 𝑥1 and 𝑋1, by 𝑥1 and 𝑋2, by 𝑋1 and 𝑋2, and the three-way table classified by by 

𝑥1 and 𝑋1and 𝑋2 (while setting  𝑧1 = 0 ). These tables are often much easier to interpret than the 

parameter estimates themselves, especially when there are multiple factors with interactions. 

Because the predicted value in each cell of the table is calculated for each draw of the 

parameters, its posterior distribution, 𝑃(𝑦̂|𝐷𝑎𝑡𝑎), can be obtained as well. The posterior 

distribution of the predictions is usually summarized via its mean and Credible Interval. Note 

that overlap of two Credible Intervals does not necessarily imply a lack of evidence for a 

difference between predictions in the corresponding cells in the table (although absence of 

overlap indicates such evidence). Those comparisons are better done via planned comparisons, as 

explained below. 

What Should the Researcher Report? 

What statistics should the researcher report as evidence for a hypothesis? We propose the 

following (see also Pieters, 2017; Wasserstein & Lazar, 2016; Wilkinson ea., 1999):  

1. The posterior mean of a parameter 𝛽, and its Credible Interval, 

2. The (Bayesian) p-value, and/or the Bayes Factor, 

3. The effect size, 𝜂𝑃
2 ,  and its Credible Interval, 
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4. Tables of predictions, and their Credible Intervals. 

Which tables of predictions are relevant will depend based on both the hypotheses and 

results of the statistical tests in the experiment. For example, if a three-way interaction was 

hypothesized but the experiment did not show evidence for it, there is not much use in inspecting 

the corresponding three-way table of predictions. The statistics in points 1-4 are part of the 

output of BANOVA.  

 

Possible Follow-Up Analyses 

After assessing the evidence for the effect of one or more experimental factors, a 

researcher often requires more detailed insight into their directions and magnitudes. Planned 

comparisons, simple effects, and spotlight and floodlight analyses enable these. The BANOVA 

package includes functions that perform the calculations in question (see the Methodological 

Details Appendix). 

Planned Comparisons  

One may wish to further probe main effects of factors with more than two levels, using a 

Bayesian approach to planned comparisons. Contrast coding allows one to test specific 

hypotheses on differences between levels of a categorical variable. Rather than using a standard 

coding for the levels of the factor, such as dummy coding or effects coding, one specifies a 

unique comparison, or contrast, between specific levels of the factor. For instance, assume that in 

the marketing/persuasion example above, the within-subjects factor product category (𝑥1) has 

three levels: 𝑥1 = (1,2,3), paper towels, canned soup and bath towels. Then the contrast 

𝑐(−1,1,0) specifies a comparison between paper towels and canned soup, and 𝑐(1,0, −1) 
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specifies a comparison between paper towels and bath towels (the “c” specifies a vector in R). 

Based on the draws of the parameters, the CI of a contrast in the predicted values of 𝑦 can be 

obtained. If the CI does not contain zero, there is evidence for a difference between the levels of 

the factor specified in the contrast. The interaction between two factors is calculated as the 

product of their two contrasts. For example, for a 3-level factor (𝑥1; product category) with 

contrast 𝑐(1,0, −1) and a 2-level factor (𝑋1; marketing effort) with contrast 𝑐(1, −1), the 

resulting interaction specifies a comparison of the difference between high and low marketing 

effort, between the first and third levels of the first factor (paper towels vs. bath towels). Planned 

comparisons can be made for within- and/or between-subjects factors. See for example Kerlinger 

and Pedhazur (1973; p. 128-140) and other textbooks for a detailed treatment of planned 

comparisons and contrast coding. 

Simple Effects 

Simple effects are often helpful for the interpretation of interaction effects. For instance, in the 

marketing/persuasion example with model (𝑦~𝑥1 ~𝑋1 ∗ 𝑋2), to explore the moderating effect of 

the product category 𝑥1on marketing effort 𝑋1, simple effects of 𝑋1 can be calculated. These are 

the differences between low versus high marketing effort for each product category (levels of 

𝑥1). The simple effects can be obtained by specifying specific contrasts, with the moderator 𝑥1 

represented by dummy coding and the other factor(s) by effect coding. The simple effect of 𝑋1 

for the first product category, for example, is the main effect of  𝑋1 when contrasts 𝑐(1, −1) for 

𝑋1 and 𝑐(0,1) for 𝑥1 are specified. For simple effects at some other level of 𝑥1, dummy coding is 

used with that specific level specified as the baseline. Thus, for three product categories, 𝑥1 =

(1,2,3), paper towels, canned soup and bath towels, specifying the two contrasts 𝑐(1,0,0) and 

𝑐(0,0,1) for 𝑥1 would result in the main effect of 𝑋1 representing the simple effect of marketing 
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effort for canned soup. When exploring 3-way interactions (marketing effort × motive × 

category), the simple effects of a two way interaction (marketing effort × motive) at a specific 

level of the third factor (product category), or the simple effect of one factor (marketing effort) at 

specific levels of the second (motive) and third (category) factors can be similarly specified 

through contrasts. Based on the draws of the parameters, the p-value, CI and effect size of a 

contrast are obtained.  

Spotlight analysis  

Spotlight analysis (Rogosa, 1980) involves planned comparisons to probe the interaction 

between a factor 𝑥1 (product category) and a continuous variable 𝑧1 (product quality). 

Specifically, one would like to know if there is a difference between the levels of the factor at a 

pre-specified level of the continuous variable. If the factor 𝑥1 (product category) has three levels, 

one could test the differences in willingness to pay (𝑦) between the first two levels (paper towels 

vs. canned soup) via the contrast 𝑐(−1,1,0) at a specific level of product quality, 𝑧1 = 1, for 

example. Using the draws of the parameters, the p-value, CI and effect size of that contrast can 

be calculated. Spotlight analyses can be done for within- and/or between-subjects factors and 

variables. It applies as well when both terms in the interaction are (categorical) factors. 

Floodlight Analysis 

Floodlight analysis (Bauer & Curran, 2005; Spiller et al., 2013; Johnson & Neyman, 1936), 

overcomes spotlight analysis’ limitation of having to select one specific value of the continuous 

variable. It provides an estimate of the range of values at which there is evidence for a difference 

between the factor levels. The endpoints of this range are called the Johnson-Neyman (JN) 

points. To continue the example, we may wish to probe the interaction between 𝑥1 (product 

category) and 𝑧1 (product quality). Assuming 𝑥1 has two levels (-1 and 1), the difference 
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between them can be shown to be 2× (𝛽10 + 𝛽30𝑧1) (assuming all level-2 terms 𝑋1 = 0, and 

𝑋2 = 0). Setting this expression to zero and solving for 𝑧 yields: 𝑧0 = −𝛽10 𝛽30⁄ . Or, we may 

probe the interaction between 𝑋1 (marketing effort) and 𝑧1 (product quality). The difference 

between the two levels of 𝑋1 is 2× (𝛽01 + 𝛽21𝑧1) (assuming all other terms to be zero), which 

yields: 𝑧0 = −𝛽01 𝛽21⁄ . Because 𝑧0 is calculated at each of the draws of the parameters, its 

posterior distribution and CI can be obtained. The endpoints of the CI of  𝑧0 are the JN points: 

for values of 𝑧 inside the CI there is no evidence of a difference between the levels of  𝑥1, only 

for values outside of the CI there is. If a JN point is inside the data range, the difference between 

the levels of 𝑥1 outside of the JN point can be positive or negative, which is indicated by 

sign(𝛽10 + 𝛽30JN). If one or both of the JN points are outside of the observed range of 𝑧 they 

can be ignored (Hayes, 2013; p.240).  

To further continue the example, the difference between the levels of marketing effort, 

𝑋1, along levels of product quality, 𝑧1 may also depend on the motive, 𝑋2, because of their 

interactive effect. Now, the difference between the levels of 𝑋1 can be shown to be 2 ×

(𝛽01 + 𝛽03𝑋2 + 𝛽21𝑧1 + 𝛽23𝑋2𝑧1).  Setting this to zero and solving for 𝑧 yields:                     

𝑧0 = −
𝛽01+𝛽03𝑋2

(𝛽21+𝛽23𝑋2)
. Thus, there are two floodlight ranges, one for 𝑋2 = 1: 𝑧0 = −

𝛽01+𝛽03

𝛽21+𝛽23
  and 

one for 𝑋2 = −1: 𝑧0 = −
𝛽01−𝛽03

𝛽21−𝛽23
. For each of these the CI of  𝑧0 provides the JN points, which 

can be calculated from the draws of the parameters. Note that these floodlight analyses can be 

obtained for repeated measures data with a non-Normal dependent variable. While in standard 

repeated measures models these JN points are only approximations (Bauer & Curran, 2005), this 

caveat does not hold when using the Bayesian approach proposed here.  
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Study 1: Gist Perception 

We illustrate the application of BANOVA by reanalyzing data from a study on rapid 

perception of the gist of color and greyscale ads during brief and blurred exposures (Wedel & 

Pieters, 2015). The study involved 116 participants in a 5 (blur: normal, low, medium, high, very 

high) × 2 (color: full color, grayscale) × 2 (typicality: typical ads, atypical ads) mixed design. 

Participants were exposed to 32 full-page ads, of which 16 were typical and 16 were atypical for 

their category. Ad images were blurred with Gaussian blur filters and rendered in greyscales or 

full color. Participants were flashed an image for 100msec. and asked to identify whether it 

showed an ad or not. The dependent variable is the number of times, out of sixteen, that a 

participant identified the typical and atypical ads correctly. The key hypothesis was that the gist 

perception of typical versus atypical ads is better at higher levels of blur, and that color helps this 

even more (see for details Wedel & Pieters, 2005).   

The BANOVA R package is used for the analysis (the Methodological Details Appendix 

provides the instructions on how to install it and the commands needed to run all analyses for 

this application). The dependent variable follows a Binomial distribution (𝐾 = 16). There is one 

within-subjects factor, typicality (typ), and two between-subjects factors color (col) and blur 

(blr). The repeated measures BANOVA model is specified as: (𝑦~𝑡𝑦𝑝, ~𝑐𝑜𝑙 ∗ 𝑏𝑙𝑟). 100,000 

draws were taken and one in 10 draws were retained. Convergence tests reported by BANOVA 

(Geweke, 1991; Heidelberg & Welch, 1983) indicate that the algorithm converged. 

The effect sizes and p-values in Table 2 show that there is decisive evidence for the 

typ×blr (p < 0.001; 𝜂𝑃
2   = 0.017), and strong evidence for the typ×col (p = 0.016; 𝜂𝑃

2   = 0.003), 

and typ×col×blr (p = 0.032, 𝜂𝑃
2   = 0.002) interactions, but with relatively small effect sizes. Table 

3 and Figure 1 show the predicted number of correct ad identifications (out of 16) for all 
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combinations of color, typicality and blur. They reveal that typical ads are more often correctly 

identified than atypical ads. Typical color ads are better identified than typical grayscale ads, but 

that seems to be the case only when they are blurred. A planned comparison with typicality 

contrast 𝑐(0,1) and blur contrast 𝑐(0,1,1,1,1), which specifies the simple effect of color for 

normal typical ads, shows indeed that there is little evidence for a difference between normal 

typical color and grayscale ads (𝛽 = -0.061 with CI = (-0.341, 0.231), p = 0.688, 𝜂𝑃
2   = 0.005 

with CI (-0.001,0.030)).  Further, Figure 1 shows that the lines for atypical color and atypical 

grayscale ads are very close, suggesting that there is no difference in identification between these 

ads for any level of blur. The figure also reveals a substantial negative trend in the identification 

of typical ads as blur increases, but no systematic effect of blur for atypical ads.  

We use the Bayesian approach to floodlight analysis to further shed light on these effects. 

First, reanalysis of the data with blur as a continuous variable (the natural logarithm of the pixel 

radius of the blur filter, which ranges from 0 to 5.481) confirms these findings and again shows 

strong evidence for the typ×col×blr interaction (𝛽= 0.038 CI=(0.007, 0.072), p = 0.020, 𝜂𝑃
2   = 

0.008).  Second, we explore the difference between color and grayscale ads at different levels of 

blur as moderated by ad typicality, using Bayesian floodlight analysis. It produces two sets of JN 

points: the 95% floodlight is (-20.22, 48.02) for atypical ads and (-9.24, 2.91) for typical ads. 

Both JN points are outside of the data range for atypical ads, which confirms that there is no 

difference between color and grayscale for any level of blur for these ads (Figure 1). The right 

JN point is inside the data range for typical ads, which reveals that there is strong evidence of a 

difference between color and grayscale typical ads for levels of (log) blur higher than 2.91,  

which is a bit below blur level 2 (Table 3, Figure 1). Color thus mitigates the detrimental effect 

of blur on ad identification for typical, but not for atypical ads.  The results of the BANOVA 
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analyses of these data are very similar to those reported by Wedel and Pieters (2005), who used 

Bayesian multilevel logistic regression models for their analyses, but here we add the new 

planned comparisons, simple effects, and floodlight analyses.  

 

Analysis of Mediation and Moderation  

In consumer psychology providing evidence that an experimental treatment has an effect is often 

not sufficient: for theory development one needs to establish the mechanism by which the effect 

is produced, and investigate whether there are factors that affect the magnitude of the treatment’s 

effect or its mechanism. That is, one needs to test for, respectively, mediation, moderation, or 

moderated mediation (Preacher, Rucker & Hayes, 2007; Bauer, Preacher & Gil, 2006; Yuan & 

McKinnon, 2009; Pieters, 2017). Repeated measures experiments provide several advantages for 

those purposes (Judd, Kenny & McClelland, 2001).  

Mediation in Repeated Measures Experiments 

First, in between-subjects experiments not only is the mediator measured at the same time 

(or even after) the dependent variable, but participants are randomly assigned to levels of the 

experimental factor and not to levels of the mediating variable. Therefore these designs only 

provide correlational evidence of mediating mechanisms (Bullock, Green & Ha, 2010; Pirlott & 

MacKinnon, 2016). On the other hand, repeated measures designs allow for temporal precedence 

of the measurement of the mediator, and therefore may provide a higher degree of confidence in 

the causality of the effects under study. Second, because popular between-subjects designs are 

cross-sectional, they only accommodate mediators that transmit the effect of the experimental 

treatment contemporaneously. On the contrary, longitudinal repeated measures designs allow the 
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measurement of the mediator to temporally precede that of the dependent variable (MacKinnon, 

Fairchild & Fritz, 2007), and are thus particularly useful when the underlying mediating 

mechanism takes time to reveal itself or varies in strength as time passes (Selig & Preacher, 

2009). Third, some mechanisms that mediate treatment effects operate between-subjects, for 

example via psychological traits such as need-for-cognition or openness-to-change, while other 

mechanisms operate within-subjects, for example via psychological states such as attention or 

emotions. In some cases the same mediator may operate both within- and between-subjects. 

Properly designed repeated measures experiments allow one to disentangle these different 

mechanisms (MacKinnon, Fairchild & Fritz, 2007). Fourth, a between-subjects design only 

allows for the estimation of average mediation effects, and therefore these designs do not allow 

one to evaluate the extent of unobserved heterogeneity in causal relations (Bullock, Green & Ha, 

2010). If dependent variables are non-Normal and there is heterogeneity of causality, averaging 

of participant-specific causal effects may even result in biased inferences. Repeated measures 

designs are required to assess if participants differ in the effect of the experimental treatment on 

the dependent variable or on the mediator, and of the indirect effect of treatment transmitted via 

the mediator on the dependent variable (Pirott & MacKinnon, 2016).  

BANOVA Models for Mediation and Moderation  

The framework and model syntax provided in Table 3 accommodates the specification of 

a plethora of mediation, moderation and moderated mediation relationships and thereby allows 

for an appropriate analysis of a wide variety of assumed causal mechanisms using repeated 

measures data. We provide eleven examples of those models in Table 4, which cover many 

common cases. The models in the Table involve a single mediator, a single moderator and no 

other covariates, but extensions are straightforward and accommodated within the framework. 



29 
 

The table indicates at which level the experimental factor, the mediator and the moderator are 

measured or manipulated, and it provides the within- and between-subjects models for the 

dependent variable (y) and the mediator (m or M). Most cases involve repeated measures designs, 

but as several examples in the Table show, between-subjects designs are accommodated as well.  

The most common cases (models 1-5) are highlighted in gray. Model 1 is for a repeated 

measures design with a factor manipulated within-subjects and a within-subjects mediator 

variable. Model 2 is for a between-subjects design, with a between-subjects manipulation and a 

between-subjects mediator variable. Model 3 is for a repeated measures design with two within-

subjects factors and their interaction (moderation).  Model 4 is for a between-subjects design 

with two factors and their interaction. Finally, model 5 is for a repeated measures design with 

one within-subjects factor and one between-subjects factor, where the between-subjects factor 

moderates the effect of the within-subjects factor. 

The models in Table 4 are presented in syntax that can directly be used to run the 

BANOVA models in R. All models allow for various distributions of the dependent variable 

(Normal, Poisson, Binomial, Multinomial, etc.), but the mediator should be continuous and 

Normally distributed for the calculation of indirect effects to be valid. Figure 2 illustrates four of 

the models that accommodate moderated mediation.  

This framework in Table 4 generalizes various models for repeated measurements that 

have been proposed in the (consumer) psychology literatures. For example, Judd, Kenny and 

McLelllan’s (2001) case 3 is model 3 in Table 4, and their case 2 is model 5. Krull and 

MacKinnon’s (2001, p.254) 1-1-1 model (numbers indicate the measurement level of X-M-Y) is 

model 1 and their 2-2-1 model is model 6 in Table 4. Model 7 is a generalization of their 2-1-1 

model, where in addition the effect of 𝑚 on 𝑦 is moderated by 𝑋1.  As another example, model 
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10 could be used to analyze a moderation-of-process design (Pirott & MacKinnon, 2016, p.11), 

with a within-subjects treatment 𝑥1, a within-subjects (measured) mediator 𝑚, and a between-

subjects treatment 𝑋1 that blocks or enhances the effect of the mediator 𝑚, for stronger evidence 

of causality of the mechanism. 

Indirect Effects in Bayesian Models for Mediation and Moderated Mediation  

The indirect, or causal, effect of an experimental treatment involves the product of two 

coefficients that capture the effect of the treatment on the mediator (𝛼), respectively the effect of 

the mediator on the dependent variable (𝛽). It has long been recognized that the indirect effect, 

𝛾 = 𝛼 × 𝛽, does not have a known distribution, because the product of two Normal distributions 

does not follow a known distributional form. This poses a problem for statistical testing of the 

underlying mechanism that has seen several solutions, such as the Bootstrap (Bollen & Stine, 

1990) and Bayes Credible Intervals (Zhang, Wedel & Pieters, 2008). In addition, standard 

deviations and tests of the indirect effect in classical multilevel mediation and moderated 

mediation analyses are based on approximations only (Krull & MacKinnon, 2001). Using a 

Bayesian approach, however, the posterior distribution and credible intervals of the indirect 

effect can be calculated accurately in all cases (Zhang, Wedel & Pieters, 2008).  

As an example, consider a between-subjects experiment with one 2-level factor and a 

continuous between-subjects mediator (model 2 in Table 4). The syntax is: (𝑦 ~𝑋1 + 𝑀), and 

(𝑀 ~𝑋1). The coefficient 𝛼1 captures the effect of 𝑋1 on 𝑀; 𝛽1 captures the effect of 𝑀 on 𝑌; the 

indirect effect of 𝑋1 is thus 𝛾 = 𝛼1 × 𝛽1. The Bayesian estimation algorithm produces draws 

(indexed by r = 1,…,R) of the posterior distributions of the coefficients 𝛼1 and 𝛽1. If we have, 

for example, R = 10,000 draws (values) of 𝛼1
𝑟 and 𝛽1

𝑟, then the indirect effect can be calculated 

for each of these 10,000 draws as:  𝛾𝑟 = 𝛼1
𝑟 × 𝛽1

𝑟. This results in 10,000 values of the indirect 
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effect that are draws from its posterior distribution: 𝑃(𝛾|𝐷𝑎𝑡𝑎). They can be used to calculate an 

estimate, CI, and p-value to assess the evidence for the indirect effect (Zhang, Wedel & Pieters, 

2008; Yuan & McKinnon, 2009).  

As an example for a  repeated measures experiment, assume one 2-level within-subjects 

factor, a continuous within-subjects mediator, and a 2-level between-subjects moderator. This 

example corresponds to model 9 in Table 4, the syntax for which is (𝑦 ~ 𝑥1 + 𝑚, ~𝑋1), and 

(𝑚 ~𝑥1, ~𝑋1). This model allows one to test for mediation and moderated mediation: 𝑋1 

moderates the direct effects of 𝑥1 and 𝑚 on 𝑦, as well as the effect of 𝑥1 on 𝑚. The direct effects 

of 𝑥1 are 𝛽10 + 𝛽11𝑋1 (see equation 2); note that there are two direct effects because of 

moderation by 𝑋1: one for 𝑋1 = 1: (𝛽10 + 𝛽11), and one for 𝑋1 = −1: (𝛽10 − 𝛽11). There are  

thus also two indirect effects of 𝑥1: 𝛾 = (𝛽20 + 𝛽21𝑋1) × (𝛼10 + 𝛼11𝑋1), because of the 

moderating effect of 𝑋1: one indirect effect obtained by substituting 𝑋1 = 1 and one by 

substituting 𝑋1 = −1. For this model, and any other model specified within the general 

framework the posterior distributions of all indirect effects can be obtained from the draws of the 

parameters, and thus their Credible Intervals and p-values can be obtained.  

P-Values and Effect Sizes of Indirect Effects 

With much of the scientific interest in consumer psychology resting on indirect effects, reporting 

Credible Intervals, p-values, and effect sizes for these effects is “needed to convey the most 

complete meaning of the results” (APA, 2010, p.33). Once the draws of an indirect effect 𝛾𝑟 are 

obtained as explained above, the Credible Interval can be calculated as the 2.5 and 97.5 

percentile points of these draws. The one-sided p-value for the hypothesis 𝐻0: 𝛾 ≤ 0 is the 

fraction of draws 𝛾𝑟 that has a negative value. The two-sided p-value is calculated as twice the 
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fraction of draws that has a negative or positive value, whichever is smaller. These quantities 

provide measures of the amount of evidence for the indirect effect.  

For the effect size of the indirect effect, we propose to calculate a (new) generalized 

partial eta-squared measure. Several measures have been previously proposed to capture the size 

of the indirect effect in the context of mediation models. They fall into the following broad 

categories: 1. standardized estimates of indirect effects, 2. ratios of the relative magnitude of the 

indirect relative to the direct effect, 3. indices of explained variance based on mediation model 

residuals (Kelly & Preacher, 2012; Lachowicz, Preacher & Kelly, 2018; Preacher & Kelly, 

2011). Desiderata for effect size indices, as well as advantages and disadvantages of the existing 

measures are discussed by Preacher and Kelly (2011). They also point to the desirability of 

interval estimates for these quantities.  

The generalized partial-eta-squared (𝜂𝑃
2) measure proposed here falls in the category of 

measures of explained variance. It offers the advantage of an interpretation as a proportion, and 

of being comparable across studies (Lakens, 2013). Further, it is calculated in a way that is 

conceptually similar to the other effect sizes in BANOVA (see above), is available regardless of 

the distribution of the data or the model formulation, and of accommodating the uncertainty 

about the parameters (because it is averaged across the draws of all parameters), while Credible 

Intervals are provided as well. We define the SS for the indirect effect as the difference between 

the SS of the residuals obtained by setting the indirect effect to zero and the SS of the residuals 

of the full model. We first obtain the residuals of the full model and their sums-of-squares: SS𝑒. 

Then we subtract the effect of the experimental factor on the mediator from the observations of 

the mediator, which yields 𝑀0 (or 𝑚0). We substitute 𝑀0 (or 𝑚0) for 𝑀 (or 𝑚) in the model for 

𝑦 and recalculate the residuals and their sums-of-squares, which is indicated as SS0. The SS for 
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the indirect effect is then: 𝑆𝑆𝛾 = SS0 − SS𝑒, and the generalized partial eta-squared effect size is:  

𝜂𝑃
2   =

𝑆𝑆𝛾

𝑠𝑦+𝑆𝑆𝛾+𝑆𝑆𝑒
  .  Here, 𝑠𝑦 is a “correction term” that accounts for the error variance of the 

within-subjects model (Nakagawa & Schielzeth, 2013; Table 2). 

These calculations extend to the general case with within- and/or between-subjects 

factors, mediators and moderators. In those cases, the SS for the indirect effects is obtained by 

calculating the direct effects of the experimental factor on the mediator M (or m) for all levels of 

relevant moderating factors, subtracting that from M (or m), and recalculating the SS of the error. 

The draws from the posterior distribution of the effect sizes of the indirect effects enables the 

calculation of their Credible Intervals. It is important to note that both 𝜂𝑃
2  and the limits of its CI 

are not necessarily constrained to be positive and may take on negative values if the effect sizes 

are very small.  

  

Study 2: Direct and Indirect Conditioning 

We apply BANOVA to data from a study by Sweldens, van Osselaer and Janiszewski 

(2010) in order to illustrate an application to a repeated measures design with mediation and 

moderation. Sweldens and coauthors investigated evaluative conditioning, by testing if brand 

attitudes can be influenced by showing the brands together with pleasing pictures. Attitude 

change via conditioning can result from either a direct transfer of affect from the picture to the 

brand, or through an indirect association of the brand and the picture in memory. In Sweldens’ et 

al. (2010) experiment 1, indirect conditioning was implemented by presenting a brand 

sequentially with the same picture, direct conditioning by presenting it simultaneously with 
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different pictures. The pictures were either neutral or positive, three brands received the neutral 

and three the positive conditioning. 

We reanalyze part of the data according to a mixed design with one within-subject factor 

(cond = neutral, positive) and one between-subject factor (type = indirect, direct). We dropped 

the “reevaluation” level of the within-subjects factor, and investigate whether the conditioning 

effect is mediated by the attitudes towards the pictures (pict). We also test if the effect of the 

effect of the mediator is moderated by the between-subjects factor (type). Because the authors 

used a two-stage experimental design the number of missing values for the mediator is larger 

than what one would want to impute and we use only data without missing values (n = 148, N = 

888). The R package “BANOVA” is used for the analysis (the Methodological Details Appendix 

provides the commands needed to run the analyses). The Shapiro-Wilk Normality test reveals 

that dependent variable att, an average of three 7-point scales, is approximately Normally 

distributed. Model 10 in Table 4 and Figure 2c:  (𝑎𝑡𝑡 ~𝑐𝑜𝑛𝑑 + 𝑝𝑖𝑐𝑡,   ~𝑡𝑦𝑝𝑒), is used for the 

analysis. Estimation details are the same as in study 1, the convergence tests indicate that the 

algorithm converged. We perform a Bayesian mediation analysis, which allows us to calculate 

the direct and indirect effects, effect sizes, their Credible Intervals, and p-values. In addition, we 

report the percentage of participants with a positive individual-level indirect effect. 

Table 5 shows the effect sizes and the p-values. The first column refers to the main 

effects of the within-subjects variables (intercept, cond, pict), the second column refers to the 

main effect (intercept) of the factor type and it’s moderating effects (of cond and pict). There is 

decisive evidence for an effect of the mediator (pict) with a medium effect size (β =0.269 with 

95%CI = (0.182,0.354), p < 0.0001; 𝜂𝑃
2   = 0.06 with 95%CI= (0.04,0.09)). There is little 

evidence for an effect of the conditioning manipulation after the mediator is accounted for (p = 
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0.328; 𝜂𝑃
2  = 0.009 with 95%CI = (0.001,0.029)). There is very strong evidence for a main effect 

of type of conditioning with a small effect size (p = 0.004; 𝜂𝑃
2   = 0.02 with 95%CI = 

(0.005,0.039)). There is little evidence for the cond × type interaction (p = 0.368; 𝜂𝑃
2  = 0.005 

with 95%CI = (-0.001,0.025); note that the 95%CI of the effect size of an effect for which p < 

0.05 may contain zero, but not necessarily needs to do so), and the pict × type interaction (p = 

0.692; 𝜂𝑃
2  = 0.001 with 95%CI = (-0.001,0.007)). Table 6 contains the predictions classified by 

cond and/or type.  

The mediator (pict) is approximately Normally distributed and model 10 in Table 4 is 

used for its analysis: (𝑝𝑖𝑐𝑡 ~𝑐𝑜𝑛𝑑,   ~𝑡𝑦𝑝𝑒). Estimation details are the same as above. Table 7 

shows the effect sizes and p-values, which reveals decisive evidence for the impact of the 

conditioning (cond) manipulation on the mediator, with a very large effect size (p < 0.0001; 𝜂𝑃
2   

= 0.480 with 95%CI = (0.448,0.513)). And although there is strong evidence for the differences 

between types of conditioning (p = 0.004; 𝜂𝑃
2   = 0.01 with 95%CI = (0.001,0.03) ), there is little 

evidence that type moderates the effect of conditioning (p = 0.336; 𝜂𝑃
2   = 0.001 with 95%CI =    

(-0.007,0.01)).  

There is decisive evidence for the indirect effect of cond with a medium-to-large effect 

size (p <0.0001; 𝜂𝑃
2   = 0.134 with 95%CI = (0.078, 0.200)). For type = “direct”, the indirect 

effect of cond = “pos” is 0.34 (95%CI = (0.12, 0.58)). For type = “indirect” the indirect effect of 

cond = ”pos” is 0.42 (95% CI = (0.30, 0.55)). None of the credible intervals cover zero, and 

while the latter is somewhat higher there is considerable overlap in the credible intervals. For 

type = “indirect”, 98 percent, and for type = “direct”, 99 percent of the participants has a positive 

indirect effect of cond =”pos”. This reveals that almost all participants in the study show 

evidence of an indirect effect of the (positive) conditioning manipulation  (p-values are 
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calculated as well but significance tests at the individual level have very little power because of 

the small number of observations per participant). 

The results of the analyses of Sweldens e.a. (2010) are not directly comparable to those 

reported here, because we utilize only part of their data and omit some of the factors and levels. 

Yet, because the variables (att, pict) are approximately Normally distributed and they used a 

multilevel model similar to the BANOVA model used here, the main conclusions from both 

analyses are similar. But in addition, our analyses reveal that there is no moderating effect of the 

type of conditioning nor a moderated mediation, that the effect size of the indirect effect of 

conditioning is medium-to-large, and that virtually all participants have a positive indirect effect.  

 

Study 3: Mediation Analysis of Processing Fluency Scale 

We next analyze five data sets from study 2 in Graf, Mayer and Landwher (2017) to 

further illustrate applications to repeated measures designs with mediation. The five data sets 

were used to test fluency effects, manipulated within-subjects at two levels. The data sets pertain 

to the effects of: a. readability of statements on truth judgments (6-point scale); b. car design 

typicality on liking (100-point scale); c. art pictures’ symmetry on liking (100-point scale); d. the 

number of exposures (0 or 8) to Kanji characters on liking (100-point scale); and e. ease of 

pronunciation of food additives on risk perception (7-point scale). One purpose of the study was 

to test whether the most frequently used single semantic differential scale (100-point: difficult - 

easy) mediates all these manipulated fluency effects. The sample for this part of the study 

consisted of 254 respondents.  
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We use BANOVA to reanalyze these data sets (the Methodological Details Appendix 

provides the commands needed to run the analyses). The dependent variables in data sets a and e 

failed the Shapiro-Wilk Normality test, and therefore, unlike in the analyses by Graf et al. (2017) 

who assumed a Normal distribution, an ordinal Multinomial model with 6, respectively 7 

categories is used for their analyses. The (standardized) dependent variable in the other data sets 

is analyzed assuming a Normal distribution. Model 1 in Table 4 (𝑦 ~𝑚 + 𝑥,   ~1) is used, with 

the subjective fluency mediator (m) and the fluency manipulation (x) as within-subjects 

variables. The model (𝑚 ~𝑥,   ~1) is used for the mediators (the multilevel model in Graf et al. 

(2017) included a random effect for stimuli, but because of the relatively small number of stimuli 

we include a fixed effect, where that effect is identifiable). Estimation details are the same as in 

study 1, the convergence tests indicate that the algorithm converged. We perform Bayesian 

mediation analysis to calculate the indirect effects and associated statistics, and we also report 

the percentage of participants with a positive indirect effect. Table 8 contains the results. 

 There is decisive evidence that all five fluency manipulations caused participants to 

experience a higher level of subjective fluency (p < 0.0001), and that subjective fluency 

positively affected participants’ judgments of statement truth, car liking, art liking, Kanji liking, 

and food risk (p < 0.0001). For statement truth (𝜂𝑃
2  = 0.270) and food risk perception (𝜂𝑃

2  = 

0.339) the sizes of the effect of the manipulation on subjective fluency are large. Interestingly, 

unlike in the original research, the larger effect sizes occur for the dependent variables analyzed 

with an ordinal Multinomial model. The effect sizes of for the art liking data are medium, 𝜂𝑃
2  = 

0.065, while for the remaining two data sets (Kanji and car liking) they are small. Note that even 

though the distribution of the dependent variable differs between the five data sets, in all cases 

the 𝜂𝑃
2  effect size was calculated, with credible intervals. For all five data sets, the 95% CI of the 
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indirect effect does not cover zero. The Bayesian p-values indicate that each of the data sets 

presents decisive evidence (p < 0.0001) for the indirect effects of the manipulations via 

subjective processing fluency (Table 8). For statement truth (𝜂𝑃
2  = 0.062) and food risk 

perception (𝜂𝑃
2  = 0.046), the sizes of the indirect effects are medium, but for the other studies 

they are small, with 𝜂𝑃
2  = 0.01 or lower.  Across data sets, the percentage of participants that 

show a positive indirect effect ranges from 63.4 percent (car design) to 90.6 percent (statement 

truth).   

The main findings from the BANOVA analyses are largely similar to those reported by 

Graf et al. (2017). Nevertheless, the BANOVA analyses uncover stronger effects of the mediator 

in data sets c and e, and a stronger effect of the fluency manipulation on the dependent variable 

in data set e. But, except for data set e, the indirect effects of the fluency manipulations were 

found to be smaller.The present analyses reveal the additional insights afforded by BANOVA, in 

providing effect sizes for (direct and) indirect effects and their Credible Intervals, p-values of the 

indirect effects, and participant-specific estimates of indirect effects.  

 

Discussion 

This article introduced a Bayesian framework for ANOVA of repeated measures, mixed 

within-between subjects experiments, as well as for standard between-subjects experiments, and 

illustrated it with several applications to previously published data. The applications illustrated 

the additional insights afforded by the BANOVA analyses. BANOVA is implemented in an 

easy-to-use (free) R-package that interfaces with the STAN software. Outputs are easy to 

interpret because of their similarity with those of standard ANOVA, and include a table with 

effect sizes and p-values, a table with parameter estimates, and a table with predictions of the 



39 
 

dependent variable for all possible experimental conditions (and their credible intervals). Planned 

comparisons, simple effects, and floodlights, estimates of aggregate and individual-level indirect 

effects, and credible intervals of these estimates are also provided. BANOVA thus provides a 

one-stop shop for the analysis of experiments in consumer psychology that obviates the need to 

stack analyses from multiple packages, which is convenient and avoids errors. The underlying 

STAN code can be printed for more adventurous users to modify and run independently, for 

models that have more complexity than the ones accommodated in the package, or when 

informative priors need to be specified. An additional advantage of working within R is that it is 

easy to load data, and many other functions to process the data or the output of the analyses are 

available, such as for calculating new variables, merging data sets, limiting a data set to records 

with full data, or to participants with a certain characteristic and testing distributional 

assumptions.  

For between-subject designs, when the Normal distribution holds and/or sample sizes and 

effect sizes are relatively large, standard ANOVA will yield inferences that are similar to 

BANOVA. In most other cases when the design involves repeated measures and/or non-Normal 

dependent variables it may not, and standard floodlight and mediation analyses are only 

approximate. BANOVA was primarily developed for those cases. Of course, statistical software 

such as Stata, SAS, SPSS, Mplus and R, can also provide piecemeal solutions in many of those 

situations, but the researcher needs to program the models and interpret their results on a case-

by-case basis, for which often extensive post-processing of the output is required. For example, 

to analyze binary data collected in a repeated measures design, a researcher could estimate a 

hierarchical logistic regression model using one  these software packages (for example, with the 

command xtmelogit in Stata, the procedure glimmix in SAS, or the function glmer in R), using 
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effect-coded variables for the experimental factors and their interactions. However, the 

interpretation of the estimates is often cumbersome, significance tests may be unreliable for 

small samples, the effect sizes are not comparable to those for regression models, and external 

software is needed to conduct floodlight or mediation analyses. In contrast, BANOVA provides a 

unified solution, regardless of the experimental design and distribution of the measurements and 

allows for floodlights, mediation and moderation as an integral part of the analysis. In addition, 

the conceptual advantages of using a Bayesian approach to ANOVA were highlighted, and It 

was advocated that three measures of evidence for a hypothesis should be reported: estimates, p-

values, effect sizes, and credible intervals for these quantities. 

The BANOVA approach explicated in the present article thus provides a comprehensive, 

coherent and intuitive framework for theory testing in consumer psychology, and its flexibility 

allows one to account for the key features of most measurements and experimental designs. We 

hope that this article convinces consumer psychologists to adopt this approach to further improve 

the quality of their statistical inferences, in a way that requires minimal effort.   
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Figure 1 

Gist perception study: Plot of predicted number of correct ad identifications against 

the level of blur for typical and atypical color and grayscale ads.  
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Figure 2 

Diagrams for four moderated mediation models selected from Table 4. 

 

 

 

Notes: 

1. Solid arrows indicate direct effects; dotted lines indicate moderating effects.  

2. Single box (upper case symbol) indicates variable measured/manipulated between-subjects; 

multiple boxes (lower case symbol) indicate variable measured/manipulated within subjects.  

3. Compound arrows indicate heterogeneous individual-level and average effects.  

Model numbers and equations correspond to those in Table 4. 
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Table 1 

Examples of BANOVA model specification using R modeling syntax1 

 

M Within-subjects  

model 

Between-subjects 

model 

Terms included in the model 

1  𝑦 ~𝑥1  ~1 𝑥1 
2  𝑦 ~𝑥1 − 1  ~1 𝑥1, no intercept 

2     - 𝑦~𝑋1 𝑋1 
3     - 𝑦~𝑋1 − 1 𝑋1, no intercept 

4  𝑦 ~𝑥1 ~𝑋1 𝑥1, 𝑋1, 𝑥1: 𝑋1 
5 𝑦 ~𝑥1 ∗ 𝑥2 ∗ 𝑥3 ~1 𝑥1, 𝑥2, 𝑥3, 𝑥1: 𝑥2, 𝑥1: 𝑥3,𝑥2: 𝑥3, 𝑥1: 𝑥2: 𝑥3 

6 𝑦 ~𝑥1 ∗ 𝑥2 ∗ 𝑥3 − 𝑥1: 𝑥2: 𝑥3 ~1 𝑥1, 𝑥2, 𝑥3, 𝑥1: 𝑥2, 𝑥1: 𝑥3, 𝑥2: 𝑥3  
7 𝑦 ~𝑥1 ~𝑋1 ∗ 𝑋2 𝑥1, 𝑋1, 𝑋2, 𝑥1: 𝑋1, 𝑥1: 𝑋2 , 𝑋1: 𝑋2, 𝑥1: 𝑋1: 𝑋2 
8  𝑦 ~𝑥1 + 𝑧 ~𝑋1 𝑥1, 𝑧, 𝑋1, 𝑥1: 𝑋1, 𝑧: 𝑋1 
9 𝑦 ~𝑥1 ~𝑋1 + 𝑍 𝑥1, 𝑋1, 𝑍, 𝑥1: 𝑋1, 𝑥1: 𝑍 

1 𝑥1, 𝑥2, 𝑥3 are within-subjects factors, z a continuous between-subjects covariate;  

 𝑋1, 𝑋2 are between-subjects factors, Z a continuous between-subjects covariate; 

 ~ initiates the within- or between-subjects model; 

 : separates the terms in an interaction; 

1 denotes a constant associated with the intercept; 

 * denotes a full expansion of the term in question into all main and interaction effects. 
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Table 2 

Gist perception study: BANOVA results; for each term  

in the model the degrees of freedom (DF) sum-of-squares (SS), 

partial eta-squared (𝜂𝑃
2) and Bayesian p-value are provided. 

 

term DF SS 𝜂𝑃
2  p-value 

col 1 5.10 0.006 0.008 

blr 4 29.39 0.031 <0.001 

typ 1 21.81 0.027 <0.001 

col:blr 4 1.19 0.001 0.160 

col:typ 1 2.11 0.003 0.016 

blr:typ 4 13.90 0.017 <0.001 

col:blr:typ 4 1.93 0.002 0.032 

 

 

Table 3 

Gist perception study: Predicted number of correct ad identifications out of 16,  

for combinations of color, typicality and blur; posterior mean with 95% CI. 

 

Typical Color Grayscale 

Blur 2.5% mean 97.5% 2.5% mean 97.5% 

1 11.88 13.00 13.90 12.19 13.30 14.10 

2 12.11 13.35 14.16 9.70 11.16 12.47 

3 10.12 11.53 12.63 9.09 10.51 11.85 

4 10.11 11.54 12.83 7.39 8.87 10.27 

5 7.60 9.16 10.58 4.64 6.12 7.84 

Atypical Color Grayscale 

Blur 2.5% mean 97.5% 2.5% mean 97.5% 

1 8.87 10.43 11.71 8.47 10.05 11.47 

2 6.40 8.11 9.86 5.43 6.95 8.51 

3 7.14 8.93 10.48 7.35 8.83 10.23 

4 7.68 9.13 10.46 7.47 9.21 10.59 

5 6.80 8.30 9.81 5.75 7.33 8.96 
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Table 4 

Examples of mediation and moderated mediation models for repeated measures experiments; the 

terms in the within-and between-subjects model are provided, as well as the equations for the 

dependent and mediator variables. The five most common models are highlighted in gray1,2.  
 

 Model Within-

subjects 

Between-

subjects 

(x.1) Y-equation 

(x.2) M-equation 

1 within-ss mediation 𝑥1, 𝑚 - (1.1)   𝑦 ~𝑥1 + 𝑚,   ~1 
(1.2)  𝑚 ~𝑥1,            ~1 

2 between-ss mediation 

(between-subjects design) 

- 𝑋1, 𝑀 (2.1)  𝑦 ~𝑋1 + 𝑀 
(2.2)  𝑀 ~𝑋1           

3 within-ss moderation 𝑥1, 𝑥2 - (4.1)   𝑦 ~𝑥1 ∗ 𝑥2,    ~1 

4 between-ss moderation 

(between-subjects design) 

- 𝑋1, 𝑋2 (5.1)   𝑦 ~𝑋1 ∗ 𝑋2 

5 between-ss moderation of within-

ss treatment 

𝑥1 𝑋1 (6.1)   𝑦 ~𝑥1,   ~𝑋1 

6 between-ss mediation  

(repeated measures design) 

- 𝑋1, 𝑀 (3.1)  𝑦 ~𝑋1 + 𝑀,    ~1 

(3.2)  𝑀 ~𝑋1           

7 within-ss mediation of between-

ss. treatment, with moderated 

mediation. 

𝑚 𝑋1 (7.1)  𝑦 ~𝑚,    ~𝑋1 
(7.2)  𝑚 ~1,     ~𝑋1 

8 within-ss moderated mediation 𝑥1, 𝑥2, 𝑚 - (8.1)  𝑦 ~𝑥1 + 𝑥2 ∗ 𝑚,   ~1 
(8.2) 𝑚 ~𝑥1 + 𝑥2,           ~1 

9 between-ss moderated mediation3 - 𝑋1, 𝑋2, 𝑀 (9.1)  𝑦 ~𝑋1 ∗ 𝑋2 + 𝑋2 ∗ 𝑀 
(9.2) 𝑀 ~𝑋1 ∗ 𝑋2       

10  within-ss mediation of within-ss 

treatment, between-ss moderation 

𝑥1, 𝑚 𝑋1 (10.1)   𝑦 ~𝑥1 + 𝑚,   ~𝑋1 
(10.2)   𝑚 ~𝑥1,           ~𝑋1 

11 within-ss mediation of between-

ss treatment, between-ss 

moderation 

m 𝑋1, 𝑋2 (11.1)  𝑦 ~𝑚,      ~𝑋1 + 𝑋2 
(11.2)  𝑚 ~1,      ~𝑋1 + 𝑋2 

1 Lowercase indicates within-subjects variables, uppercase indicates between-subjects variables. 
2 The symbol 𝑦 indicates the dependent variable, 𝑋1 (or 𝑥1) indicates the experimental factor, M (m) 

stands for the mediator, and 𝑋2  (𝑥2) for a moderator. The experimental factor is categorical with two or 

more levels, mediators are continuous, and moderators can be continuous or categorical with two or more 

levels. 
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Table 5 

Conditioning study: Results of the BANOVA of brand attitudes; Table 5a provides  

effect sizes (with 95%CIs); Table 5b provides Bayesian p-values1.  

 

Table 5a: Effect sizes (95% credible interval):   

     Intercept       type  

Intercept 0.9272 (0.922,0.932) 0.0211 (0.005,0.039) 

cond 0.0090 (0.001,0.029) 0.0052 (-0.001,0.260) 

pict 0.0644 (0.040,0.090) 0.0012 (-0.001,0.007) 

Table 5b: p-values:  

 Intercept type   

Intercept <0.0001 0.004   

cond 0.328 0.368   

pict <0.0001 0.692   
1 The columns labeled “intercept” refer to the (average) effects of the within-subjects variables (rows: 

cond, pict), the columns labeled “type” refer to the average effects of the between-subjects variable type 

(row: intercept), and it’s interactions with the within-subjects variables (rows: cond and pict). 

 

 

Table 6 

Conditioning study: Predictions of brand attitudes and 95% CI;  

Table 6a provides the main effects of both factors (cond, type);  

Table 6b provides their joint (interactive) effect. 

 

Grand Mean 2.50% 97.50%   

4.133 4.002 4.256   

Table 6a     

cond Mean 2.50% 97.50%  

pos 4.070 3.906 4.265  

neu 4.196 3.993 4.393  

Table 6b     

type mean 2.50% 97.50%  

simultaneous 3.942 3.705 4.164  

sequential 4.323 4.159 4.466  

Table 6c     

cond type mean 2.50% 97.50% 

pos simultaneous 3.939 3.635 4.258 

pos sequential 4.201 3.985 4.387 

neu simultaneous 3.946 3.605 4.285 

neu sequential 4.446 4.238 4.664 

 

  



51 
 

Table 7 

Conditioning study: Results for the BANOVA of the mediator (picture attitudes); 

Table 7a provides effect sizes (with 95%CIs);  

Table 7b provides Bayesian p-values1.  

 

Table 7a: Effect sizes (95% credible interval):   

    Intercept       type  

Intercept 0.937 (0.933,0.941) 0.013 (0.001,0.030) 

cond 0.480 (0.448,0.513) 0.001 (-0.007,0.01) 

Table 7b: p-values:  

 Intercept type   

Intercept <0.0001 0.004   

cond <0.0001 0.336   
1 The columns labeled “intercept” refer to the (average) effects of the within-subjects variable (rows: 

cond); The columns labeled “type” refer to the average effects of the between-subjects variable type (row: 

intercept) and its interaction with the within-subjects variable (rows: cond). 
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Table 8 

Processing Fluency studies: columns 3-5 show the effect of x on the mediator, columns 6-8 show the effects of x and m on the y-

variable; columns 9-12 show the indirect effects, all with effect sizes, p-values (and 95%CIs); the last column shows the % 

participants with a positive indirect effect. Differences in findings with Graf et al (2017) are described in the text. 
 

  .            Effect on mediator         .                 .               Effect on y              .                   .                         Indirect effect                   .    

Study IV a η2 p-value b η2 p-value c η2        p-value  %   

a x  0.453 

(.404,.499) 

0.270 

(.253,.289) 

<0.0001 -0.146           

(-.230,-.053) 

0.012 

(.003,.023) 

<0.0001 0.329 

(.258,.385) 

0.062 

(.039,.083) 

<0.0001 0.906 

 m    0.726 

(.594,.871) 

0.201 

(.164,.235) 

<0.0001     

b x 0.094 

(.037,.126) 

0.026 

(.012,.040) 

<0.0001 0.196 

(.140,.244) 

0.088 

(.060,.123) 

<0.0001 0.012 

(.003,.021) 

0.000 

(.000,.001) 

<0.0001 0.634 

 m    0.122 

(.044,.206) 

0.034 

(.008,.075) 

<0.0001     

c x 0.186 

(.130,.235) 

0.065 

(.043,.088) 

<0.0001 0.0230         

(-.008,.069) 

0.003 

(.000,.008) 

0.140 0.077 

(.050,.103) 

0.014 

(.006,.025) 

<0.0001 0.791 

 m    0.417 

(.355,.491) 

0.236 

(.189,.290) 

<0.0001     

d x 0.126 

(.087,.175) 

0.023 

(.013,.034) 

<0.0001 0.024           

(-.007,.056) 

0.002 

(.000,.004) 

0.240 0.052 

(.034,.072) 

0.005 

(.002,.008) 

<0.0001 0.827 

 m    0.411 

(.351,.467) 

0.184 

(.155,.216) 

<0.0001     

e x 0.443 

(.389,.492) 

0.339 

(.309,.363) 

<0.0001 0.286 

(.159,.408) 

0.046 

(.016,.083) 

<0.0001 0.277 

(.179,.365) 

0.046 

(.019,.075) 

<0.0001 0.850 

  m       0.626 

(.399,.849) 

0.141 

(.081,.208) 

<0.0001        
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Methodological Details Appendix. 

 

Appendix S1: Installing the R and the BANOVA package  

The BANOVA software is programmed in R, and is available as a free add-on package. 

First R must be installed. R can be found here. BANOVA interfaces with JAGS and STAN. 

JAGS and STAN use relatively similar syntax. In this paper we only use the interface with 

STAN. Nevertheless, as a second step, JAGS will need to be installed as well for BANOVA to 

work, it can be found here.  

The BANOVA package can be downloaded from the Comprehensive R Archive Network 

(CRAN), here, along with the BANOVA manual. Once installed, STAN and BANOVA can be 

loaded in R as follows:  

 

> library(‘rstan’) 

> library(‘BANOVA’) 

 

To specify a model and run STAN code, the BANOVA.run() command is used. Before 

that, the BANOVA.model() and BANOVA.build() commands build and compile the model of a 

specified type, which helps run the code for specific models specified in BANOVA.run() faster. 

 In Appendices S2, S3 and S4, we provide the commands that were used to analyse the 

gist perception, conditioning and fluency studies (Study 1, 2 and 3) in the paper. Running these 

commands will reproduce the results in the paper exactly. All datasets are included in the R 

package. These commands can easily be modified for the analysis of other experiments.  

We use > for the command prompt in R; + indicates that a command continues on the 

next line; comments are included after a #.  The set.seed() commands are used here so that the 

results in the paper can be exactly reproduced, but is not needed otherwise.  

  

https://cran.r-project.org/
https://sourceforge.net/projects/mcmc-jags/files/
http://cran.r-project.org/package=BANOVA
https://cran.r-project.org/web/packages/BANOVA/BANOVA.pdf
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Appendix S2. The R Commands for the Analyses of the Gist Perception Study (Study 1) 

 

> is the command prompt in R;  

+ indicates that a command continues on the next line;  

# indicates comments that are n ot executed by R.  

  

The set.seed() commands are used here so that the results in the paper can be exactly reproduced, 

but are not needed otherwise. 

 

To run STAN code, the BANOVA.run() command is used; the BANOVA.model() and 

BANOVA.build() commands build and compile the model of a specified type, which helps run 

the code for specific models specified in BANOVA.run() faster. However, the BANOVA.run() 

command can also be used directly without building and compiling the model first: for example 

below, instead of: 

> out0 = BANOVA.run(y ~ typic, ~ color*blurfac, fit = stanmodel_bin,…. 
with some more patience, one could use:  

> out0 = BANOVA.run(y ~ typic, ~ color*blurfac, model_name=’Binomial’,… 
 

# load the colorad data that comes with package 

> data(colorad)                                                               
 
# build and compile the Binomial model 
> model_bin <- BANOVA.model('Binomial')                         
> stanmodel_bin <- BANOVA.build(model_bin) 
 
# analysis of the dv (y) 
# within and between-subjects models are specified after ‘y~’, the ’id’ indicates participants,  
# ‘16’ is the number of binomial trials, ‘10,000’ the number of draws to be kept,  
# ‘thin=10’ indicates only one in 10 draws is retained, ‘chains =1’ indicates a single MCMC chain 
> set.seed(200)                                      # only needed to replicate the results in the paper exactly 
> out0 = BANOVA.run(y ~ typic, ~ color*blurfac, fit = stanmodel_bin, 
+                   data = colorad, id = 'id', num_trials = as.integer(16),                 
+                   iter = 10000, thin = 10, chains = 1)         # runs the analysis, stores the results in out0 
> summary(out0)                     # prints convergence, effect sizes, estimates, p-values, predictions                                         
 
# planned comparison 
# ‘contrast = list(typic = c(0,1), blurfac = c(0,1,1,1,1)))’ specifies two contrasts:  
# one for the typical (0) vs atypical (1) ads,  
# one for the lowest (0) level of blur vs all others (1).  
# color is effect-coded, thus its main effect is the simple effect of color for typical normal ads 
> set.seed(200)                                                 # needed to replicate the results in the paper exactly 
> out1 = BANOVA.run(y ~ typic, ~ color*blurfac, fit = stanmodel_bin, 
+                          data = colorad, id = 'id', num_trials = as.integer(16),  
+                          iter = 10000, thin = 10, chains = 1, contrast = list(typic = c(0,1),  
+                          blurfac = c(0,1,1,1,1)))                        # runs the analysis, stores the results in out1 
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> summary(out1)                      # prints convergence, effect sizes, estimates, p-values, predictions 
 
# floodlight analysis: first rerun the model with blur as a continuous variable (instead of blurfac) 
> set.seed(200)                                                                                                              
> out2 = BANOVA.run(y ~ typic, ~ color*blur, fit = stanmodel_bin, 
+                     data = colorad, id = 'id', num_trials = as.integer(16),  
+                     iter = 10000, thin = 10, chains = 1)       # runs the analysis, stores the results in out2 
> summary(out2)                      # prints convergence, effect sizes, estimates, p-values, predictions 
 
# the floodlight range of color differences between blur-values, for each level of typicality 
> BANOVA.floodlight(out2, var_factor = 'color', var_numeric = 'blur')    
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Appendix S3. The R Commands for the Analyses of the Conditioning  Study (Study 2) 

 

> is the command prompt in R;  

+ indicates that a command continues on the next line;  

# indicates comments that are n ot executed by R.  

  

The set.seed() commands are used only so that the results in the paper can be exactly reproduced. 

 

To run STAN code, the BANOVA.run() command is used; the BANOVA.model() and 

BANOVA.build() commands build and compile the model of a specified type, which helps run 

the code for specific models specified in BANOVA.run() faster. However, the BANOVA.run() 

command with the option fit= can be replaced with the option model_name=  to fit the model 

directly without building and compiling it first. It will take longer. 

 

# load condstudy data that comes with the package 

# To load into R a new dataset that is in *.csv format and coerce it to a dataframe:  
# as.data.frame(read.csv(“condstudy.csv”)) 
> data(condstudy)                                                    
 
# build and compile the Normal model 
> model_normal <- BANOVA.model('Normal')                      
> stanmodel_normal <- BANOVA.build(model_normal) 
 
# analysis of the dv (att) 
# within and between-subjects models are specified after ‘y~’, ’id’ indicates participants,  
# ‘10,000’ is the number of draws to be kept,  
# ‘thin=10’ indicates only one in 10 draws is retained, ‘chains =1’ indicates a single MCMC chain 
 
> set.seed(300)                                      # only needed to replicate the results in the paper exactly 
> out3 = BANOVA.run(att~cond+pict, ~type, fit = stanmodel_normal,  
+                  data=condstudy, id='id',  
+                  iter = 10000, thin = 10, chains=1)            # runs the analysis, stores the results in out3 
> summary(out3)                     # prints convergence, effect sizes, estimates, p-values, predictions 
 
# analysis of the mediator (pict) 
> set.seed(300) 
> out4 = BANOVA.run(pict~cond, ~type, fit = stanmodel_normal, data=condstudy,  
+                 id='id', iter = 10000, thin = 10, chains=1)           #analysis for mediator, stores it in out4 
> summary(out4)                      # prints convergence, effect sizes, estimates, p-values, predictions 
# moderated mediation, indirect effect of cond on att, via pict 
> BANOVA.mediation(out3, out4, xvar='cond', mediator='pict')                
# individual level mediation indirect effects of cond 
> BANOVA.mediation(out3, out4, xvar='cond', mediator='pict', individual = T)  
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Appendix S4. The R Commands for the Analyses of the Fluency Study (Study 3) 

 

In this appendix the command prompt in R, >, and the R continuation symbol, +, are omitted;  

# indicates comments that are n ot executed by R.  

  

The set.seed() commands are used only so that the results in the paper can be exactly reproduced. 

 

To run STAN code, the BANOVA.run() command is used; the BANOVA.model() and 

BANOVA.build() commands build and compile the model of a specified type, which helps run 

the code for specific models specified in BANOVA.run() faster.  

 

See for more detailed explanations of the parameters of the BANOVA.run() and 

BANOVA.mediation() functions Appendix S3, the analyses here are similar to those for Study 2 

 

# process Graf et al. datasets----------------------------------------------------------------------------------------- 
# This sequence of commands reads in the .csv dataset, standardizes the continuous  
# (fluency and liking) variables, and creates effect-coded factor variables. 
# more extensive data preparation is needed because the data is obtained from Graf ea. 
d <- read.csv2("data_project_668129_2017_07_23.csv", stringsAsFactors = FALSE) 
  
# prepare the data, the R file is from Graf et al. ‘s data folder   
source("00_Data_Prep.R") 

 
# standardization function 
z_std <- function(variable, gruppe){ 
  newname <- variable 
  for(i in 1:length(levels(gruppe))){ 
    mittel <- mean(variable[gruppe == levels(gruppe)[i]], na.rm=T) 
   standard <- sd(variable[gruppe == levels(gruppe)[i]], na.rm=T) 
   newname[gruppe == levels(gruppe)[i]] <- (variable[gruppe == levels(gruppe)[i]]- 
mittel)/standard  } 
  return(newname) } 
 
d.cars$z_flu <- z_std(d.cars$flu, d.cars$fluencyScale) 
d.cars$z_lik <- z_std(d.cars$lik, d.cars$fluencyScale) 
d.cars$typicality <- as.factor(d.cars$typicality) 
d.cars$segment <- as.factor(d.cars$segment) 
d.cars$typicality <- relevel(d.cars$typicality, ref = 'typ') 
 
d.art$z_flu <- z_std(d.art$flu, d.art$fluencyScale) 
d.art$z_lik <- z_std(d.art$lik, d.art$fluencyScale) 
d.art$symmetry <- as.factor(d.art$symmetry) 
d.art$symmetry <- relevel(d.art$symmetry, ref = 'sym') 
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d.food$z_flu <- z_std(d.food$flu, d.food$fluencyScale) 
d.food$z_risk <- z_std(d.food$risk, d.food$fluencyScale) 
d.food$pronounceability <- as.factor(d.food$pronounceability) 
 
d.kanji$z_flu <- z_std(d.kanji$flu, d.kanji$fluencyScale) 
d.kanji$z_lik <- z_std(d.kanji$lik, d.kanji$fluencyScale) 
d.kanji$exposure <- as.factor(d.kanji$exposure) 
d.kanji$exposure <- factor(d.kanji$exposure,labels = c("high", "low")) 
d.kanji$exposure <- relevel(d.kanji$exposure, ref='high') 
 
d.truth$z_flu <- z_std(d.truth$flu, d.truth$fluencyScale) 
d.truth$z_truth <- z_std(d.truth$truth, d.truth$fluencyScale) 
d.truth$visibility <- factor(d.truth$visibility,labels = c("high", "low")) 
d.truth$visibility <- relevel(d.truth$visibility, ref='high')  
 
# Build and compile the Normal and ordinal multinomial models------------------------------------------ 
model_normal <- BANOVA.model('Normal') 
stanmodel_normal <- BANOVA.build(model_normal) 
model_ordmulti<- BANOVA.model('ordMultinomial') 
stanmodel_ordmulti <- BANOVA.build(model_ordmulti) 
 
# analyses truth data (dataset a)----------------------------------------------------------------------------------- 
# Normality test truth data 
qqnorm(sample(d.truth$z_truth, 5000)) 
shapiro.test(sample(d.truth$z_truth, 5000)) 
 
set.seed(300)                                                                                                               # analysis of dv 
truth1 = BANOVA.run(truth~z_flu + visibility, ~1, fit = stanmodel_ordmulti, data=subset(d.truth, 
d.truth$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1) 
summary(truth1) 
 
set.seed(300)                                                                                                          # analysis of mediator 
truth2 = BANOVA.run(z_flu ~ visibility, ~1, fit = stanmodel_normal, data=subset(d.truth, 
d.truth$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1) 
summary(truth2) 
 
BANOVA.mediation(truth1, truth2, xvar = 'visibility', mediator = 'z_flu') 
BANOVA.mediation(truth1, truth2, xvar = 'visibility', mediator = 'z_flu', individual = T) 
 

# analyses car data (dataset b) ------------------------------------------------------------------------------------- 
set.seed(300)                                                                                                               # analysis of dv 
car1 = BANOVA.run(z_lik~z_flu + typicality + segment, ~1, fit = stanmodel_normal, 
data=subset(d.cars, d.cars$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1)              
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summary(car1) 
 
set.seed(300)                                                                                                          # analysis of mediator 
car2 = BANOVA.run(z_flu~typicality + segment, ~1, fit = stanmodel_normal, data=subset(d.cars, 
d.cars$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1)              
summary(car2) 
 
BANOVA.mediation(car1, car2, xvar = 'typicality', mediator = 'z_flu') 
BANOVA.mediation(car1, car2, xvar = 'typicality', mediator = 'z_flu', individual = T) 
 
# analyses art data (dataset c)--------------------------------------------------------------------------------------- 
set.seed(300)                                                                                                                 # analysis of dv  
art1 = BANOVA.run(z_lik~z_flu + symmetry, ~1, fit = stanmodel_normal, data=subset(d.art, 
d.art$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1)              
summary(art1) 
 
set.seed(300)                                                                                                          # analysis of mediator 
art2 = BANOVA.run(z_flu ~ symmetry, ~1, fit = stanmodel_normal, data=subset(d.art, 
d.art$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1)              
summary(art2) 
 
BANOVA.mediation(art1, art2, xvar = 'symmetry', mediator = 'z_flu') 
BANOVA.mediation(art1, art2, xvar = 'symmetry', mediator = 'z_flu', individual = T) 
 
# analysis kanji data (dataset d)------------------------------------------------------------------------------------- 
set.seed(300)                                                                                                                 # analysis of dv  
kanji1 = BANOVA.run(z_lik~z_flu + exposure, ~1, fit = stanmodel_normal, data=subset(d.kanji, 
d.kanji$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=2)              
summary(kanji1) 
 
set.seed(300)                                                                                                          # analysis of mediator 
kanji2 = BANOVA.run(z_flu ~ exposure, ~1, fit = stanmodel_normal, data=subset(d.kanji, 
d.kanji$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1)              
summary(kanji2) 
 
BANOVA.mediation(kanji1, kanji2, xvar = 'exposure', mediator = 'z_flu') 
BANOVA.mediation(kanji1, kanji2, xvar = 'exposure', mediator = 'z_flu', individual = T) 
 
# analyses food additives data (dataset e)------------------------------------------------------------------------ 
# Nomality test for food data 
qqnorm(d.food$z_risk) 
shapiro.test(d.food$z_risk) 
 
set.seed(300)                                                                                                               # analysis of dv 
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food1 = BANOVA.run(risk~z_flu + pronounceability, ~1, fit = stanmodel_ordmulti, 
data=subset(d.food, d.food$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1) 
summary(food1) 
 
set.seed(300)                                                                                                          # analysis of mediator 
food2 = BANOVA.run(z_flu ~ pronounceability, ~1, fit = stanmodel_normal, data=subset(d.food, 
d.food$fluencyScale == 'single'), id='id', iter = 1000, thin = 10, chains=1) 
summary(food2) 
 
BANOVA.mediation(food1, food2, xvar = 'pronounceability', mediator = 'z_flu') 
BANOVA.mediation(food1, food2, xvar = 'pronounceability', mediator = 'z_flu', individual = T) 
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