Welcome!
The Bachelor of Science degree in Global Responsibility & Leadership (GRL) is an initiative developed by the University of Groningen at Campus Fryslân, the Netherlands. The GRL programme is a scientifically rigorous, inter- and transdisciplinary programme dedicated to addressing global challenges and finding local solutions. The programme is inspired by the 2030 UN Agenda for Sustainable Development and consists of input from Human and Social Sciences, Natural Sciences and Information Technology. The programme is housed at University College Fryslân (UCF), in Leeuwarden.

Today’s challenges reflect the dynamic and complex state of world affairs and cut across various academic disciplines. Solutions for these ‘wicked problems’ can no longer come from isolated improvements in one single area. They can only be addressed jointly by government, industry, civil society and academia. Sustainable, future-proof solutions require innovations by change agents and leaders educated in methods of transdisciplinary research. This is what the GRL degree will offer you.

In this study guide you will find information on our educational concept, the curriculum, an example of a weekly schedule and all the course descriptions. On the last page you will find our contact information. Please do not hesitate to use that if you have any further questions.

We look forward to welcoming you in Leeuwarden.

Warm regards,

The UCF Team
Educational concept

The GRL teaching and learning environment is fundamentally learner-focused and inter- and transdisciplinary learning is supported by the development of academic and personal skills. This is steeped in the American tradition of ‘Liberal Education’.

“Liberal Education is an approach to learning that empowers individuals and prepares them to deal with complexity, diversity, and change. It provides students with broad knowledge of the wider world (e.g. science, culture, and society) as well as in-depth study in a specific area of interest. A liberal education helps students develop a sense of social responsibility, as well as strong and transferable intellectual and practical skills such as communication, analytical and problem-solving skills, and a demonstrated ability to apply knowledge and skills in real-world settings.” (Association of American Colleges & Universities)

As such, the GRL programme emphasises rigorous academic training as well as development of necessary skills for an increasingly complex and dynamic global society and labour market that is characterised by a process of continuous digitalisation, so-called 21st Century skills. In addition, the educational concept is characterised by four features: i) small-scale and intensive learning environment, ii) inter- and transdisciplinary education, iii) leadership and iv) international community.

Small-scale and intensive learning environment
Our teaching takes place in small-scale workshop-like settings, encompassing active and digital learning in all our classes. We place a large amount of responsibility for the learning process with the student. In each year of the programme, classes will not exceed 25 students and attendance is mandatory. Lecturers act as coaches who provide brief instruction, give feedback on student work and stimulate discussion. Such intensive learning facilitates the development of academic competencies and a variety of skills.

Inter- and transdisciplinary education
Today’s ‘wicked problems’ can no longer be addressed from one single discipline, but require an inter- and transdisciplinary approach. GRL offers you a framework in which to integrate academic knowledge, theories and methods from various disciplines. The GRL programme links fundamental knowledge to real world problem-solving through collaboration with public and private partners from outside academia.

Leadership
Leadership for sustainable change requires effective self-reflection and is needed at all levels of society. Throughout the three-year programme, you will show and (self-)assess your progress on your leadership skills and your responsibility as a global citizen. Several mandatory courses will specifically train skills related to self-management, leadership and cultural awareness. An example is the Leadership Seminar in the second year.

International community
University College Fryslân is fundamentally international. Students and staff come from different nationalities and backgrounds and the content of all courses has a clear international focus, not in the least because of the origins of the programme in the SDGs. The official campus language is English and the GRL programme is taught exclusively in English. One of our key features is that we are a residential campus. This means that in the first year of your studies, you live together with your fellow students in our student housing in the city centre of Leeuwarden. As such, we aim to build a ‘city campus’, with the goal of creating an active, enriching and international academic and social community.

Overview of the curriculum

The GRL programme consists of four main components that need to be fulfilled throughout the three years: the Foundation, the Skills Lab, the Major and the Minor.

Foundation (40 EC)
The eight courses in the Foundation of the GRL programme address different perspectives on global challenges and offer the domains in which the global-local relationship is negotiated. The Foundation consists of core courses in economics, political science, psychology, earth & environment, global health, Information Technology and the Leadership Seminar.

Skills Lab (30 EC)
The courses in the Skills Lab provide a solid foundation in academic communication techniques and research methodology. Intercultural communication and collaboration skills are additionally developed. The Skills Lab consists of core courses in academic communication, language and culture, statistics and interdisciplinary research design and qualitative methods.

Major (80 EC)
At the end of your first year, you choose your major and determine your own path throughout the GRL programme. You can opt for one of our three majors: Responsible Planet, Responsible Governance or Responsible Humanity. In addition, you take the major specialisation in ethics & global responsibility, you complete one living lab project and you conclude the degree with your Capstone.

Living Lab projects
The LL projects entail the transdisciplinary integration of academic and non-academic knowledge with regard to developing sustainable (local) solutions to current global challenges. During the LL projects, you work together with private and public stakeholders and learn how to translate a real-world question into a question suited for academic research, do the research, and then translate your findings back into recommendations for the stakeholder.

Capstone
You complete the third year with a Capstone project, which is the academic culmination of your degree. The Capstone meets the standards and requirements of (semi-independent) academic research, but does not have to take the form of a traditional thesis. You are encouraged to decide for yourself how to complete your degree and to present the project in a creative way, for example by developing an app, filming a public service announcement, designing a product, writing a policy paper, or creating a theatre production. You can also use the Capstone to conduct a second Living Lab project and gain more work experience.

Minor (30 EC)
The third year minor gives you the opportunity to individualise your programme even further. Most students will opt for an exchange semester at a university abroad, but you can also use the minor to do an internship or to fulfil pre-master requirements within another Faculty at the University of Groningen or another university in the Netherlands or abroad.

General course information
All our students are required to take six courses per semester (3 courses per term), which are each worth 5 EC. In the first year, you take 7 Foundation courses, 3 Skills Lab courses and 2 of your chosen major courses.

After the first year, you choose your Major: Responsible Planet, Responsible Governance or Responsible Humanity. Within your major, you have to complete at least two tracks. A track consists of a 300-level course and at least two other courses (usually prerequisites) in the same field of study.

In the second and third year, you take 1 Foundation course, 3 Skills Lab courses and 1 Ethics course specified to your major. All other courses are courses chosen within (or even outside of) your major.

In the major, courses are offered at three different levels:
- 100-level (introductory): courses have no prerequisites and, unless specified otherwise, are open to all students.
- 200-level (intermediate): courses have prerequisites and are only open to students who have successfully completed one or more courses at 100-level.
- 300-level (advanced): courses have prerequisites and are only open to students who have successfully completed one or more courses at 100 and 200-level.

Study guide 2019 – 2020
This course provides a general introduction into the mechanisms that determine the dynamics of the Earth system in the past, present and future. For example, the course deals with the role of the biosphere in climate- and global change and, vice versa, the loss of biodiversity associated with climate- and global change. The course builds on integration of disciplinary knowledge on Earth system processes such as hydrology, meteorology and biogeochemistry. It introduces the systems approach to study Earth system dynamics involving different temporal and spatial scales in process interactions and feedback mechanisms that explain observed climate- and global change. Emphasis is on Earth system interactions associated with dynamical, physical and biogeochemical processes affecting the state of the atmosphere, biosphere and hydrosphere under natural and anthropogenic conditions. The lectures are complemented with an intensive modelling practical, including the search for information on the Earth system. In this course there is also an introduction into the ethical and philosophical context of global and climate change issues.

Course learning outcomes
Upon the successful completion of this course, students will be able to:
- Understand and apply the systems approach in the context of climate- and global change issues
- Summarise the major Earth system compartments and associated dynamical, physical and biogeochemical processes
- Recognise the spatial and temporal scales issues related to climate and global change
- Demonstrate an insight into the regulation of environmental processes by Earth system compartment Interactions and the role of feedback mechanisms
- Distinguish between natural and anthropogenic factors affecting the climate- and Earth system
- Formulate a basic view on ethical and philosophical considerations on Earth system theories
- Develop and apply a simple model of Earth system components including the role of process interactions and feedback mechanisms
- Find relevant information in literature, databases and other sources of information in support of conducting Earth system analysis
- Apply the gained knowledge and analysis skills to assess the role of fundamental Earth system processes in past- and present climate and global change which is essential to evaluate mitigation and adaptation strategies to cope with future climate and global change.

Assessment
- 10% Average of weekly Blackboard tests on presented content lectures
- 40% Multiple-choice/open question exam
- 20% Earth system modelling assignment
- 10% Information literacy assignment
- 10% Climate change ethics and philosophy assignment
- 10% Active participation in lectures and fieldwork / practicals

Literature
Compulsory literature

Course manual and additional papers that will be used for the assignments
Title of course: The Earth System

Assignments

<table>
<thead>
<tr>
<th>Assessment requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance of all classes is mandatory. This means that students must actively participate in at least 80% of the classes. In the event of absence of up to 20%, the instructor may stipulate replacement assignments. Absence of more than 20% will result in the student being banned from further participation of the course unit and from the examination. If students do not attend the first class, they will not be able to take the course.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earth system modelling assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>This assignment involves a 1 ½ week research project in which the students, collaborating with 2-3 other students, define a climate- or global change research question they deem being interesting to investigate in depth. This research question will be addressed collecting information in literature and datasets also applied to develop and apply a modelling system implemented in a programming environment called SMART (developed at Wageningen University). At the end of the project the students have to present the main results of their research project and provide feedback to the projects of the other groups.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Development of research proposal including definition of research question, hypothesis, system diagram, data availability for model evaluation</td>
</tr>
<tr>
<td>2. Originality of research plan and modelling system to be developed and applied</td>
</tr>
<tr>
<td>3. Active participation and management of tasks to be conducted by the group</td>
</tr>
<tr>
<td>4. Presentation</td>
</tr>
<tr>
<td>5. Providing feedback</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Information literacy assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>This assignment involves attending a lecture followed by practicals in which the students get instructions on the efficient use of information in peer-reviewed literature and datasets also to be applied for the development of the Earth system modelling system.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>grade of online test on presented information in lecture and practicals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate change ethics and philosophy assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>This assignment involves the writing of an advice to the prime-president regarding the application of geo-engineering options (e.g., Solar Radiation Management, SRM, and Carbon Dioxide Removal, CDR) to cope with climate change. This assignment is also conducted by groups of 3-4 students and which requires to reach consensus on the arguments about the (dis)advantages and ethical issues associated with different geo-engineering options. This activity includes debating, reasoning and recognising ethical theories in the provided arguments for their advice on the geo-engineering options which are explained in more detail in a number of papers that must be read in preparation for this assignment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assessment criteria:</th>
</tr>
</thead>
<tbody>
<tr>
<td>quality of the written advice to the prime-minister</td>
</tr>
</tbody>
</table>

Title of course: Politics, Power and International Responsibility

Course unit type: Foundation

Course content

This course is an introduction to international relations and international organisations. Students gain clear insight into the political perspective and the concept of power. Topics such as governments and non-state actors, responsibility, accountability, geopolitical developments, global governance and political theory are all addressed. The course centres on four blocks that lead from a fundamental level of understanding to challenging traditional assumptions:

- Political Theory: the state and its functions / what are power, sovereignty, legitimacy, and authority; responsibility and accountability / the nation state / different political systems (e.g. autocracy, oligarchy, democracy) / republican principles and the separation of powers;
- Norms, Institutions and Normative Orders: how norms emerge and change / the concept of normativity / introduction to institutional theory / what is an institution;
- Peace and Peace Orders: intra- and international conflicts / political peace orders (UN, EU and their philosophical underpinnings) / fundamentals of Just War Theory / human rights and its predecessors;
- International Politics and Cooperation: geopolitics and international regimes / international justice / development cooperation and environmental governance.

This course is one of the Foundation courses of the GRIL programme. As such it introduces the fundamentals of political science and international relations with an emphasis on global challenges. Part of this course will be the introduction of the political dimension and the background of the SDGs. As such, it constitutes a constituent part of the Responsible Governance major. The course connects to foundation courses such as Introduction to Global Health, the Earth System and Principles of Economics as it prepares the ground for thinking through parallel global political processes. Furthermore, this course connects to the foundation course Explaining Human Behaviour as the normative expression of social mechanisms in larger groups and societies. The four pillars cut across the SDGs and explain their political backgrounds. At the same time, they more specifically touch upon SDGs # 8, 10, 11, 13 and 16.

Literature

A reader with hard copies of licensed mandatory readings is available in the Essentials Library in the Descartes classroom in the Z-building. Other reading materials can be downloaded via the online learning environment.

Course learning outcomes

Upon the successful completion of this course, students will be able to:

- Critically reflect on core theories in political science
- Understand the fundamentals of political responsibility on multiple levels
- Analyse political stakeholder fields, and write brief and precise political reports
- Develop macro-solutions for global problems based on political and governance insights
- Present solutions to global governance topics to non-expert audiences and defend their positions against critical inquiry
- Formulate critical inquiry on written and oral presentations
- Collaborate in diverse teams, and give concise and effective feedback to peers
Politics, Power and International Responsibility

Assessment

| 20% Individual review of a classic political science/theory text |
| 20% Active participation in simulation exercise: Political Negotiations |
| 20% Group presentation of political analysis: Current Crisis Report |
| 30% Group assignment: “Think Big”, write a policy brief (20%) on a political solution to an SDG and present it in front of the group (10%) |
| 10% Active participation in discussions |

Assignments

| **Assessment requirements** |
| Attendance of all classes is mandatory and active participation is an integral part of assessment (and a component of the final grade). This means that students must actively participate in at least 80% of the classes. In the event of absence of up to 20%, the instructor may stipulate replacement assignments. Absence of more than 20% will result in the student being banned from further participation of the course unit and from the examination. If students do not attend the first class, they will not be able to take the course. |

Individual review of a classic political science / theory text

Students will be asked to review a seminal political science or political theory text. A list of suggested literature will be provided by the lecturer through the online learning environment (for a preliminary list, see Appendix 4). Students are invited to freely choose a seminal political science text that is in line with their individual interests. Assessment of the review piece is based on:
- Structure
- Citations
- Style
- Accuracy of the review
- Critical reflection
- Identifying links to the overarching themes of the course

Active participation in simulation exercise: political negotiations

Students will train for (and, subsequently, conduct) a political mock debate focused on topics of current interest in international affairs. Assessment of the simulation exercise is based on:
- Preparation of content
- Argumentation coherent and logical
- Negotiation style compelling and convincing

Group presentation of political analysis: current crisis report

Students are asked to write an analytical report on a current political crisis of their choice and present the results to their peers. This is a group assignment. The report should be about 2,500-3,000 words in length. More details will be given out in class nearer the deadline. Assessment of the group presentation is based on:
- Oral presentation style
- Quality of the slides/visualisation
- Quality of the written analysis
University College Fryslân
Study guide 2019 – 2020
Global Responsibility & Leadership

Title of course: Explaining Human Behaviour

Course unit type: Foundation

Course content: The course aims at understanding human behaviour within the context of individual, social, cultural and environmental factors. We will examine how these factors influence people's behaviour, cognition, and thinking as well as the way people make choices. We will cover basic research methods and theories from social psychology (social cognition, social influence, group processes etc.), giving a clear insight into the social psychological perspective and methodology. In addition, we will talk about those classical social psychology experiments, which will hopefully be a great source of inspiration for you to design similar approaches and experiments in the future.

In particular, the course will address the Sustainable Development Goals of 3 (good health & well-being), 5 (gender equality), 7 (affordable & clean energy), 10 (reduced inequalities), 11 (sustainable cities & communities), 12 (responsible consumption & production), 13 (climate action), and 16 (peace, justice and strong institutions).

The foundation course would help provide a theoretical basis for the Psychology track courses, such as Applied Social Psychology and Sustainable Decision Making. The course will complement other foundation courses in the majors Responsible Governance and Responsible Planet. For instance, the course will complement the foundation course The Earth System by zooming into human behaviour as the antecedent of many environmental problems. It will also add to the foundation course Principles of Economics by means of providing a different angle to explain human behaviour.

Literature: Compulsory literature

Course learning outcomes: Upon the successful completion of this course, students will be able to:

• Identify and explain key theories, concepts, methods and debates in social psychology
• Compare and evaluate different theories, concepts, and methods in social psychology
• Reflect on individual, social, cultural and environmental factors shaping human behaviour
• Reason why a theory-driven approach is needed to understand human behaviour
• Use theories to reflect on the roots of global sustainability challenges
• Write an academic essay discussing relevant social psychological theories to understand the roots of global sustainability challenges
• Present their ideas in an academically sound way
• Discuss their ideas with peers and critically challenge ideas of others

Assessment: 10% Active participation

15% Presentations

35% Essay (10% from the first draft, 25% from the final draft)

40% Written exam

Study guide 2019 – 2020
Global Responsibility & Leadership
Title of course
Principles of Economics

Course unit type
Foundation

Course content
During the course, students will deal with questions such as: Why some countries are rich while others are poor? What are the consequences of economic growth for other societal outcomes such as pollution and inequality? What role can governments play when markets fail? Which factors play a role in the decision-making process of firms and consumers? To be able to answer these questions, this course covers the fundamentals of micro- and macroeconomics. The microeconomics part of the course covers economic decision-making by individuals and firms, the determination of quantities and prices of goods, and the theoretical basis for international trade. The macroeconomics part of the course covers topics such as the determination of the aggregate level of economic activity, long-run economic growth, government policies, and short-run economic stability (the rate of unemployment and inflation). This course offers a unified approach combining the two fields by using themes such as markets, development, social relations, and institutions. This way students gain clear insight into the interaction between individuals, households, firms, and governments.

Literature
- Compulsory literature

Course learning outcomes
Upon the successful completion of this course, students will be able to:

Content:
- Explain and apply basic microeconomic principles such as demand and supply functions, competitive market equilibrium and beyond, public goods and externalities, cooperation problems.
- Explain and apply basic macroeconomic principles such as national accounting, economic stability, public and monetary policy.
- Explain and apply basic principles of international trade theory, among which comparative advantage, trade protection, and exchange rate.
- Identify development issues across the world beyond economic performance.
- Use relevant economic theories and methods to study the Sustainable Development Goals.

Skills:
- Use data for a fact-based analysis
- Develop writing and oral skills
- Work in a group setting
- Link academic knowledge and practical use
- Introduction to interdisciplinary learning

Assessment
- 10% Assignment 1: Set of problems with open questions
- 25% Assignment 2: Group project on applying economic principles to a daily life example
- 25% Assignment 3: A case-study analysis
- 30% Exam with open questions
- 10% Active participation
The foundation course introduces students to the landscape of global health issues and challenges. Students develop an understanding of theories, key concepts, tools and frameworks essential for continued study in global health. They acquire basic competencies in collaboration, academic development and communication. Developing leadership and responsibility in health in a continuously changing global and local context, requires an eco-system that seeks collaboration between different actors and different sectors. New health targets are set by the multi-sectoral Sustainable Development Goals. Therefore this introduction to Global Health emphasises the linkages with other foundation courses in the GLR study.

The foundation course includes five themes:
1. Definition of health: What does ‘health’ mean for different people in different contexts? Students, coming from diverse socio-cultural backgrounds, are asked to reflect on their own perception of health and illness (language, culture, context). We explore the concepts health promotion, prevention, diagnosis and treatment of illness, as well as end-of-life. We discuss the theoretical cadres used in literature and elaborate on the relationship between culture and health, and effects on health beliefs and practices. What does health promotion mean in relation to the perception of individual health? How can we promote behavioural change to avoid illness? We review specific examples of how culture influences health behaviour.
2. Determinants of health: what are the biological, genetic, social, geographical, financial and other factors that contribute to health or disease? What do upstream and downstream determinants mean? What is the contribution of healthcare to the health status of the population in comparison to economic, environmental and psychological factors? What are the definitions of public health and global health? What do these concepts mean and what do they entail in practice? What are prominent discourses of the last decade, what does health literacy mean?
3. Global burden of disease: overview of the main trends and patterns in the burden of disease. Explanation on essential terminology used in health and development. Demography and health in different countries. Essentials of epidemiology and statistics. How is the burden of disease shifting from communicable to non-communicable diseases? Why are disease burdens so much different all over the world? The influence of economic developments, scientific and technological changes, climate change, political stability, migration. A link will be made to the concept ‘healthy aging’. What are the key health indicators we use for measuring health status? What does equity mean?
4. Health Systems Analysis: what do we mean with Health System? What are the functions and how is it organised? We look at different country examples (for example countries of origin of students) and use the WHO model of health systems analysis to explore how the systems are organised. We outline key health systems issues and how they are addressed by studying selected examples’ case studies of low-middle and high-income countries. In many countries system reforms are introduced aiming at improving services and health comes of a country. We will look at few examples of reforms, such as in Ghana where they introduced the National Health Insurance Scheme. Essential elements of health sector development, such as Human Resources, Quality of Care and Access and Equity are discussed. What does universal health coverage mean?
5. Stakeholder analysis and SDGs: what are the main actors in health? International health institutions. What do we mean precisely with the public, private and NGO sector when talking about the health sector and what are their roles and why is it important to create public-private partnerships for health? Who are other important stakeholders in the health sector? We discuss the value of cooperation in addressing global health problems. We zoom in on specific country situations. Furthermore, we address the health-related SDGs: what are the 19 proposed targets and 26 proposed indicators? In this final theme we recapitulate the previous themes and bring all elements together. Students will have sufficient overview to put the health-related SDGs in context.

Literature

This book will be used as background reading in all themes. The book has case studies (vignettes) of all themes that will be used, as well as questions for group discussions that will be posed. Linked to this book there are online materials for in-depth study and additional background materials. In addition, literature dedicated per theme will be used during each week.

Course learning outcomes

This course unit focuses on the development of the following learning outcomes, as stated in the degree profile such at the end of the course the following is achieved:

Theme 1 Definition of health

Knowledge: students will have knowledge about the different definitions and different scientific discourses. Students will understand the theoretical socio-cultural and bio-medical model of health and the principles of health behaviour and health promotion.

Skills: Students will be able to reflect on their own perceptions on health in a global context, and be able to present in writing their views. They will be able to debate on relevant differences between bio-medical and socio-cultural health model. They will be able to design (in pairs) simple health promotion messages for actual health threats in an innovative way.

Theme 2 Determinants of health

Knowledge: students will have a basic understanding of what determinants of health are and what their influence on health is (political, biological, etc.). They will be able to analyse health cases and debate how determinants relatively influence these health cases.

Skills: analysis, argue position, debating

Theme 3 Global Burden of disease

Knowledge: students will understand the fundamentals of epidemiology and trends in health and disease. They will be able to differentiate between communicable and non-communicable diseases.

Skills: they will be able to conduct the basic literature search and critical analysis. They will be able to determine trends in simple data sets. Students will be able to present their findings to their colleagues, and critically reflect on presentations of other students.

Theme 4 Health systems analysis

Knowledge: students will have a basic understanding about health systems and building blocks (WHO model) and differences in countries.

Skills: will be able to take responsibility of resource allocation in a health system in collaboration with colleagues. Students will be able to argue why they chose for certain allocations.
Introduction to Global Health

Assessment

- **Theme 1**: students will produce an individual reflection report on the topic of health-related SDGs successfully.

Assignments

- **Theme 5**: Stakeholder analysis and SDGs: written essay (paper max 1500 words), assessment of academic skills synthesis skills, advocacy skills (20%)
- **Theme 4**: Health systems analysis: observation during serious district game, assessment of analytic skills and presentation skills (15%)
- **Theme 3**: Global Burden of disease: collaboration, country analysis presentation, literature list, assessment of analytic skills presentation skills, academic skills (25%)
- **Theme 2**: Determinants of health: analysis of case study, presentation and feedback, assessment of analytic skills and presentation skills (15%)
- **Theme 1**: Definition of health: health promotion intervention in couples. Each student is expected to participate equally (5% of grade); short essay (max 1000 words), assessment of reflection competency, academic writing (10%)

Introduction to Programming

Course learning outcomes

- Upon the successful completion of this course, students will be able to:
 - List the main components of computers and computer programmes
 - Identify problems that can be solved with algorithmic solutions and determine the problem space
 - Resolve problems algorithmically and translate algorithms into software solutions
 - Implement basic software solutions using the Python programming language
 - Assess the solution against functional and non-functional requirements
 - Critically assess the quality of their own work
 - Develop and discuss software projects in a diverse team
 - Write basic documentation (motivation and design) for a software project

Assessment

- **Course unit type**: Foundation

- **Course content**: Introduction to Programming aims at getting students acquainted with algorithms, algorithmic problem-solving and programming. We start with a brief history of computers, their main elements and limitations. Then we introduce notions of computer programmes and algorithms. The course continues with an introduction to algorithms and algorithmic modelling, and learning about basic concepts such as conditions and iteration flows (loops). Subsequently, students are introduced to computers and programming, learning to translate algorithms into programmes. Students study basic data structures, like character strings, arrays and sets, as well as programming structures, like variables, function calls and recursions.

The Python programming language is used during the course to explain and practice programming concepts. Therefore, students also learn to develop, compile and run source code written in this language. Algorithmic and programming concepts presented in the course are illustrated by examples in the scope of the GRL curriculum, such as decision-making, data analysis and visualisation of geographical data, all related to the SDG’s.

This first-year course unit provides an in-depth introduction to the Information Technology discipline through practical algorithmic design and programming experience. It is the first of two foundation courses for the Information Technology discipline and serves as the basis for the second one, Introduction to Data Science.

Literature

- **Downey, A. (2015). Think Python: How to Think Like a Computer Scientist. (2nd ed.) USA: Green Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**

- **Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**

- **Downey, A. (2015). Think Python: How to Think Like a Computer Scientist. (2nd ed.) USA: Green Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**

- **Downey, A. (2015). Think Python: How to Think Like a Computer Scientist. (2nd ed.) USA: Green Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**

- **Downey, A. (2015). Think Python: How to Think Like a Computer Scientist. (2nd ed.) USA: Green Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**

- **Downey, A. (2015). Think Python: How to Think Like a Computer Scientist. (2nd ed.) USA: Green Tea Press (online: http://greenteapress.com/wp/think-python-2e). The online version of the book is distributed under the licence CC BY-NC 3.0 and can be downloaded for free for the purpose of this course.**
<table>
<thead>
<tr>
<th>Title of course</th>
<th>Introduction to Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment requirements</td>
<td>Attendance of all classes is mandatory. This means that students must actively participate in at least 80% of the classes. In the event of absence of up to 20%, the instructor may stipulate replacement assignments. Absence of more than 20% will result in the student being banned from further participation of the course unit and from the examination. If students do not attend the first class, they will not be able to take the course.</td>
</tr>
<tr>
<td>Computer exercises</td>
<td>Between the second and ninth weeks, the students have to deliver seven mandatory computer exercises and may deliver one (last) optional computer exercise. These exercises are made by each student individually. During the scheduled practical sessions, the students are encouraged to discuss the exercises with each other and the teacher. The students submit their solutions to a system that will perform elementary checks and store the source code. Each solution is subsequently manually inspected and grade accordingly. The grading is computed as the mean of the six exercises. Students can miss one exercise only, in which case a seventh exercise has to be delivered in the eight week of the course. Students that seek to improve their grade can also deliver the seventh exercise. If the seventh exercise is delivered it will replace the lowest grade (or take the place of the missed exercise).</td>
</tr>
<tr>
<td>Written exam</td>
<td>This is a multiple-choice exam covering the topics thought on weeks 2, 3, 4, 5, 6 and 8, (i.e., all topics concerning Python programming except for object-orientation). This exam has the following grading system. We designed the exam supposing that the student can answer 25% of the questions correctly by simply guessing the answer. Therefore, we first subtract 25% of the total number of questions from the score and calculate the grade based on the percentage of correct answers.</td>
</tr>
<tr>
<td>Project</td>
<td>Between the second and ninth week, the students develop a programming project. This project has to be executed by groups of 3 students (one group may have 4 students). The groups are organised by the lecturer, who focuses on maximising background diversity within the groups. The project has two main components: design (document) and implementation (source code). The design component comprises a report (max. 10 pages in total) with the description of the intended software with: (a) motivation (min. 1 page), (b) application (min. 1 page), (c) requirements (min. 1 page), (d) implications (min. 1 page), and (e) model / algorithms (min. 2 pages). The implementation component comprises the implementation of the described model and the source code documentation. The idea for the project is decided by the group together with the lecturer, who will help the students decide the scope (size) of the project. The project is defined so that each member of the group designs and implements a part of the implemented system of similar complexity. The groups submit partial deliverables every week, for which they receive feedback that have to be applied in the next iteration.</td>
</tr>
</tbody>
</table>
Introduction to Data Science

Course content

Data Science is a fast-growing field that combines statistics and several fields of IT to provide theoretical and practical tools for exploring and solving data-related problems. Among its possible applications, data science is a powerful tool to support addressing global challenges, as they often involve reasoning based upon diverse and sizeable data. This course aims at developing a minimal set of skills necessary to start applying data science to real-world problems. For that, students are introduced to several topics related to three main components: data retrieval, visualisation and analysis. Also, students learn and apply basic techniques of each component. The basic techniques are practised throughout the course with weekly computer exercises, and the students demonstrate their acquired skills in a non-trivial project for analysing a real-world dataset. Finally, the course also briefly tackles societal and ethical implications related to the studied topics.

Topics on data retrieval include traditional file-based datasets, database technologies, and streaming. Topics on data visualisation include reporting and plotting, qualities of visualisations, translation of statistical measures into visualisation, and visualisation best practices. Topics on data analysis include basic statistical tests, data clustering and machine learning. All data used and analysed are related to the global goals and as encountered / used by corporations, organisations and governments.

Course learning outcomes

 Upon the successful completion of this course, students will be able to:
- Summarise the theory behind data science
- Understand the context of datasets
- Inspect, filter, analyse and visualise datasets
- Integrate and reorganise different datasets
- Hypothesise and forecast observations about datasets
- Apply basic machine learning algorithms to datasets
- Take responsibility on the usage of data (e.g. privacy and security concerns)
- Reason to support decision making
- Judge and criticise their own work

Assessment

- 10% Active participation
- 20% Computer exercises
- 25% Written assignments
- 45% Project

Assessment requirements

Attendance of all classes is mandatory. This means that students must actively participate in at least 80% of the classes. In the event of absence of up to 20%, the instructor may stipulate replacement assignments. Absence of more than 20% will result in the student being banned from further participation of the course unit and from the examination. If students do not attend the first class, they will not be able to take the course.

Computer exercises

Between the second and ninth weeks, students have to deliver seven mandatory computer exercises and may deliver one (last) optional computer exercise. These exercises are made by each student individually. During the scheduled practical sessions, the students are encouraged to discuss the exercises with each other and the teacher. Students submit their solutions to a system that will perform elementary checks and store the source code. Each solution is subsequently manually inspected and grade accordingly.

The grading is computed as the mean of all exercises. However, the students cannot miss (not submit) more than one exercise. If submitted, the last optional computer exercise will replace the lowest grade.

Written mc-exam

This is a multiple-choice exam with the following grading system. We design the exam supposing that the student can answer 25% of the questions correctly by simply guessing the answer. Therefore, we first subtract 25% of the total number of questions from the score and calculate the grade based on the percentage of correct answers.

Project

Between the second and ninth weeks, the students develop a data science project. This project has to be executed by groups of 3 students. The students organise themselves into groups. The idea for the project is decided by the group together with the lecturer, who will help the students decide the scope (size) of the project. The groups submit partial deliverables every week, for which they receive feedback that have to be applied in the next iteration.

The project comprises two deliverables: report (document) and implementation (source code). The report has three main components: (a) motivation; (b) planning (research design); (c) execution; (d) discussion of results. The implementation is a documented script that executes every step of the planned study: (a) read dataset; (b) treat data (normalisation and missing values); (c) create visualisations; (d) perform and display analysis (e.g., statistical tests).

There are two presentations along the eight weeks of the project’s development. The first presentation happens in the fourth week and the groups present the design component. The second presentation happens in the eighth week (i.e., ninth week of the course) and comprise revisions of the design component and the implementation component.
Title of course: Introduction to Data Science

For both presentations, the groups are organised in order to analyse each other’s work. Every group is responsible for interviewing another group after their presentation. The interviewing groups are encouraged to challenge the interviewed group with focus on providing constructive feedback. Each member of the interviewing group must ask at least one question and each member of the interviewed groups must answer at least one question. Only for the first presentation, the interviewing groups must provide a document with a summary of their feedback to the interviewed group, which must in turn consider the feedback in the next deliveries of their project.

The final grade for the groups is based on the final deliverable (report and source code) and presentations. The weight and evaluation criteria for each grade component are the following:

Report (50%)
- Argumentation of motivation
- Quality of dataset (e.g., size, real/artificial)
- Quality of data treatment (e.g., dealt with missing values correctly)
- Relevance of asked research questions
- Complexity of planning
- Quality and relevance of visualisations
- Appropriateness of data analysis
- Quality of the presentation of results
- Quality of interpretation of results (e.g., discussed societal and ethical implications)

Implementation (30%)
- Completeness of implemented script (compared against planning)
- Correctness of source code
- Quality of source code
- Quality of documentation
- Presentation (20%)
- Quality of presentation
- Quality of questions
- Quality of answers
- Quality of feedback

After the second presentation, the members of every group deliver a peer-assessment form, which is used to identify outstanding and/or underperforming members, which may result in individual changes in the grade.

Active participation

The lecturer assesses every student individually regarding their participation throughout the course. The students are evaluated according to the following active participation rubric:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>5% Reflection papers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% Participation</td>
</tr>
<tr>
<td></td>
<td>10% Peer reviews</td>
</tr>
<tr>
<td></td>
<td>10% Term paper draft</td>
</tr>
<tr>
<td></td>
<td>25% Term paper final</td>
</tr>
<tr>
<td></td>
<td>20% Poster</td>
</tr>
<tr>
<td></td>
<td>20% Final presentation</td>
</tr>
</tbody>
</table>

Assignments

Assessment requirements

Attendance of all classes is mandatory. This means that students must actively participate in at least 80% of the classes. In the event of absence of up to 20%, the instructor may stipulate replacement assignments. Absence of more than 20% will result in the student being banned from further participation of the course unit and from the examination. If students do not attend the first class, they will not be able to take the course.
Title of course

Academic Communication

Term paper

Throughout the "writing"-themed courses, you will gradually elaborate a term paper. A detailed description of the requirements and expectations for the term paper will be provided in the course. The best term papers will appear in the UCF online publication “Working papers in undergraduate research” and will be used and cited by future students.

Poster

Throughout the "presentation"-themed courses, you will work on a thematic academic poster. The precise requirements of the poster will be shared in the class. The best poster will receive a best poster award and will be used for future classes.

Presentation

Aside from the poster, you will also work in small groups to make a group presentation. The requirements for this presentation will be provided in class.

Peer review

You will periodically write reviews of your peers. This is to be done in a professional way and is not meant as an avenue just to criticize or compliment. Rather, you will provide constructive advice and input based on your own competencies. The quality of your peer review reports you write and the degree with which you integrate those which you receive form a part of your final grade.

Reflection papers

You will also write short, informal self-reflection papers. These are typically around 0.5 pages long and are meant as an avenue to consider and make explicit what you’ve learned and what you still need to learn.

Title of course

Language and Culture I

Course unit type

Skills Lab

Course content

Language and culture have a direct influence on how we see the world. Our individual values and beliefs shape the way in which we perceive concepts and practices. In a globalised world, we constantly come into contact with people whose background and viewpoints diverge from our own. These varying outlooks can lead to difficulties in mutual understanding and communication.

This course is dedicated to understanding the role that language and culture have on the practice of science. Through the use of case studies and interactive assignments (linked to the SDG’s where possible), students will come to understand the complex interplay between language, culture, knowledge and communication from the viewpoint of different disciplines including sociology, social psychology and anthropology.

Students will be challenged to reflect on their own identity and discuss how it impacts on the way they perceive the world and engage with people around them. The notion of diversity will be discussed in detail, with a key focus on how their own concept of diversity influences their world-view. Additionally, students will reflect on how communication differs between cultures and how this can impact on effective communication. Students will further develop the academic communication skills first introduced in Fundamentals of Academic Communication.

Literature

The courses also makes use of a reader of supplementary articles and current newspaper articles related to topics studied.

Course learning outcomes

Upon the successful completion of this course, students will be able to:

- Critically analyse empirical literature and theories presented during the course
- Independently consult and synthesise academic sources for use in assignments
- Collaborate effectively with a diverse cohort of students by actively participating in group activities and assignments
- Relate theory studied in the classroom to real life situations
- Articulate the complex relationship between language, culture, knowledge and communication
- Explain the concept of cultural learning
- Reflect on the impact of culture on their values, assumptions, perceptions, expectations and behaviour
- Listen to and communicate effectively with a diverse group of people, using effective verbal and nonverbal strategies

Assessment

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-term essay plan</td>
<td>5%</td>
</tr>
<tr>
<td>Poster plan</td>
<td>5%</td>
</tr>
<tr>
<td>Active participation</td>
<td>15%</td>
</tr>
<tr>
<td>Group presentation</td>
<td>20%</td>
</tr>
<tr>
<td>Mid-term essay</td>
<td>25%</td>
</tr>
<tr>
<td>Academic poster</td>
<td>30%</td>
</tr>
</tbody>
</table>
Assignments

Mid-term essay plan
- Students are to hand in a short proposal (approximately 1 A4 page) outlining the research question, sections of the essay, and bibliography at the end of week 3.

The essay plan will be assessed on the basis of the following criteria:
- Ability to formulate a clear and relevant research question
- Clear focus of essay topic
- Ability to outline and plan an essay topic

Mid-term essay
- Students are to write a 2,500 word (+/- 10%) argumentative essay.
- The overarching theme for the essay is ‘How universal is experience?’
- Based on the concepts discussed during the first half of the course, students are to argue to what extent they think experience is universal.
- Students should develop a working title for their essay.
- Students should refer to topics and theories discussed during the course and reference outside sources.
- In addition, students should reflect on class discussions held during the course and use themes discussed to illustrate points made in their essay.

The essay will be assessed on the basis of the following criteria:
- Structure and clarity of the argument (consistency of introduction, argument and conclusion)
- Ability to comprehend and use relevant academic literature
- Reflect on topics discussed in class
- Use of secondary, and if relevant, primary sources
- Analytical (and synthesizing skills) with regard to the material consulted
- Independence in searching for and processing literature

Individual Poster Plan
- Students are to submit a short proposal (approximately 1 A4 page) outlining the research question, the structure of the presentation, division of work and a bibliography.

The presentation plan will be assessed on the basis of the following criteria:
- Ability to formulate a clear and relevant research question
- Ability to outline and plan a presentation
- Quality of proposed bibliography

In-class group presentation
- Each student will deliver a group presentation (no more than 3 students per group) based on a current affairs event linked to the topic of a previous seminar. A list of relevant current events will be outlined in week 1. A self-chosen topic must be approved by the lecturer in advance.
- Students should consult different academic articles, newspapers, online periodicals, etc. when collecting data for the presentation in order to present a holistic view.
- Presentation topics should act like a case study to illustrate the topic.
- Each presentation should include an interactive component which could include: Mentimeter, Kahoot, video, quiz etc.
- These presentations will act as the starting point for discussion in the workshop sessions.

The presentation will be assessed on the basis of the following criteria:
- Structure and clarity of the argument (consistency of introduction, argument and conclusion)
- Ability to link presentation topic to theory discussed during the seminar sessions
- Use of secondary, and if relevant, primary sources
- Ability to deliver a presentation in front of an audience
- Ability to work as a team (based on student self-assessment. Students will be asked to assess their contribution to the team by completing a self-assessment form.)
- Relevance and execution of interactive activity
Title of course: Statistics I

Course unit type: Foundation

Course content: Practical knowledge of statistics is a fundamental skill for researchers in all scientific disciplines. The recent growth of Big Data Applications and Data Science only enhances the need for students to have solid theoretical knowledge of statistical analysis to help them understand their own data as well as the analyses performed by others. The aim of Statistics I is to engage students with the fundamental concepts of statistical analysis and basic tools in statistical analysis using descriptive and univariate analysis, and research data management. Starting with the theoretical background of statistics, students are taught to engage critically with data-set characteristics; samples and populations, sampling strategies, and correlations. Subsequently, characteristics of the data in the data-set are discussed, dealing with measurement levels, central tendency, dispersion, distributions, and generalisations using the central limit theorem. The final part of the course focuses on statistical inference using techniques such as: t-test and difference of proportion test, and an introduction to linear regression. Throughout the course, students are required to use R for their statistical analysis. A working knowledge of R, with its large developer support and comprehensive library of basic and cutting-edge statistical packages, means students will be able to easily transition from basic to more advanced statistical tools. R also provides interfaces from R to Python, and from Python to R, which allows students to easily transfer their knowledge between Statistics I, and Introduction to Programming and Introduction to Data Science. Throughout the course, students will be taught to follow best-practices using the "tidyverse" principles, in data management and transformation, analysis, and visualisation.

Literature

Compulsory literature

Course learning outcomes
Upon the successful completion of this course, students will be able to:
- Understand data sampling including sampling techniques, advantages and drawbacks, and generalisability
- Understand the basic characteristics of variables and associated limitations
- Inspect and analyse the data taking into account the variable and data-set characteristics and the research design
- Interpret the results
- Report and reflect on method, data, and results

Assessment
40%: Computer exercises and portfolio (4 exercises in total during weeks 5-8)
60%: Final exam

Statistics I will be assessed through a take-home exam and an in-class assignments. The take-home exam will test theoretical knowledge and comprehension of the subject matter. The computer assignments will test students’ practical application of the subject matter.
<table>
<thead>
<tr>
<th>Title of course</th>
<th>Foundation, Skills Lab & electives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessments</td>
<td>- Leadership Seminar I: Leadership for Sustainable Change (200)</td>
</tr>
<tr>
<td></td>
<td>- Statistics II (200)</td>
</tr>
<tr>
<td></td>
<td>- Qualitative Methods (200)</td>
</tr>
<tr>
<td></td>
<td>- Language and Culture II (300)</td>
</tr>
<tr>
<td></td>
<td>- Leadership Seminar II: Leadership for Sustainable Change (300)</td>
</tr>
<tr>
<td></td>
<td>- Advanced Qualitative Methods (300)</td>
</tr>
<tr>
<td></td>
<td>- Information Technology and its Implications (200)</td>
</tr>
<tr>
<td></td>
<td>MAJOR: Responsible Planet</td>
</tr>
<tr>
<td>Ethics course</td>
<td>Environmental Ethics (200)</td>
</tr>
<tr>
<td>Earth & Environment track</td>
<td>- Ecosystem Processes & Services (100)</td>
</tr>
<tr>
<td></td>
<td>- Climate Change: Land, Air & Water (200)</td>
</tr>
<tr>
<td></td>
<td>- Climate Services and Global Governance (300)</td>
</tr>
<tr>
<td>Tourism track</td>
<td>- Sustainable Tourism (200)</td>
</tr>
<tr>
<td></td>
<td>- Hospitality Studies (300)</td>
</tr>
<tr>
<td></td>
<td>MAJOR: Responsible Governance</td>
</tr>
<tr>
<td>Ethics course</td>
<td>Ethics course: Political Ethics (200)</td>
</tr>
<tr>
<td>Politics track</td>
<td>- Governance and Politics: Responding to Global Challenges (100)</td>
</tr>
<tr>
<td></td>
<td>- Policy, Policy Making and Implementation (200)</td>
</tr>
<tr>
<td></td>
<td>- Governance and Innovation: Contemporary Issues (300)</td>
</tr>
<tr>
<td>Economics track</td>
<td>- History of Economic Thinking: Theory and Models (100)</td>
</tr>
<tr>
<td></td>
<td>- Behavioural Economics (200)</td>
</tr>
<tr>
<td></td>
<td>- 22nd Century Economy (300)</td>
</tr>
<tr>
<td></td>
<td>MAJOR: Responsible Humanity</td>
</tr>
<tr>
<td>Ethics course</td>
<td>Development Ethics (200)</td>
</tr>
<tr>
<td>Global health track</td>
<td>- Contemporary Issues in Global Health (100)</td>
</tr>
<tr>
<td></td>
<td>- Innovative Technologies for Sustainable Development in Health (200)</td>
</tr>
<tr>
<td></td>
<td>- Comparative Health Systems and approaches to Health-Healthcare financing (300)</td>
</tr>
<tr>
<td>Psychology track</td>
<td>- Applied Social Psychology (100)</td>
</tr>
<tr>
<td></td>
<td>- Sustainable Decision-Making (200)</td>
</tr>
<tr>
<td></td>
<td>- Leadership and Change (300)</td>
</tr>
</tbody>
</table>

Visit the online course catalogue for detailed information!
Unique features

Living Labs
The Living Lab project is a unique feature of the Global Responsibility & Leadership programme and provides you with the opportunity to apply your academic knowledge and skills in the real world. During the Living Lab project, you work together with private and public stakeholders and learn how to translate a real-world question into one suited to academic research, carry out the research, and then translate your findings back into recommendations for the stakeholder. As such, the Living Lab project creates a win-win situation: you learn how to apply your academic knowledge in actual, real-life contexts and develop related skills (communication, collaboration, problem-solving, research). Conversely public and private stakeholders get to work with talented young people that are able to provide insight into questions important for the region and beyond.

Details
- Research internship
- Public and private stakeholders
- 20 weeks: year 2 - semester 2
- Supervisor at UCF and at the local organisation
- Work on local solutions for global challenges

Study abroad
We encourage and facilitate our students to broaden their horizon by studying abroad for a semester in the third year of the programme. Studying abroad will broaden your perspective and help you develop the cultural sensitivity that is needed to address global challenges on the international playing field. Moreover, a semester abroad allows you to experience a new country and its culture and traditions by studying in a different educational system. This is your chance to see the world make lifelong friends from different backgrounds! Not to mention, studying abroad enhances your employability, as employers value and increasingly require international experience.

Details:
- Exchange programme
- 20 weeks: year 3 – semester 1
- Personal guidance at UCF and host university
- Partner universities in Europe, North-America, Latin-America, South-East Asia and Oceania
Weekly schedule year 1 (example)

Term 1

<table>
<thead>
<tr>
<th>Day</th>
<th>09:00 - 11:00</th>
<th>11:00 - 13:00</th>
<th>13:00 - 15:00</th>
<th>15:00 - 17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Academic Communication</td>
<td>Introduction to</td>
<td>Volunteer at local</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programming</td>
<td>environmental organisation</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Prepare for class</td>
<td>Politics, Power &</td>
<td>Go to the gym</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Introduction to</td>
<td>Work on group project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Programming</td>
<td>for class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Study in the library</td>
<td>Academic Communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Politics, Power &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>International</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Day off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term 2

<table>
<thead>
<tr>
<th>Day</th>
<th>09:00 - 11:00</th>
<th>11:00 - 13:00</th>
<th>13:00 - 15:00</th>
<th>15:00 - 17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Prepare for class</td>
<td>Statistics I</td>
<td>Take an extra-curricular class in Spanish</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Explaining Human</td>
<td>The Earth System</td>
<td>Work on group project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behaviour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Day off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Prepare a presentation</td>
<td>Statistics I</td>
<td>Study in the library</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Explaining Human</td>
<td>Work on group project</td>
<td>The Earth System</td>
<td>Go to the gym</td>
</tr>
<tr>
<td></td>
<td>Behaviour</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Term 3

<table>
<thead>
<tr>
<th>Day</th>
<th>09:00 - 11:00</th>
<th>11:00 - 13:00</th>
<th>13:00 - 15:00</th>
<th>15:00 - 17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Day off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Study in the library</td>
<td>Language & Culture I</td>
<td>Applied Social</td>
<td>Relax</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Psychology</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Work on group project I</td>
<td>Introduction to data</td>
<td>Prepare for class</td>
<td></td>
</tr>
<tr>
<td></td>
<td>for class</td>
<td>science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Language & Culture I</td>
<td>Volunteer at the elderly home in town</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Go to the gym</td>
<td>Introduction to Data</td>
<td>Applied Social</td>
<td>Relax</td>
</tr>
<tr>
<td></td>
<td>Science</td>
<td></td>
<td>Psychology</td>
<td></td>
</tr>
</tbody>
</table>

Term 4

<table>
<thead>
<tr>
<th>Day</th>
<th>09:00 - 11:00</th>
<th>11:00 - 13:00</th>
<th>13:00 - 15:00</th>
<th>15:00 - 17:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Governance and Politics Responding to Global Challenges</td>
<td>Introduction to Global Health</td>
<td>Meet with fellow committee members to plan a trip abroad</td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>Relax</td>
<td>Principles of Economics</td>
<td>Study in the library</td>
<td></td>
</tr>
<tr>
<td>Wednesday</td>
<td>Introduction to Global Health</td>
<td>Work on group project</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thursday</td>
<td>Prepare a presentation</td>
<td>Governance and</td>
<td>Principles of</td>
<td>Go to the gym</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Politics Responding</td>
<td>Economics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to Global Challenges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friday</td>
<td>Day off</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **Foundation**
- **Skills lab**
- **Major**
- **Study**
- **Extra curricular**