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Chapter 1

Introduction

M
otivated by the challenging formation control problem for a team of mobile
vehicles in which each vehicle can only measure some of the angles towards

its neighbors in its local coordinate frame, this thesis develops angle rigidity graph
theory in both 2D and 3D. The angle rigidity graph theory is developed for a class of
multi-point frameworks, called “angularity”, consisting of a set of nodes embedded
in a Euclidean space and a set of angle constraints among them. Here angle rigidity
refers to the property specifying that under proper angle constraints, the angularity
can only translate, rotate or scale as a whole when one or more of its nodes are
perturbed locally. Using the developed angle rigidity theory, angle-only formation
control algorithms are designed for the team of mobile vehicles to achieve a desired
angle rigid formation, in which only local angle measurements1 are needed for
each vehicle. Before proceeding to the specific results, I will briefly introduce the
background, problem statement and structure of this thesis.

1.1 Background

In this chapter, the background of multi-agent formation control is introduced,
in order to motivate the need to develop angle rigidity graph theory and the
corresponding angle-only formation control algorithms. The detailed literature
review will be provided at the beginning of each chapter for the corresponding
topics.

1.1.1 Multi-agent formation control

Multi-agent formation control has recently attracted great attention due to its
broad applications in, e.g., search and rescue of unmanned aerial vehicles [35, 48,
78], deep-sea exploration of multiple autonomous underwater vehicles [69, 81],
coordination of mobile robots [19, 74], and Earth observation of satellite formation
flying [12, 53]. In Fig. 1.1, several application examples of multi-agent formations
are provided, in which the agent represents robot, drone, autonomous underwater

1Also referred to as direction measurements or local bearing measurements in some literature.
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vehicle and satellite, respectively. Generally speaking, multi-agent formation control
aims at achieving a prescribed geometric shape for a group of agents [32, 80, 94].
The geometric shape, e.g., triangle, rectangle or polyhedron, can be described by a
set of agent absolute positions, inter-agent relative positions, distances, bearings or
triple-agent angles [3, 60, 86, 95].

(a) Robotic formation for object transportation (b) Drone swarm for forest rescue[2]

(c) AUV formation for deep-sea exploration[1] (d) Satellite formation flying for magnetic
measurement[47]

Figure 1.1: Applications of multi-agent formations

To achieve the desired geometric shape for a group of agents, some researchers
have proposed various formation control approaches towards the different combina-
tions of formation shape descriptions and available sensing information [19, 20, 83,
84], see Table 1.1. It is worth mentioning that most of these approaches require

Approach
Property

Shape description Measurement Coordinate-dependence

Position-based A A Yes
Displacement-based R R, A Yes

Distance-based D D, R No
In the table, A refers to absolution positions, R to relative positions and D to distances.

Table 1.1: The comparison of several formation approaches.

the measurements of absolute positions in a global coordinate frame, inter-agent
distance or relative positions [19, 70]. However, the following two factors limit the
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application of those formation control approaches into engineering practices.
(i) The common knowledge of a global coordinate frame is sometimes un-

available. For example, in Fig. 1.1(a),(b),(c),(d), the GPS receiver, as the main
type of the provider of global positioning information, becomes imprecise or even
unavailable in indoor space, forest, deep sea and deep space.

(ii) As a low-cost, lightweight and low-power sensor for ground, aerial and
aerospace vehicles to achieve various sensing tasks, optical camera/sensor ar-
ray/passive radar can easily produce bearing measurements but comparatively
difficult to generate precise distance information [14, 33, 103, 104].

To tackle these limitations, a new formation control approach, bearing-only
formation control, has been proposed in [101] which only relies on inter-agent
bearing measurements. However, the proposed bearing-only formation control
approach in [101] requires that all the agents have the same orientation of their
coordinate frames, which is a coordinate-dependent property, as shown in Table 1.1.
This is because the bearings used in [101] are vectors whose description always
depends on a common coordinate frame orientation. However, it is technically
hard to guarantee the perfect alignment of all agents’ coordinate frames due to the
existence of measurement noise and undesired measurement bias in sensors [59, 79,
82]. When a small degree of misalignment exists among agents’ coordinate frames,
it can be shown that a distorted formation shape and nonzero translational and
scaling velocity can be generated, which may cause the formation to collide into one
point or grow disproportionately in size. In other words, the formation described
by relative positions or bearing vectors, can be sensitive to the misalignment of
agents’ coordinate frames [65, 105].

As a consequence, it is crucial to develop a new formation control approach
which makes use of cheap and reliable angle measurements, while at the same
time allowing the agents to have their own different orientations of coordinate
frames. Even after the formation shape is described by bearings in SE(2) or SE(3),
which allows the agents to have different orientations of frames, the corresponding
formation control law may still not be robust against orientation bias in agents’
coordinate frames because the description of each desired bearing in SE(2) or SE(3)

still relies on a predetermined coordinate frame. We show that a promising way is
to choose a set of interior angles to describe the desired formation shape, because
an interior angle can be calculated through inter-agent bearings and is independent
of the orientation of agent’s coordinate frame. Thus, we propose to use triple-agent
angles to describe the formation shape. The next natural question to address is how
to properly choose angle constraints to construct the desired formation shape and
develop a theoretical framework to check which geometric shapes can be uniquely
determined by angle constraints. Towards this end, we propose angle rigidity to
determine the uniqueness of the formation shape under angle constraints. It is
worth noting that the formation shape in [52] is described by angles, in which,
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however, the designed formation control algorithm still requires each agent to be
able to sense the real-time relative positions with respect to its neighbors. Table
1.2 summarizes the differences between bearing-based and angle-based formation
control approaches.

Approach
Property

Shape description Measurement Coordinate-dependence

Bearing-based Bearing vectors B [101], R [98] Yes
Angle-based Interior angles A [22], R [52] No

In the table, B refers to bearings, R to relative positions and A to angles.

Table 1.2: The difference between bearing-based and angle-based formation control
approaches.

1.1.2 Rigidity graph theory

Rigidity graph theory has been studied for centuries, dating back to the works
of Euler [76] and Cauchy [4], which is mainly used to describe the stiffness of a
structure. Over the past decades, distance rigidity has been intensively investigated
both as a mathematical topic in graph theory [43, 77] and an engineering prob-
lem in applications including formations of multi-agent systems [7], mechanical
structures [49] and biological materials [67]. Distance rigidity [10] is defined for a
framework based on the definition that when the only allowed smooth motions are
those that preserve the distance between every pair of joints, the framework is said
to be rigid. To determine whether a given framework is distance rigid, two methods
have been reported. The first is to test the rank of the distance rigidity matrix
which is derived from the infinitesimal distance rigid motions [9]. The second is
enabled by Laman’s theorem, which is a combinatorial test and works only for
generic frameworks. More recently, bearing rigidity has been investigated, in which
the shape of a framework is prescribed when inter-point bearing or direction con-
straints are satisfied [37, 101]. Here bearing is defined as a unit vector in a given
global coordinate frame, and bearing rigidity can be defined accordingly [36, 101].
To check whether a framework is bearing rigid, conditions similar to those for
distance rigidity have been discussed [15, 36, 101, 103]. Distance constraints in
determining distance rigidity are in general quadratic in the associated end points’
positions. While a bearing constraint is always linear in the associated end point’s
position, the description of bearings directly depends on the existence of a global
coordinate frame or a coordinate frame in SE(2) or SE(3) [39, 68, 97].

Different from distance and bearing constraints, angle constraint is also one of
the fundamental elements in discrete geometry [37]. It is of interest to describe
a geometric shape using angle constraints, which is the main research subject in
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angle rigidity theory. Note that graphs have been used dominantly in rigidity theory
for multi-point frameworks under distance or bearing constraints since an edge
of a graph can be naturally used to denote the existence of a distance or bearing
constraint between the two points corresponding to the vertices associated with
this edge [73]. However, when describing angles formed by rays connecting points,
to use edges of a graph becomes inefficient because an angle constraint always
involves three points. Thus, instead of using graphs that relate pairs of vertices as
the main tool to define rigidity, we have to define a new combinatorial structure
which is able to relate triples of vertices to develop the theory of angle rigidity. It is
worth mentioning that in [52], by using the cosine of each triple-agent angle as
the constraint, the planar angle rigidity has been defined, in which, however, flip
and flex ambiguity exists. Since a globally rigid framework is of great importance
in rigidity theory, it is crucial to define angle rigidity which may easily distinguish
global rigidity from local rigidity.

Various fundamental results in distance rigidity have been developed by Euler
[38], Cauchy [18], Alexandrov [5], Dehn [34], Henneberg [44], Laman [58],
Connelly [25], Whiteley [93], and other researchers. Three seminal results are
Cauchy’s Arm Lemma [18], Henneberg’s construction [45], and Laman’s combi-
natorial condition [58]. Cauchy’s Arm Lemma together with the related works by
Liebmann [62], Alexandrov [5], Dehn [34] and Connelly [24], leads to the result
that any convex triangulated polytope is distance rigid, see Fig. 1.2(a). Henneberg’s
construction approach can be efficiently used to generate or trim a distance rigid
framework, see Fig. 1.2(b). Without using the embedding information, a generic
and planar framework’s distance rigidity can be checked by Laman’s combinatorial
condition, see Fig. 1.2(c). However, it is still an open question to find how these
construction approaches or conditions work for a multi-point framework with
angle constraints. Therefore, in this thesis, we will investigate these fundamental
problems when the constraints among agents are given using triple-agent angles.

l

2
3

(b) Henneberg’s construction

i

…...

(a) Cauchy’s Arm Lemma on convex polytope

l

2

3

(c) Lamman’s condition

5

4

| ' | 2 | ' | 3V  

Figure 1.2: Three seminal results in distance rigidity.
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Also note that the property of rigidity depends on its embedding space of the
configuration. The necessary and sufficient condition of a generic framework’s
rigidity is closely related to the dimension d of the underlying embedding space
[9]. For the necessary and sufficient condition of global rigidity, it has been proved
that Hendrickson’s conjecture is true for d = 1, 2 but false for d > 3 [26, 50].
Different from distance rigidity, bearing rigidity has been established by using
bearing constraints which give direction information instead of range information
[97, 101]. When all bearings are described in the coordinate frames with the same
orientation, it has been shown that local bearing rigidity implies global bearing
rigidity in an arbitrary dimension d [101]. Therefore, it is interesting to investigate
the difference between 2D angle rigidity and 3D angle rigidity. Table 1.3 compares
these three types of rigidity theory.

Property
Rigidity

Distance rigidity Bearing rigidity Angle rigidity

Constraints distances bearings angles
Order of constraints

as polynomials
quadratic linear quadratic or linear

Coordinate-dependence no yes no
Global and local different same different

Dimension invariance no yes no

Table 1.3: The comparison of three types of rigidity theory.

1.2 Problem statement

The aim of this thesis is to address the following problems which have not been
adequately investigated in the existing literature.

(i) Angle rigidity: Under which angle constraints, is a multi-point framework
angle rigid or globally angle rigid? For a given multi-point framework with angle
constraints, how to check whether it is angle rigid?

(ii) Formation stabilization: How to design an angle-only formation control law
such that the desired angle rigid formation can be achieved, in which all agents are
allowed to have different orientation of coordinate frames?

(iii) Formation maneuvering: How to design an angle-only formation maneuver-
ing law such that all the agents can move collectively with the desired translating,
rotating and scaling motions?
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1.3 Outline and main contributions of this thesis

The main results of this thesis are split into two parts, which correspond to 2D and
3D cases respectively. Part I focuses on the problems given in Section 1.2 in 2D.
Chapter 2 first answers the problem (i) in 2D. To describe the angle constraints,
a new multi-point framework is defined, called “angularity”. By defining signed
angles, a sufficient condition for global angle rigidity is proposed in Chapter 2
based on the developed vertex addition operations. Later on, a necessary and
sufficient condition is proposed for infinitesimal angle rigidity to check whether a
given angularity is angle rigid.

Chapter 3 deals with the problem (ii) in 2D in which the agents are modeled
by single-integrators or double-integrators. We show that by controlling each
agent to move along the bisector of its measured interior angle, the desired angle
rigid formation can be achieved without requiring the alignment of the agents’
coordinate frames. In this chapter, the formula to calculate the dynamics of angle
errors is explicitly derived.

The problem (iii) for the agents with single-integrator or double-integrator dy-
namics in 2D has been addressed in Chapter 4. By introducing a pair of mismatches
into each desired angle, the collective motions in terms of translation, rotation and
scaling are achieved by the proposed formation maneuvering law.

In Part II, Chapter 5 answers the problem (i) in 3D, in which the main difference
of angle rigidity theory between 2D and 3D has been emphasized and the notion
of angularity has been extended to 3D. Based on the angle constraints, the angle
rigidity matrix in 3D have been defined. In addition, the merging of two 3D angle
rigid angularities has been investigated and special attention has also been paid to
angle rigidity of convex polyhedra. In Chapter 6, the problem (ii) in 3D has been
investigated, in which another formation controller with a simpler form is proposed.
Both the cases of sequential formations and convex polyhedral formations have
been studied.

1.4 List of publications
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[1] L. Chen, M. Cao, and C. Li. Angle rigidity and its usage to stabilize multiagent
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[2] L. Chen, H.G. De Marina, and M. Cao. Maneuvering formations of mobile
agents using designed mismatched angles. To appear in IEEE Transactions on
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control in 2D





Chapter 2

Angle rigidity in 2D

In this chapter, we develop the notion of “angle rigidity” for a multi-point frame-
work, called “angularity”, consisting of a set of nodes embedded in a Euclidean

space and a set of angle constraints among them. Different from bearings or angles
defined in a global frame, the angles we use do not rely on the knowledge of a
global frame and have positive signs in the counterclockwise direction. Here angle
rigidity refers to the property specifying that under proper angle constraints, the
angularity can only translate, rotate or scale as a whole when one or more of its
nodes are perturbed locally. We first demonstrate that this angle rigidity property, in
sharp comparison to bearing rigidity or other reported rigidity related to angles of
frameworks in the literature, is not a global property since an angle rigid angularity
may allow flex ambiguity. We then construct necessary and sufficient conditions for
infinitesimal angle rigidity by checking the rank of an angularity’s rigidity matrix.
We develop a combinatorial necessary condition for infinitesimal minimal angle
rigidity. These results will be used as a theoretical foundation for the formation
control task.

2.1 Introduction

Distance constraints in determining distance rigidity are in general quadratic in
the associated end points’ positions. While a bearing constraint is always linear in
the associated end point’s position, the description of bearings directly depends
on the availability of a global coordinate frame or a coordinate frame in SE(2)

or SE(3) [68, 97]. Different from distance or bearing rigidity, in this chapter we
aim at presenting angle rigidity theory for multi-point frameworks with angle
constraints as either linear or quadratic constraints on the end points’ positions
without relying on a global coordinate frame. Different from the usual definition
for an angle [52, 88], the angle defined in this thesis has signs, for which we take
the counterclockwise direction to be each angle’s positive direction. Angle rigidity
is defined for an angularity which consists of vertices and angle constraints among
them. We show that the planar angle rigidity is a local property because of the
existence of flex ambiguity. To check whether an angularity is angle rigid, angle
rigidity matrix is derived based on the infinitesimally angle rigid motions. Then,
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the angle rigidity of an angularity can be determined by testing the rank of its
angle rigidity matrix. Also, we develop a combinatorial necessary condition to test
the angle rigidity of an angularity. We underline that the Laman’s theorem and
Henneberg’s construction method do not apply directly to angle rigidity, which
makes our results important. Using the defined signed angles, we further propose
the construction methods for angle rigid and globally angle rigid angularities.

2.2 Angularity and its angle rigidity

Graphs have been used dominantly in rigidity theory for multi-point frameworks
under distance constraints since an edge of a graph can be naturally used to denote
the existence of a distance constraint between the two points corresponding to the
vertices associated with this edge. However, when describing angles formed by rays
connecting points, to use edges of a graph becomes cumbersome and even illogical
because an angle constraint always involves three points. For this reason, instead
of using graphs that relate pairs of vertices as the main tool to define rigidity, we
define a new combinatorial structure “angularity” that relates triples of vertices
to develop the theory of angle rigidity. In all the following discussions we confine
ourselves to the plane.

2.2.1 Angularity

We use the vertex set V = {1, 2, · · · , N} to denote the set of indices of the N > 3

points of a framework in the plane. As shown in Fig. 2.1, to describe the signed
angle from the ray j-i to ray j-k, one needs to use the ordered triplet (i, j, k), and
obviously the two angles corresponding to (i, j, k) and (k, j, i) are different, and
in fact are called explementary or conjugate angles. Here, following convention,
the angle ]ijk for each triplet (i, j, k) is measured counterclockwise in the range
[0, 2π). We use A ⊂ V × V × V = {(i, j, k), i, j, k ∈ V, i 6= j 6= k} to denote the
angle set, each element of which is an ordered triplet. We denote the number of
elements |A| of the angle set A by M . Throughout this chapter, we assume that no
pair of triplets in A are explementary to each other. Now consider the embedding
of the vertex set V in the plane R2 through which each vertex i is associated with
a distinct position pi ∈ R2 and let p = [pT

1, · · · , pT
N ]T ∈ R2N . We assume there is

no overlapping points in p, i.e., pi 6= pj for i 6= j and i, j = 1, 2, · · · , N . Then
the combination of the vertex set V, the angle set A and the position vector p is
called an angularity, which we denote by A(V,A, p). In fact, given non-overlapping
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positions pi, pj , pk, the angle ]ijk ∈ [0, 2π) can be uniquely calculated by

]ijk =

{
arccos(zT

jizjk) if z⊥ji · zjk > 0,

2π − arccos(zT
jizjk) otherwise,

(2.1)

where zji =
pi−pj
‖pi−pj‖ , zjk =

pk−pj
‖pk−pj‖ , z

⊥
ji = Q0zji =

ñ
0 −1

1 0

ô
zji is the vector

obtained by rotating zji counterclockwise by π
2 , and · denotes the dot product.

k
j

i

ijk

kji

Figure 2.1: Signed angle used in defining angle rigidity.

2.2.2 Angle rigidity

We first define what we mean by two equivalent or congruent angularities.

Definition 2.1 (Equivalency and congruency). We say two angularities A(V,A, p)
and A′(V,A, p′) with the same V and A are equivalent if

]ijk(pi, pj , pk) = ]ijk(p′i, p
′
j , p
′
k) for all (i, j, k) ∈ A. (2.2)

We say they are congruent if

]ijk(pi, pj , pk) = ]ijk(p′i, p
′
j , p
′
k) for all i, j, k ∈ V. (2.3)

From the equivalent and congruent relationships, it is easy to define global
angle rigidity.

Definition 2.2 (Global angle rigidity). An angularity A(V,A, p) is globally angle
rigid if every angularity that is equivalent to it is also congruent to it.

When such a rigidity property holds only locally, one has angle rigidity.

Definition 2.3 (Angle rigidity). An angularity A(V,A, p) is angle rigid if there exists
an ε > 0 such that every angularity A′(V,A, p′) that is equivalent to it and satisfies
‖p′ − p‖ < ε, is congruent to it.
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Definition 2.3 implies that every configuration which is sufficiently close to p
and satisfies all the angle constraints formed by A, has the same magnitudes of the
angles formed by any three vertices in V as the original configuration at p.

As is clear from Definitions 2.2 and 2.3, global angle rigidity always implies
angle rigidity. A natural question to ask is whether angle rigidity also implies global
angle rigidity. In fact, for bearing rigidity, it has been shown that indeed global
bearing rigidity and bearing rigidity are equivalent [36, 101]. However, this is not
the case for angle rigidity.

Theorem 2.4 (Non-equivalence between angle rigidity and global angle rigidity).
An angle rigid angularity A(V,A, p) is not necessarily globally angle rigid.

We prove this theorem by providing the following example. Fig. 2.2 shows an an-

(1,2 3 2)

Figure 2.2: Flex ambiguity in angle rigid angularity

gularity with V = {1, 2, 3, 4}, and its elements in the setA = {(3, 2, 1), (1, 3, 2), (2, 3, 4),

(1, 4, 2)} take the values

]321 = arccos(
4
√

3− 2

2
√

17− 4
√

3
) ≈ 39.07◦, (2.4)

]132 = arccos(
19− 8

√
3√

25− 12
√

3
√

17− 4
√

3
) ≈ 37.88◦, (2.5)

]234 = 30◦, (2.6)

]142 = 45◦, (2.7)
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and its p is shown as in the coordinates of the vertices. We first show A(V,A, p) is
angle rigid, then show A(V,A, p) is not globally angle rigid.

Now first look at the triangle formed by 1, 2 and 3. Since two of its angles
]321 and ]132 have been constrained, the remaining ]213 is uniquely determined
to be π − ]321 − ]132 no matter how p is locally perturbed. The constraint on
]234 requires 4 must lie in the ray starting from 3 and rotating from the ray 32
counterclockwise by 30◦; at the same time, the constraint on ]142 requires 4 must
lie on the arc passing through 1 and 2 such that the inscribed angle ]142 is 45◦.
No matter how p is locally perturbed there is only one unique position for 4 in the
neighborhood of its current given coordinates because the two intersection points
between the ray and the arc are not in the same local neighborhood. This local
uniqueness implies that this four-vertex angularity is angle rigid (when 4’s position
is uniquely determined, any angle associated with it is also uniquely determined).

Now we show A(V,A, p) is not globally angle rigid. Note that there is the other
intersection point 4′ as shown in Fig. 2.2 satisfying the angle constraints given in
A, which implies that this angularity is not globally angle rigid because A′(V,A, p′)
is equivalent to A(V,A, p), but they are not congruent.

We provide the following further insight to explain this sharp difference between
the angle rigidity that we have defined and the bearing rigidity that has been
reported in the literature. Bearing rigidity as defined in [36, 101] is a global
property because the bearing constraints always represent linear constraints in the
end point’s position (similar to the angle constraint ]234 = 30◦ in the form of the
ray from 3 to 4 in the above example) and two non-collinear rays have at most one
intersection. In contrast, our angle constraints can be either linear constraint in p
when it requires the corresponding vertex to be on a ray or quadratic in p when it
restricts the corresponding vertex to be on an arc passing through other vertices.
The possible nonlinearity in the angle constraints gives rise to potential ambiguity
of the vertices’ positions under the given angle constraints.

Note that the embedding of p in the plane may affect the rigidity of A. Consider
the 3-vertex angularity as embedded in the following three different situations
when its angle set A contains only one element (2, 1, 3). Fig. 2.3(a) shows that 1,

213 0  213  213
3


 

Figure 2.3: Non-generic p changes rigidity
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2, 3 are not collinear, and then this angularity is in general not rigid since if we
perturb point 1 in an arc with 2 and 3 as the arc’s ending points, ]213 can be the
same while angles ]123 and ]132 change. In Fig. 2.3(b), 1, 2, 3 are collinear and
1 is on one side; in this case if the angle constraint happens to be ]213 = 0, then
one can check the angularity becomes angle rigid, although it is not globally rigid
since the angle of ]132 changes by 180 degree if we swap 2 and 3. In Fig. 2.3(c),
1, 2, 3 are collinear and 1 is in the middle, when the constraint becomes ]213 = π,
one can check that the angularity is not only rigid, but also globally rigid (swapping
of 2 and 3 in this case does not change the resulting angles ]132,]123 being zero).
So the angularity A({1, 2, 3}, {(2, 1, 3)}, p) is generically not rigid, but rarely rigid
depending on p. To clearly describe this relationship between angle rigidity and p,
like in standard rigidity theory, we define what we mean by generic positions.

Definition 2.5 (Generic position). The position vector p is said to be generic if
its components are algebraically independent [28]. Then we say an angularity is
generically (resp. globally) angle rigid if its p is generic and it is (resp. globally)
angle rigid.

An example for non-generic positions is the case when three points are collinearly
positioned. Note that angle rigidity for A(V,A, p) with generic p represents the
common property of the combination (V,A) from a topological perspective, which
is also referred to as generic angle rigidity. For convenience, we also say an angular-
ity is generic if its p is generic. Now we provide some sufficient conditions for an
angularity to be globally angle rigid. Towards this end, we need to introduce some
concepts and operations. For two angularities A(V,A, p) and A′(V ′,A′, p′), we say
A is a sub-angularity of A′ if V ⊂ V ′, A ⊂ A′ and p is the corresponding sub-vector
of p′. We first clarify that for the smallest angularities, namely those contains only
three vertices, there is no gap between global and local angle rigidity assuming
generic positions.

Lemma 2.6. For a 3-vertex angularity, if it is generically angle rigid, it is also
generically globally angle rigid.

Proof. For this 3-vertex angularity A(V,A, p), since it is angle rigid and p is generic,
A must contain at least two elements, or said differently, two of the interior angles
of the triangle formed by the three vertices are constrained. Again since p is
generic, the sum of the three interior angles in this triangle has to be π, and thus
the magnitude of this triangle’s remaining interior angle is uniquely determined
too. Therefore, A is generically globally angle rigid.

Now, we define linear and quadratic constraints.

Definition 2.7 (Linear and quadratic constraints). For a given angularity A(V,A, p),
a new vertex i positioned at pi is linearly constrained with respect to A if there is
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j ∈ V such that pi 6= pj and pi is constrained to be on a ray starting from pj; we also
say i is quadratically constrained with respect to A if there are j, k ∈ V such that
{pi, pj , pk} is generic and pi is constrained to be on an arc with pj and pk being the
arc’s two ending points. Correspondingly, we call i’s constraint in the former case a
linear constraint and in the latter case a quadratic constraint with respect to A.

As shown in Fig. 2.2, ]234 = 30◦ is a linear constraint for the end vertex 4
since p4 is constrained to be on a ray starting from p3 and rotating from the ray 32
counterclockwise by 30◦, while ]142 = 45◦ is a quadratic constraint for 4 because
p4 is constrained to be on the major arcı12.

Similar to Henneberg’s construction in distance rigidity, in the following we de-
fine two types of vertex addition operations to demonstrate how a bigger angularity
might grow from a smaller one, which are shown in Fig. 2.4.

l

2 3

(a) Case 1 in Type-I vertex addition

i

…...

j1

k1 j2

k2

l

2 3

(d) Case 1 in Type-II vertex addition

i…...

j1

k1

k2

i'

l

2 3

(b) Case 2 in Type-I vertex addition

i

…...

j1

k1

l

2 3

(e) Case 2 in Type-II vertex addition

i

…...

j1

k1

j2

k2

i'

l

2 3

(c) Case 3 in Type-I vertex addition

i
…...

j1

k1

k2

j2

Figure 2.4: Type-I vertex addition and Type-II vertex addition
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Definition 2.8 (Type-I vertex addition). For a given angularity A(V,A, p), we say
the angularity A′ with the augmented vertex set {V ∪ {i}} is obtained from A through
a Type-I vertex addition if the new vertex i’s constraints with respect to A contain at
least one of the following:

Case 1) two linear constraints, not aligned, associated with two distinct vertices in
V (one vertex for one constraint and the other vertex for the other constraint);

Case 2) one linear constraint and one quadratic constraint associated with two
distinct vertices in V (one for the former and both for the latter);

Case 3) two quadratic constraints associated with three vertices in V (two for each
and one is shared by both), and the positions of i and these three vertices are generic.

Definition 2.9 (Type-II vertex addition). For a given angularity A(V,A, p), we say
the angularity A′ with the augmented vertex set {V ∪ {i}} is obtained from A through
a Type-II vertex addition if the new vertex i’s constraints with respect to A contain at
least one of the following:

Case 1) one linear constraint and one quadratic constraint associated with three
distinct vertices in V (one for the former and the other two for the latter);

Case 2) two different quadratic constraints associated with four vertices in V (two
for the former and the other two for the latter), and the positions of i and these four
vertices are generic.

Remark 2.10. Although the types of constraints are similar between Case 2 of
Definition 2.8 and Case 1 of Definition 2.9, the numbers of vertices involved in
Case 2 of Definition 2.8 and Case 1 of Definition 2.9 differ in these two types of
vertex addition operations. Similarly, those in Case 3 of Definition 2.8 and Case 2
of Definition 2.9 are also different.

Remark 2.11. Note that in these two vertex addition operations, the involved
vertices are required to be in generic positions. However, the overall angle rigid
angularity A′ constructed through a sequence of vertex addition operations is not
necessarily generic, and an example is given in Fig. 2.5.

l

2
3

(a) Point 4 is unique when 
{1,3,4} are generic

(b) Point 4 is not unique when 
{1,3,4} are not generic

(c) {2,3,5} are not generic but  
the angularity is rigid

4 l

3

4'

4''

2

l

2
3

4

5

Figure 2.5: The overall angularity is not necessarily generic

Now we are ready to present a sufficient condition for global angle rigidity
using Type-I vertex addition.
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Proposition 2.12 (Sufficient condition for global angle rigidity). An angularity is
globally angle rigid if it can be obtained through a sequence of Type-I vertex additions
from a generically angle rigid 3-vertex angularity.

Proof. According to Lemma 2.6, the generically angle rigid 3-vertex angularity is
globally angle rigid. Consider the three conditions in the Type-I vertex addition. If
1) applies, then the position pi of the newly added vertex i is unique since two rays,
not aligned, starting from two different points may intersect only at one point; if 2)
applies, pi is again unique since a ray starting from the end point of an arc may
intersect with the arc at most at one other point; and if 3) applies, pi is unique
since two arcs sharing one end point on different circles can only intersect at most
at one other point. Therefore, pi is always globally uniquely determined. After pi
is globally uniquely determined, all the angles associated with pi are also globally
uniquely determined. Because each Type-I vertex addition operation can guarantee
a unique adding point pi, we conclude that the obtained angularity after a sequence
of Type-I vertex additions is globally angle rigid.

In comparison, Type-II vertex additions can only guarantee angle rigidity, but
not global angle rigidity.

Proposition 2.13 (Sufficient condition for angle rigidity). An angularity is angle
rigid if it can be obtained through a sequence of Type-II vertex additions from a
generically angle rigid 3-vertex angularity.

The proof can be easily constructed following similar arguments as those for
Proposition 2.12. The only difference is that pi now may have two solutions and is
only unique locally.

After having presented our results on angularity and generic angle rigidity, in
the following section, we discuss infinitesimal angle rigidity, which relates closely
to infinitesimal motion.

2.3 Infinitesimal angle rigidity

Analogous to distance rigidity, infinitesimal angle rigidity can be characterized by
the kernel of a properly defined rigidity matrix. Towards this end, we first introduce
the following angle function. For each angularity A(V,A, p), we define the angle
function fA(p) : R2N → RM by

fA(p) := [f1, · · · , fM ]T, (2.8)

where fm : R6 → [0, 2π), m = 1, · · · ,M , is the mapping from the position vector
[pT
i , p

T
j , p

T
k]T of the mth element (i, j, k) in A to the signed angle ]ijk ∈ [0, 2π).

Using this angle function, one can define A’s angle rigidity matrix.
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2.3.1 Angle rigidity matrix

We consider an arbitrary element (i, j, k) in A and denote the corresponding angle
constraint by ]ijk(pi, pj , pk) = β ∈ [0, 2π), or in shorthand ]ijk = β. From the
definition of the dot product, one has

cosβ =
(pi − pj)T

‖pi − pj‖
(pk − pj)
‖pk − pj‖

= zT
jizjk, (2.9)

where ‖·‖ denotes the Euclidean vector norm and we have used cosβ = cos(2π−β)

according to (2.1). Differentiating both sides of (2.9) with respect to time leads to

(− sinβ)β̇ = żT
jizjk + zT

jiżjk

= [
Pzji
lji

(ṗi − ṗj)]Tzjk + zT
ji

Pzjk
ljk

(ṗk − ṗj), (2.10)

where ljk = ‖pj − pk‖, Pzji = I2 − zjizT
ji, I2 denotes the 2× 2 identity matrix, and

we have used the fact that for x ∈ R2, x 6= 0, d
dt (

x
‖x‖ ) =

Px/‖x‖
‖x‖ ẋ. By rearranging

(2.10), one obtains

dβ
dt

=
∂β

∂pi
ṗi +

∂β

∂pj
ṗj +

∂β

∂pk
ṗk

= Nkjiṗi − (Nkji +Nijk)ṗj +Nijkṗk, (2.11)

where Nkji = − z
T
jkPzji
lji sin β ∈ R1×2, Nijk = − zT

jiPzjk
ljk sin β ∈ R1×2, and we have assumed

sinβ 6= 0, i.e., no collinearity among pi, pj , pk. For each (i, j, k) in A we obtain an
equation in the form of (2.11), and then one can write such M equations into the
matrix form

dfA(p)

dt
=
∂fA(p)

∂p
ṗ = Ra(p)ṗ, (2.12)

where Ra(p) ∈ RM×2N is called the angle rigidity matrix, whose rows are indexed
by the elements of A and columns the coordinates of the vertices:

Ra(p) =



· · · Vertex i · · · Vertex j · · · Vertex k · · ·
Angle 1 · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
]ijk 0 Nkji 0 −Nkji −Nijk 0 Nijk 0

· · · · · · · · · · · · · · · · · · · · · · · ·
Angle M · · · · · · · · · · · · · · · · · · · · ·


(2.13)
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For an angularity, its angle preservation motions satisfy ḟA = Ra(p)ṗ = 0 which
include translation, rotation and scaling. One may rightfully expect that such
motions are captured by the null space of the angle rigidity matrix, which always
contains the following four linearly independent vectors

q1 = 1N ⊗
ñ

1

0

ô
, q2 = 1N ⊗

ñ
0

1

ô
, (2.14)

q3 =
î
(Q0p1)T, (Q0p2)T, · · · , (Q0pN )T

óT
, (2.15)

q4 =
î
(κp1)T, (κp2)T, · · · , (κpN )T

óT
, (2.16)

where κ ∈ R is a nonzero scaling factor, ⊗ represents Kronecker product and 1N
denotes the N × 1 column vector of all ones. Note that q1 and q2 correspond to
translation, q3 rotation, and q4 scaling. We state this fact as a lemma.

Lemma 2.14 (Rank of angle rigidity matrix). For an angle rigidity matrix Ra(p), it
always holds that Span{q1, q2, q3, q4} ⊆ Null(Ra(p)) and correspondingly Rank(Ra(p))

6 2N − 4.

Proof. Because each row sum of Ra(p) equals zero, one has Ra(p)q1 = 0 and
Ra(p)q2 = 0. Taking an arbitrary row ]ijk in Ra(p) as an example, one has the
corresponding row in Ra(p)q3

NkjiQ0(pi − pj) +NijkQ0(pk − pj)

=
zT
jkPzjiQ0zji + zT

jiPzjkQ0zjk

− sinβ

=
zT
jkQ0zji + zT

jiQ0zjk

− sinβ
= 0, (2.17)

where we have used the fact that QT
0 = −Q0 and zT

jiQ0zji = 0. Similarly, for
Ra(p)q4, one has

κNkji(pi − pj) + κNijk(pk − pj) = κ
zT
jkPzjizji + zT

jiPzjkzjk

− sinβ
= 0, (2.18)

where we have used the fact that Pzjizji = 0. Therefore, Span{q1, q2, q3, q4} ⊆
Null(Ra(p)).

Since p has no overlapping elements, one has that q3, q4 are linearly independent
to q1 and q2. Because qT

1q2 = 0 and qT
3q4 = 0, one has that q1, q2, q3, q4 are linearly

independent.

Obviously the row rank of the angle rigidity matrix, or equivalently its row
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linear dependency, is a critical property of an angularity. We describe this property
by using the notion of “independent” angles.

Definition 2.15 (Independent angles). For an angularity A(V,A, p), we say its
angles in fA(p) are independent if its angle rigidity matrix Ra(p) has full row rank.

Since rank is a generic property of a matrix, one may wonder whether it is
possible to disregard p of A and define generic angle rigidity only using (V,A).
This is indeed doable as what we will show in the following subsection. Note that
2N − 4 is the maximum rank that Ra(p) can have. When p is generic, the exact
realization of p is not important for (V,A), and when checking the angle rigidity
matrix’s rank, one can replace p by a random generic realization.

Using the notion of infinitesimal motion, checking the rank of the rigidity matrix
can also enable us to check “infinitesimal” angle rigidity.

2.3.2 Infinitesimal angle rigidity

To consider infinitesimal motion, suppose that each pi,∀i ∈ V of A(V,A, p) is
on a differentiable smooth path. We say the whole path p(t) is generated by an
infinitesimally angle rigid motion of A if on the path fA(p) remains constant, i.e.,
ḟA = Ra(p)ṗ ≡ 0. We say such an infinitesimally angle rigid motion p(t) is trivial if
it can be given by [23]

pi(t) = κ(t)Q(t)pi(t0) +W(t),∀i ∈ V, t > t0, (2.19)

where κ(t) 6= 0 is a scalar scaling factor,Q(t) ∈ R2×2 is a rotation matrix,W(t) ∈ R2

is a translation vector, and κ(t),Q(t),W(t) are all differentiable smooth functions.
Since all pi(t),∀i ∈ V, share the same κ(t),Q(t),W(t), it follows

p(t) = {IN ⊗ [κ(t)Q(t)]}p(t0) + 1N ⊗W(t), t > t0. (2.20)

Now we are ready to define infinitesimal angle rigidity.

Definition 2.16 (Infinitesimal angle rigidity). An angularity A(V,A, p) is infinites-
imally angle rigid if all its continuous infinitesimally angle rigid motion p(t) are
trivial.

In fact, a motion satisfying (2.20) is always an infinitesimally angle rigid motion
because the combination of translation, rotation and scaling preserves all the angle
constraints. However, the converse does not necessarily hold, e.g., non-trivial
infinitesimally angle rigid motion exists when only point 1 moves along the line 12
in Fig. 2.3(b). We formalize these remarks in the following theorem.
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Theorem 2.17 (Sufficient and necessary condition for infinitesimal angle rigidity).
An angularity A(V,A, p) is infinitesimally angle rigid if and only if the rank of its
angle rigidity matrix Ra(p) is 2N − 4.

Proof. In view of the definition, A is infinitesimally angle rigid if and only if all its
infinitesimally angle rigid motions are trivial. That is to say, these infinitesimally
angle rigid motions p(t), t ∈ [t0, t1] maintaining the angle constraints are exactly
the combination of translation, rotation, and scaling with respect to the initial
configuration p(t0), which are precisely captured by the four linearly independent
vectors q1, q2, q3, and q4, which in turn is equivalent to the fact that the rigidity
matrix’s null space is precisely the span of {q1, q2, q3, q4}. The conclusion then
follows from the fact that such a specification of the null space holds if and only if
the rank of the rigidity matrix reaches its maximum 2N − 4.

Note that this theorem implies that A(V,A, p) is infinitesimally angle rigid if and
only if there are 2N − 4 independent angles in fA(p). We want to further remark
that no matter what p is if one of the following three combinatorial structures
appears, then the angles are always dependent.
(1) A cycle formed by the triplets in A. For example, A = {(i, j, k), (j, k,m),

(k,m, n), (m,n, l), (n, l, i), (l, i, j)}, see Fig. 2.6(a).
(2) Angles around a vertex. For example, A = {(i,m, j), (j,m, k), (k,m, i)}, see
Fig. 2.6(b).
(3) A nonempty subset A′ ⊂ A such that the number N ′ of the involved vertices in
A′ satisfies |A′| > 2N ′ − 4. For example, A = {(i,m, j), (m, j, i), (i, k, j), (i, j, k),

(k,m, j), (n, i,m), (n,m, i)} and A′ = {(i,m, j), (m, j, i), (i, k, j), (i, j, k), (k,m, j)},
and thus N ′ = 4, |A′| = 5 in Fig. 2.6(c).

Figure 2.6: Types of dependent triplet elements

If A contains one of the above three combinatorial structures, we say the triplet
elements in A are dependent; otherwise, they are independent. One can further
quantify the number of triplet elements such that the angularity is infinitesimally
angle rigid.

Theorem 2.18 (Combinatoral necessary condition for infinitesimal angle rigidity).
For an angularity A(V,A, p), if it is infinitesimally angle rigid, then it has 2N − 4

independent triplet elements in A.
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Proof. From Theorem 2.17, we know A has 2N − 4 independent angles in fA(p).
First, we prove that dependent triplet elements in A imply dependent angles in
fA(p). Note that NT

kji =
(ljk cos]ijk)zji−(pk−pj)

ljiljk sin]ijk = − (pi−pj)⊥
l2ij

. Then, by taking the

dependent triplet elements in Fig. 2.6(a) as an example, it can be verified thatî
1 1 1 1 1 1

ó
Ra(p) = 0, (2.21)

which implies the row dependence in Ra(p) and dependent angles in fA(p). The
cases in Fig. 2.6 (b), (c) can be similarly obtained. Now, one has that dependent
triplet elements in A⇒ dependent angles in fA(p), which implies that independent
angles in fA(p)⇒ independent triplet elements in A. So its angle set A has 2N − 4

independent triplet elements.

Now we show the relationship between angle rigidity and infinitesimal angle
rigidity.

Theorem 2.19 (Relationship between infinitsimal angle rigidity and angle rigidity).
If an angularity A(V,A, p) is infinitesimally angle rigid, then it is angle rigid.

Proof. From Definition 2.16, we know that if A(V,A, p) is infinitesimally angle rigid,
then all the continuous infinitesimally angle rigid motion p(t) are trivial, which
are the combination of translation, rotation and scaling of A. Consider another
angularity A(V,A, p′) with ε > 0 and ‖p′−p‖ < ε, which is equivalent to A(V,A, p).
Then, the continuous motion from p to p′ maintaining fA(p) are the combination of
translation, rotation and scaling of A(V,A, p), which are angle-preserving motions,
i.e., (2.3) holds. Therefore, A(V,A, p′) is congruent to A(V,A, p), which implies
that A(V,A, p) is angle rigid.

For infinitesimally angle rigid angularities, we now discuss when its number of
angles in A becomes the minimum. Towards this end, we need to clarify what we
mean by minimal angle rigidity.

Definition 2.20 (Minimal angle rigidity). An angularity A(V,A, p) is minimally
angle rigid if it is angle rigid and fails to remain so after removing any element in
A, and is infinitesimally minimally angle rigid if it is infinitesimally angle rigid and
minimally angle rigid.

Since Rank[Ra(p)] 6 2N − 4, the minimum number of angle constraints in
fA(p) to maintain infinitesimal angle rigidity is exactly 2N − 4. So we immediately
have the following lemma.

Lemma 2.21. An angularity A(V,A, p) is infinitesimally minimally angle rigid if
and only if it is infinitesimally angle rigid and |A| = 2N − 4.
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For an infinitesimally minimally distance rigid framework, there must exist a
vertex associated with fewer than 4 distance constraints [87, 92]; otherwise, the
total number of distance constraints will be at least 2N and thus greater than the
minimum number 2N − 3. This property is critical for the success of the Henneberg
construction method in order to generate an arbitrary infinitesimally minimally
distance rigid framework [58, 87]. However, for an infinitesimally minimally angle
rigid angularity, the situation is more challenging, which in fact prevents drawing
similar conclusions as the Henneberg construction does for distance rigidity. To be
more precise, we have the following lemma.

Lemma 2.22. For an infinitesimally minimally angle rigid angularity A(V,A, p) with
|A| = 2N − 4, it must have a vertex involved in more than one but fewer than 6 angle
constraints.

Proof. If every vertex is involved in at least 6 angle constraints, then the total
number of angle constraints is at least |A| > 6N

3 = 2N , which contradicts Lemma
2.21. Then for that vertex, which has fewer than 6 angle constraints, if it is involved
in only one angle constraint, then it is not rigid with respect to the rest of the
angularity, which contradicts the property of angle rigidity. So there must be at
least one vertex that is involved in 2, 3, 4 or 5 angle constraints.

In the following example, we show an infinitesimally minimally angle rigid
angularity in Fig. 2.7, whose vertices are all involved in 5 angle constraints. Note
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Figure 2.7: All vertices are involved in 5 angle constraints.
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that if an angularity A(V,A, p) is infinitesimally minimally angle rigid, then |A| =
2N − 4, and more importantly, the triplet elements in A need to be independent;
this also implies that those situations listed in Fig. 2.6, namely cyclic angles, angles
around a vertex, and overly constrained angle subsets, cannot show up in A, which
is a necessary combinatorial condition for infinitesimal minimal angle rigidity. In
the following section, we show how to apply the angle rigidity theory we have
developed for multi-agent formation control.

2.4 Concluding remarks

In this chapter, we have proposed the angle rigidity theory in 2D. The notion of
angularity has been defined to describe the multi-point framework with angle con-
straints. The established angle rigidity has shown to be a local property because of
the existence of flex ambiguity. The infinitesimal angle rigidity has been developed
based on the trivial motions of the angularity. A sufficient and necessary condition
for infinitesimal angle rigidity has been investigated by checking the rank of the
angle rigidity matrix.



Chapter 3

Formation stabilization in 2D

This chapter shows how to achieve an angle rigid formation in 2D for a group
of mobile agents. Many formation control algorithms have been designed

by using the measurement of relative positions [8, 52, 63] or aligned bearings
[89, 101], or using the information acquired through communication [52, 96].
Note that in [52] a gradient-based formation stabilization control law is designed to
achieve an infinitesimally angle rigid formation, which utilizes the measurements
of relative positions, and the received information through communication of the
neighbors’ angle errors. In this chapter we demonstrate how to stabilize a multi-
agent planar formation using only local angle measurements with the help of the
angle rigidity theory that we have developed in the last chapter.

3.1 Introduction

Multi-agent formation control has been extensively studied due to its wide ap-
plications in, e.g., robotic transportation [30] and search and rescue of mobile
robots [51]. Sensors used in formation stabilization mainly include GPS receivers,
radars and cameras, which can acquire absolute positions, inter-agent relative
positions, or angles/bearings [7, 71]. In particular, angle measurements are be-
coming cheaper, more reliable and accessible than absolute or relative position
measurements [71, 103]. Angle information can be easily obtained from a camera
or a sensor array in their local coordinate frames [30]. Using 2D angle rigid-
ity developed in Chapter 2, we show in this chapter how to stabilize a planar
formation by using only local angle measurements. Different from the designed
bearing-based formation control algorithms in [99, 101] where all agents’ local
coordinate systems are required to be aligned, the proposed angle-only formation
control algorithm does not require the alignment of agents’ coordinate frames
since the angle described in different planar coordinate frames remains the same.
Note that in [52], planar angle rigidity is established by specifying the cosine of
an angle formed by two jointed edges as the angle constraint. The formation
stabilization algorithm constructed in [52] requires that each agent can sense the
real-time relative positions with respect to its neighbors. Different from [52], in
this chapter the desired formation shape is realized using only angle measurements.
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In addition, other rigidity notions with mixed distance and angle constraints have
been investigated in [56, 57, 73], under which the formation control algorithms
are also designed for agents by using the measurements of relative positions.

3.2 Angle-only formation control for single-integrators

For an agent i moving in the plane, in this subsection we consider its dynamics are
modeled by single-integrators

ṗi = ui, i = 1, · · · , N, (3.1)

where pi ∈ R2 denotes agent i’s position, ui ∈ R2 is the control input to be designed,
and N is the number of agents in the group. Agent i can only measure angles; to
be more specific, it can only measure the angle φij ∈ [0, 2π) with respect to another
agent j evaluated counterclockwise from the X-axis of its own local coordinate
frame of choice that is fixed to the ground.

To avoid confusion in the stability analysis, we first describe all variables
in a global coordinate frame and in the end we demonstrate that this global
coordinate frame is only needed for analysis purposes and not needed in the
control implementation. Now we define the bearing zij ∈ R2 to be the unit vector
pointing from agent i to a non-coincident j, i.e.,

zij =
pj − pi
‖pj − pi‖

=

ñ
cosφij
sinφij

ô
, (3.2)

where φij determines uniquely zij when pi 6= pj . Therefore, when φij can be
measured, zij is known. In the triangle 4ijk shown in Fig. 3.1, the interior angle
αi can be computed by

αi = ]kij = arccos(zT
ijzik), (3.3)

using bearings zij and zik. Note that the X-axes of agents i, j and k do not need
to align, and the angle αi to be controlled is not the measured angle φij , but the
relative measured angle αi = [(φij − φik) mod 2π].

We construct the desired planar formation through a sequence of Type-I vertex
additions (Case 3) from a generically angle rigid 3-vertex angularity, which is
globally angle rigid according to Proposition 2.12. First, in an N -agent formation,
we label the agents by 1 to N . Then agents 1, 2, 3 aim at forming the first triangular
shape, and each of agents 4 to N aims at achieving two desired angles formed
with other three agents, see Fig. 3.2. Therefore, the construction process can be
summarized as follows:
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Figure 3.1: The angle measurements.
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Figure 3.2: Constructing desired formation by using Case 3 of Type-I vertex addition.

Step 1: One constructs the first triangular formation 4123 using three angle
constraints: ]123,]231,]312.

Step 2: One adds agent 4 under the two angle constraints: ]142 and ]243.
...
Step k − 2: One adds agent k under the two angle constraints: ]j1kj2 and

]j2kj3, j1, j2, j3 ∈ {1, ..., k − 1}.
...
Step N − 2: One adds agent N under the two angle constraints: ]i1Ni2 and

]i2Ni3, for some distinct i1, i2, i3 ∈ {1, ..., N − 1}.
To guarantee the uniqueness of each agent’s position in these steps under the

given two angle constraints, the following assumption is needed.

Assumption 3.1. In the aforementioned Step k, k = 2, · · · , N − 2 with the cor-
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responding newly added agent i and its angle constraints ]j1ij2 and ]j2ij3,
we assume that {pi, pj1 , pj2 , pj3} is generic and no collinearity occurs, namely
]j1ij2 6= 0,]j1ij2 6= π and ]j2ij3 6= 0,]j2ij3 6= π.

Remark 3.2. According to Proposition 2.13 in Chapter 2, when {pi, pj1 , pj2 , pj3}
is generic, j1, i, j2 are not collinear and j2, i, j3 are not collinear as stipulated in
Assumption 3.1, the position of each newly added agent i, i = 2, · · · , N is locally
uniquely determined by ]j1ij2 and ]j2ij3, which implies the angle rigidity of the
constructed formation.

Based on the above construction process, the aim is to achieve the desired angle
rigid formation specified as follows. For agents 1 to 3

limt→∞ e1(t) = limt→∞(α312(t)− α∗312) = 0, (3.4)

limt→∞ e2(t) = limt→∞(α123(t)− α∗123) = 0, (3.5)

limt→∞ e3(t) = limt→∞(α231(t)− α∗231) = 0, (3.6)

where α∗jik ∈ (0, π), i, j, k ∈ {1, 2, 3} denote agent i’s desired angle formed with
agents j, k. For agents 4 to N

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗j1ij2) = 0, (3.7)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗j2ij3) = 0, (3.8)

where i = 4, · · · , N , j1 < i, j2 < i, j3 < i, and α∗j1ij2 ∈ (0, π), α∗j2ij3 ∈ (0, π) denote
agent i’s two desired angles formed with agents j1, j2, j3 ∈ {1, 2, ..., i − 1}, j1 6=
j2 6= j3. Therefore, the angle-only formation control problem to be solved in this
section is formally described below.

Problem 1 Given feasible desired angles fA(p) = {α∗312, α
∗
123, α

∗
231, α

∗
241, α

∗
342, ..

., α∗i1Ni2 , α
∗
i2Ni3

}, design control law ui for each agent i by only using angle mea-
surements φij with respect to agent i’s neighboring agent j to achieve (3.4)-(3.8).

Remark 3.3. One may also choose other cases in Type-I and Type-II vertex addition
operations to construct the desired formations. However, the constructed forma-
tions are not globally angle rigid or the realization depends on the knowledge of
the neighbors’ angle error, which are the drawbacks of the other cases when they
are applied to formation control. For example, in Case 1 of Type-II vertex addition
(Fig. 2.4(d)), Proposition 2.13 shows that the constructed formation is only angle
rigid which may cause ambiguity; moreover, the angle αk1j1i cannot be obtained
by agent i’s local angle measurements.
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3.2.1 Triangular formation control for agents 1 to 3

To achieve the desired angles for agents 1 to 3, we design their formation control
laws

ui =− (αi − α∗i )(zi(i+1) + zi(i−1)), (3.9)

where i ∈ {1, 2, 3}, zi(i+1) = z31 when i = 3 and zi(i−1) = z13 when i = 1, and αi
represents α(i−1)i(i+1) for conciseness.

To obtain the convergence of the angle errors, we first analyze the dynamics
of the angle errors ei(t), i = 1, 2, 3. Different from [11], we use the dot product of
two bearings to obtain the angle error dynamics. According to (2.10), agent 1’s
angle dynamics can be obtained by

α̇1 = −[
Pz13

l13 sinα1
(ṗ3 − ṗ1)]Tz12 − zT

13

Pz12
l12 sinα1

(ṗ2 − ṗ1). (3.10)

By following the calculation in Appendix A, one has the first three agents’ angle
dynamics

ėf = [α̇1 α̇2 α̇3]T = F (ef )ef

=

−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

α1 − α∗1
α2 − α∗2
α3 − α∗3

 , (3.11)

where ef =
î
α1 − α∗1 α2 − α∗2 α3 − α∗3

óT
, gi = (sinαi)(1/li(i+1)+1/li(i−1)), fij =

(sinαj)/lij .
To guarantee that the triangular formation system under the control law (3.9) is

well defined, we first prove that no collinearity and collision will take place under
(3.11) if the formation is not collinear initially.

Lemma 3.4 (No collinearity). For the three-agent formation, if the initial formation
is not collinear, it will not become collinear for t > 0 under the angle dynamics (3.11).

Proof. Consider the manifoldMa = {(α1, α2, α3)|α1 + α2 + α3 = π, 0 < α1 < π,

0 < α2 < π, and 0 < α3 < π} which is an open set. To show Ma is positively
invariant, we show that for any (α1, α2, α3) ∈Ma, it is impossible for αi to escape
Ma. Consider the boundary states αi(t) = π− ε1 with ε1 = 0+, αi+1(t) = ε2 = 0+,
αi−1(t) = ε3 = 0+, ε1 = ε2 + ε3.

According to (3.11), one has

ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1. (3.12)
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Since 0 < α∗i < π and α∗i is bounded away from 0 and π, one has

giei = gi(αi − α∗i ) > 0, (3.13)

fi(i+1)ei+1 = fi(i+1)(αi+1 − α∗i+1) < 0, (3.14)

fi(i−1)ei−1 = fi(i−1)(αi−1 − α∗i−1) < 0, (3.15)

which implies that ėi(t) < 0. Thus when αi(t) is close to π, αi(t) will decrease,
which implies thatMa is positively invariant, i.e. trajectories starting fromMa

remains inMa.

Lemma 3.5 (No collision). For the three-agent formation, if the initial angles αi 6=
0, i = 1, 2, 3, no collision will take place for t > 0 under the formation control law
(3.9).

Proof. Suppose on the contrary that collision may happen between agents i and j
at t = t1. Then one of the following two cases shown in Fig. 3.3 will take place.

i j

k

j

k

i

Case 1 Case 2

Figure 3.3: Collision cases.

For the first case, ṗi(t1) = −γṗj(t1) where γ is a positive constant. Note that
the moving direction of agent i under the control law (3.9) is always the bisector
of the interior angle αi. According to Lemma 3.4, no collinearity will happen for
t > 0 which implies that zik(t) 6= −zjk(t) for t > 0. According to the control law
(3.9), ṗi(t1) = −γṗj(t1) requires zik(t1) = −zjk(t1) which is impossible for t > 0.

For the second case, since agents i and j move towards the inside of the triangle,
it follows from the control law (3.9) that π

2 − ε1 = αi(t
−
1 ) < α∗i and π

2 − ε2 =

αj(t
−
1 ) < α∗j , where ε1 = 0+ and ε2 = 0+. Then, α∗i +α∗j+α∗k = π > π+α∗k−ε1−ε2,

which contradicts the fact that α∗k is bounded away from 0.

Now, we give the main result for the convergence of the triangular formation.

Theorem 3.6 (Stability of the first three agents). For the triangular formation
under the control law (3.9), if αi(0) 6= 0 and the initial angle errors ei(0), i = 1, 2, 3
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are sufficiently small, the angle errors ei and agents’ control input ui(t) converge
exponentially to zero.

Proof. From Lemmas 3.4 and 3.5, no collinearity and collision will take place since
sinαi 6= 0, lij 6= 0,∀i, j = 1, 2, 3, which guarantees that the closed-loop system
under the control law (3.9) is well defined. Since e1+e2+e3 =

∑3
i=1 αi−

∑3
i=1 α

∗
i ≡

0, the angle dynamics (3.11) can be reduced to

ės =

ñ
ė1

ė2

ô
=

ñ
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

ô ñ
e1

e2

ô
= Fs(es)es. (3.16)

Let U2 ∈ R2 denote a neighborhood of the origin {e1 = e2 = 0}, in which we
investigate the local stability of (3.16). Linearizing (3.16) around the origin, we
obtain

ės = L1(α∗)es, (3.17)

where L1(α∗) = Fs(es)|es=0. Then, one has

tr(L1(α∗)) = −g∗1 − f∗13 − g∗2 − f∗23 < 0, (3.18)

det(L1(α∗)) =(g∗1 + f∗13)(g∗2 + f∗23)− (f∗21 − f∗23)(f∗12 − f∗13)

>g∗1f
∗
23 + g∗2f

∗
13 + f∗21f

∗
13 + f∗12f

∗
23 > 0, (3.19)

where we have used the fact that g∗1g
∗
2 > f∗21f

∗
12, g∗i = gi|es=0, f∗ij = fij |es=0, and

tr() and det() denote the trace and determinant of a square matrix, respectively.
According to (3.18) and (3.19), one has that L1(α∗) is Hurwitz. According to
the Lyapunov Theorem [54, Theorem 4.6], there always exists positive definite
matrices P1 ∈ R2×2 and Q1 ∈ R2×2 such that −Q1 = P1L1(α∗)+LT

1(α∗)P1. Design
the Lyapunov function candidate as

V1 = eT
sP1es. (3.20)

Taking the time-derivative of V1 yields

V̇1 = −eT
sQ1es 6 −

λmin(Q1)

λmax(P1)
V1, (3.21)

which implies that V1(t) 6 V1(0)e
− λmin(Q1)

λmax(P1)
t. Since P1 > 0, one has

e2
1 + e2

2 = ‖es‖2 6
V1

λmin(P1)
6

V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (3.22)
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Also, one has

e2
3 = e2

1 + e2
2 + 2e1e2 6 2(e2

1 + e2
2) 6

2V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t

which implies that ei under the dynamics (3.11) is exponentially stable when the
initial states lie in U2. According to (3.9), ‖ui‖ 6 2|ei| also converge to zero at an
exponential rate.

Remark 3.7. With non-collinear initial positions, the first three agents’ angle dynam-
ics ės = Fs(es)es are globally stable, as a consequence of the Poincare-Bendixson
theorem [54, Lemma 2.1] employed in [11, Theorem 6]. The difference between
the angle dynamics ės = Fs(es)es and the angle dynamics given in [11] is that
sinαi shown in gi, fij in (3.11) is replaced by sin αi

2 in [11]. However, for a
triangular formation, it holds that sin αi

2 > 0 and sinαi > 0 for all αi ∈ (0, π).
Therefore, one can similarly obtain the almost global stability of ės = Fs(es)es by
following [11, Theorem 6].

After proving that the first three agents converge to the desired formation, we
now look at the remaining agents.

3.2.2 Adding agents 4 to N in sequence

In this subsection, we consider that agent i, i = 4, ..., N , are added to the formation
through the Type-I vertex addition operation with two desired angles. For agents
i = 4, ..., N , the control algorithm is designed to be

ui = −(αj1ij2 − α∗j1ij2)(zij1 + zij2)− (αj2ij3 − α∗j2ij3)(zij2 + zij3), (3.23)

where α∗j1ij2 ∈ (0, π) and α∗j2ij3 ∈ (0, π), j1 < i, j2 < i, j3 < i, j1 6= j2 6= j3 are the
two desired angles. Different from the first three agents, the bearing measurement
topology from agents 4 to N becomes directed, which is also similarly employed in
[88].

To prove the stability from agents 4 to N , we use induction. Towards this end,
we need to first prove that the 4-agent formation of 1 to 4 converges to the desired
shape exponentially. For the 4-agent formation, the control algorithm (3.23) can
be written as

u4 = −(α241 − α∗241)(z41 + z42)− (α342 − α∗342)(z42 + z43). (3.24)

Then, one has the following result.

Lemma 3.8 (Stability of agent 4). Suppose ei(0), i = 1, 2, 3 are sufficiently small and
the sub-formation of 1, 2, 3 is governed by (3.9). Under the control algorithm (3.24)
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for agent 4, if the initial distances l4i(0) are sufficiently bounded away from zero, the
initial angle errors e41(0) and e42(0) are sufficiently small and α∗341 = α∗241 + α∗342,
sinα∗124 > sinα∗412, sinα∗423 > sinα∗234, then e41(t) and e42(t) converge to zero
exponentially fast.

Proof. To analyze the stability of the angle errors e41 and e42 under the control
algorithm (3.24), we first calculate the error dynamics of e41 and e42. According to
the calculation in Appendix B, one has the following angle dynamics

ė4 = [α̇241 α̇342]T = F4(e4)e4 +W (e4)es

=

ñ
j11 j12

j21 j22

ô ñ
e41

e42

ô
+

ñ
w11 w12

w21 w22

ô ñ
e1

e2

ô
, (3.25)

where j11 = − sinα241

l41
− sinα241

l42
, j22 = − sinα342

l43
− sinα342

l42
, j12 = − (sinα241)+(sinα341)

l41
+

sinα342

l42
, j21 = − (sinα342)+(sinα341)

l43
+ sinα241

l42
, w11 =

zT42Pz41 (z12+z13)

l41 sinα241
,

w12 =
zT41Pz42 (z21+z23)

l42 sinα241
, w21 = − z

T
42Pz43 (z31+z32)

l43 sinα342
, w22 =

zT43Pz42 (z21+z23)

l42 sinα342
− z

T
42Pz43 (z31+z32)

l43 sinα342
.

Now, by conducting linearization towards (3.25) in a small neighborhood of
the origin {e1 = 0, e2 = 0, e41 = 0, e42 = 0}, one has

ė4 = L2(α∗)e4 + W̄es, (3.26)

where L2(α∗) = F4(e4)|es=0,e4=0 and W̄ = W (e4)|es=0,e4=0. Then, one has

tr(L2(α∗)) = (j11 + j22)|es=0,e4=0 < 0, (3.27)

det(L2(α∗)) = (j11j22 − j12j21)|es=0,e4=0

=
l∗41(sinα∗241 sinα∗342 + sin2 α∗342 + sinα∗342 sinα∗341)

l∗41l
∗
42l
∗
43

+
l∗43(sinα∗241 sinα∗342 + sin2 α∗241 + sinα∗241 sinα∗341)

l∗42l
∗
41l
∗
43

− l∗42(sinα∗241 sinα∗341 + sinα∗341 sinα∗342 + sin2 α∗341)

l∗41l
∗
42l
∗
43

.

where l∗ij is the distance between agents i and j in the desired formation. Therefore,
if det(L2(α∗)) > 0, one has that L2(α∗) is Hurwitz. By using the law of sines,
sinα∗124 > sinα∗412 and sinα∗423 > sinα∗234 imply l∗41 > l∗42 and l∗43 > l∗42, respectively.
Then, one can check that det(L2(α∗)) > 0 if l∗41 > l∗42 and l∗43 > l∗42 hold because
on the one hand

l∗43 sinα∗241 sinα∗341 > l∗42 sinα∗241 sinα∗341, (3.28)



36 3. Formation stabilization in 2D

l∗41 sinα∗341 sinα∗342 > l∗42 sinα∗341 sinα∗342, (3.29)

and on the other hand

sin2 α∗341 =[sinα∗241 cosα∗342 + cosα∗241 sinα∗342]2

= sin2 α∗241 cos2 α∗342 + cos2 α∗241 sin2 α∗342

+ 2 sinα∗241 cosα∗342 cosα∗241 sinα∗342, (3.30)

and l∗41 sin2 α∗342 > l∗42 sin2 α∗342 cos2 α∗241, l∗43 sin2 α∗241 > l∗42 sin2 α∗241 cos2 α∗342 and

l∗41 sinα∗241 sinα∗342 + l∗43 sinα∗241 sinα∗342 > 2l∗42 sinα∗241 sinα∗342

> 2l∗42 sinα∗241 cosα∗342 cosα∗241 sinα∗342.

By combining (3.17) and (3.26) together, one has the overall linearized 4-agent
angle error dynamics

˙̄e4 =

ñ
ės
ė4

ô
= L4(α∗)ē4 =

ñ
L1(α∗) 0

W̄ L2(α∗)

ô ñ
es
e4

ô
(3.31)

When L1(α∗) and L2(α∗) are Hurwitz, one has that L4(α∗) is also Hurwitz. When
L4(α∗) is Hurwitz, for an arbitrary positive definite matrix Q2 ∈ R4×4, there always
exists positive definite matrix P2 ∈ R4×4 such that −Q2 = P2L4(α∗) + LT

4(α∗)P2.
Design the Lyapunov function candidate as

V2 = ēT
4P2ē4. (3.32)

Taking the time-derivative of V2 along (3.25) yields

V̇2 = −ēT
4Q2ē4 6 −λmin(Q2)‖ē4‖2 6 −

λmin(Q2)

λmax(P2)
V2. (3.33)

Then, one has

‖e4‖2 6 ‖ē4‖2 6
V2

λmin(P2)
6

V2(0)

λmin(P2)
e
−(

λmin(Q2)

λmax(P2)
)t
, (3.34)

which implies that the agent 4’s angle error e4 also converges to zero at an expo-
nential rate. To guarantee that ‖W (e4)‖ is bounded and control law (3.24) is well
defined, the collision between agent 4 and agents 1 to 3 should be avoided. Take
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agent 1 as an example, one has

‖p4(t)− p1(t)‖ = ‖p4(0) +

∫ t

0

u4(s)ds− p1(0)−
∫ t

0

u1(s)ds‖

>‖p4(0)− p1(0)‖ −
∫ t

0

‖u1(s)− u4(s)‖ds

>l14(0)− 2

∫ t

0

(|e1(s)|+ |e41(s)|+ |e42(s)|)ds.

Since l14(0) is sufficiently bounded away from zero, there always exists a finite
time T such that in the time interval [0, T ) there is no collision between agent 4
and agent 1. Then, according to (3.22) and (3.34), one has

‖p4(T )− p1(T )‖ > l14(0)− 2

∫ T

0

(|e1(s)|+ |e41(s)|+ |e42(s)|)ds

>l14(0)− 4[
λmax(P1)

λmin(Q1)

 
V1(0)

λmin(P1)
(1− e−

λmin(Q1)

2λmax(P1)
T

)

+
λmax(P2)

λmin(Q2)

 
2V2(0)

λmin(P2)
(1− e−(

λmin(Q2)

2λmax(P2)
)T

)], (3.35)

where we have used the fact that |e41| + |e42| 6
√

2(e2
41 + e2

42) =
√

2‖e4‖. Since
V1(0) and V2(0) are sufficiently small and l14(0) is sufficiently bounded away

from zero, one has ‖p4(T ) − p1(T )‖ > 0 since l14(0) > 4[λmax(P1)
λmin(Q1)

√
V1(0)

λmin(P1) +

λmax(P2)
λmin(Q2)

√
2V2(0)
λmin(P2) ]. Then, we extend T to infinity. Because e−

λmin(Q1)

2λmax(P1)
t
> 0 and

e
−(

λmin(Q2)

2λmax(P2)
)t
> 0,∀t > 0, one has that l41(t) = ‖p4(t) − p1(t)‖ > 0 for t > 0. On

the other hand, since the initial angle errors e41(0) and e42(0) are sufficiently small
and e1(t), e2(t), e41(t) and e42(t) converge at an exponential speed, α241(t) and
α342(t) will be bounded away from 0 and π. Therefore, ‖W (e4)‖ is bounded and
(3.25) is well defined. The proof for 4-agent formation is completed.

Now, we present the main result for agents 4 to N .

Theorem 3.9 (Stability of all the agents). Consider a formation of N > 3 agents,
each of which is governed by (3.1). Suppose ei(0), i = 1, 2, 3 are sufficiently small
and the sub-formation of 1, 2, 3 is governed by (3.9). For agent i, 4 6 i 6 N ,
if the initial distances lij1(0), lij2(0), lij3(0) are sufficiently bounded away from
zero, the initial angle errors ei1(0) and ei2(0) are sufficiently small and α∗j3ij1 =

α∗j2ij1 + α∗j3ij2 , sinα∗j1j2i > sinα∗ij1j2 , sinα∗ij2j3 > sinα∗j2j3i, then under (3.23), the
formation achieves its desired shape exponentially.

Proof. From Lemma 3.8, 4-agent formation achieves the desired shape exponen-
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tially. Suppose for a 4 < k < N , the k-agent formation converges to the desired
shape exponentially. We need to prove that for (k+ 1)-agent formation, the relative
angle errors e(k+1)1 = αj1(k+1)j2 − α∗j1(k+1)j2

and e(k+1)2 = αj2(k+1)j3 − α∗j2(k+1)j3

converges to zero exponentially. Similar to the proof from (3.24) to (3.33), one has
that the angle errors e(k+1)1 and e(k+1)2 exponentially converge to zero. Therefore,
the control algorithm (3.23) can locally stabilize agent k + 1, i.e., the (k + 1)-agent
formation converge to the desired shape exponentially. So, from induction, N -agent
formation converges to the desired formation shape exponentially. The proof for
Theorem 3.9 is completed.

Remark 3.10. Note that the control laws (3.9) and (3.23) can be described by a
unified form

ui = −
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (3.36)

whereA = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 4, 2), (2, 4, 3), · · · , (j1, k, j2), (j2, k, j3), · · · ,
(i1, N, i2), (i2, N, i3)}, j1 < k, j2 < k, j3 < k, j1 6= j2 6= j3. Therefore, the unified
control algorithm (3.36) can locally stabilize the angle rigid formation constructed
through a sequence of Type-I vertex additions (Case 3) from a generically angle
rigid 3-vertex angularity. Because we aim at obtaining local stability for multi-agent
formations in Section IV, we only consider the range of the desired angles belonging
to (0, π) in (3.4)-(3.8), and the case of αi(0) ∈ (π, 2π), α∗i ∈ (π, 2π) can be similarly
obtained. However, to achieve a general infinitesimally and minimally angle rigid
formation, one can use the gradient-based control law

ṗ = u = −
Å
∂V3

∂p

ã>
= −R>a (p)(α− α∗), (3.37)

where V3 = 0.5(α−α∗)>(α−α∗), p, u, α are the stack vectors of pi, ui, αjik, respec-
tively. It follows that V̇3 = −(α− α∗)>Ra(p)R>a (p)(α− α∗). Because Ra(p)R>a (p)

is positive definite when p is in a small neighborhood of the desired formation, one
has the local convergence of (α− α∗).

Remark 3.11. Although each agent’s position in (3.1) is described in the global
coordinate system, it is not used in the control algorithm (3.36). The control
algorithm (3.36) can be realized in each agent’s local coordinate system since
(3.36) can be equivalently written in agent i’s local coordinate frame

Rbgui = −
∑

(j,i,k)∈A
(αjik − α∗jik)Rbg(zij + zik), (3.38)

where Rbg ∈ SO(2) is the rotation matrix from the global coordinate frame to
agent i’s local coordinate frame, Rbgui is the controller input in agent i’s local
coordinate frame, and Rbgzij , R

b
gzik are the local bearings measured in agent i’s

local coordinate frame. Since (αjik − α∗jik) is a scalar and αjik is the same under
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different coordinate frames, (3.38) and (3.36) are equivalent.

Now we have studied the formation for single-integrator formations, in the
following section, we look at double-integrator formations.

3.3 Angle-only formation control for double-integrators

Consider N mobile agents moving in the plane. Agents are labeled from 1 to N
and V = {1, 2, · · · , N} is the index set. The dynamics of each agent i, i ∈ V are
modeled by

ṗi = vi,

v̇i = ui, (3.39)

where pi ∈ R2 denotes the position of agent i with respect to a fixed global
coordinate frame, vi ∈ R2 is its velocity in the same frame, and ui ∈ R2 is its
control input to be determined. In this section, we discuss formation stabilization
using identical and distinct control gains, respectively.

3.3.1 The case of identical control gains

We first consider the situation when all agents have the same velocity feedback
gain. Specifically, we design the formation stabilization law as

ui = −ksvi −
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (3.40)

where the gain ks > 0 is identical for all the agents. To obtain the convergence of
angle errors under (3.40), we need to analyze their dynamics. First, we assume
that lij(0), lik(0) and sinαjik(0),∀(j, i, k) ∈ A are bounded away from zero where
lij(t) = ‖pi(t) − pj(t)‖. According to (3.40), when the initial velocity vi(0) is
bounded and lij(0) 6= 0, lik(0) 6= 0, the control input ui(0) will be bounded.
Therefore, ∃T1 > 0 such that for t ∈ [0, T1), lij(t), lik(t) and sinαjik(t),∀(j, i, k) ∈
A are bounded away from zero. We now analyze the angle error dynamics for t ∈
[0, T1) and the extension of T1 to infinity will be discussed later. Since d(cosαjik)

dt =

−(sinαjik)α̇jik, one has

α̇jik =

Å
d(cosαjik)

dt

ã
/(− sinαjik). (3.41)
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Also, one has

d(cosαjik)

dt
=

d(zTijzik)

dt
= żTijzik + zTij żik (3.42)

=zTik
Pzij
lij

(vj − vi) + zTij
Pzik
lik

(vk − vi),

where Pzij = I2 − zijzTij , I2 ∈ R2×2 is the 2× 2 identity matrix. Substituting (3.42)
into (3.41) yields

α̇jik =− zTik
Pzij

lij sinαjik
vj − zTij

Pzik
lik sinαjik

vk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vi. (3.43)

Let us choose the following error variables as the system state

X = [e1, e2, e41, e42, · · · , eN1, eN2, v
T
1 , · · · , vTN ]T ∈ R4N−4 (3.44)

which consists of 2N − 4 independent angle errors and all agents’ velocities. Then,
from (3.40) and (3.43), one can check that the closed-loop dynamics satisfy

Ẋ =

ñ
0(2N−4)×(2N−4) R(X)

B(X) −ks ⊗ I2N

ô
X = D1(X)X, (3.45)

where R(X) ∈ R(2N−4)×2N , B(X) ∈ R2N×(2N−4) and

R(X) =


N213 +N312 −N312 −N213 0 · · · 0

−N321 N321 +N123 −N123 0 · · · 0

· · · · · · · · · · · ·
. . . · · ·

−Nj1ij2 Nj1ij2 +Nj2ij1 −Nj2ij1 · · · · · · · · ·

 (3.46)

with Njik = zTij
Pzik

lik sinαjik
∈ R1×2, j, i, k ∈ V, and

B(X) =


−z12 − z13 0 0 0 ... 0

0 −z21 − z23 0 0 ... 0

z31 + z32 z31 + z32 0 0 ... 0

0 0 −z41 − z42 −z42 − z43 ... 0

... ... ... ... ... ...

 . (3.47)
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Now, we linearize (3.45) around the desired equilibrium X = 0 to study its local
stability. By linearizing (3.45) around X = 0 for t ∈ [0, T1), one has

Ẋ = [
∂[D1(X)X]

∂X
|X=0]X = [D1(X)|X=0]X

=

ñ
0(2N−4)×(2N−4) R(X)|X=0

B(X)|X=0 −ks ⊗ I2N

ô
X = D∗1X. (3.48)

For notation conciseness in the following analysis, a quantity with the superscript ∗
means that it is evaluated at X = 0. We then show that system (3.48) is stable by
checking that D∗1 ∈ R4N−4 is Hurwitz through examining its eigenvalues. Consider
the characteristic polynomial of D∗1

|λI4N−4 −D∗1 | =
∣∣∣∣λI2N−4 −R∗
−B∗ (λ+ ks)⊗ I2N

∣∣∣∣ , (3.49)

where λ ∈ C is an eigenvalue of D∗1 . According to the Schur complement
theorem[46], one has

|λI4N−4 −D∗1 |

=(λ+ ks)
2Ndet[λI2N−4 −

R∗B∗

λ+ ks
]

=(λ+ ks)
2Ndet[

λ(λ+ ks)I2N−4 −R∗B∗

λ+ ks
]

=(λ+ ks)
4det[λ(λ+ ks)I2N−4 −R∗B∗]. (3.50)

Hence, −ks is a stable eigenvalue of geometric multiplicity at least 4. To find the
other eigenvalues, we now analyze the structure of the matrix R∗B∗. For the first
three-agent case, one has the corresponding sub-matrix

[RB](1:2,1:2) = F̃1 =

ñ
a11 a12

a21 a22

ô
, (3.51)

where [RB](i:j,k:m) is the sub-matrix selecting rows from i to j and columns from k

to m from the matrix RB. Therefore, it follows that

a11 = (N213 +N312)(−z12 − z13)−N213(z31 + z32),

a12 = N312(z21 + z23)−N213(z31 + z32),

a21 = N321(z12 + z13)−N123(z31 + z32),
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a22 = (N321 +N123)(−z21 − z23)−N123(z31 + z32).

Since Pzijzij = 0 and N312z12 = 0, one obtains

F̃1 =

ñ
N213(z21 + z23)−N312z13 (N312 +N213)z23

(N321 +N123)z13 N123(z13 + z12)−N321z23

ô
. (3.52)

Substituting the definition of Njik given after (3.46) into a11 yields

a11 =
zT12Pz13(z21 + z23)

l13 sinα1
− zT13Pz12z13

l12 sinα1

=
pT12Pz13

l12l13 sinα1
(
p21

l21
+
p13 − p12

l23
)− pT13Pz12p13

l12l213 sinα1

=
1

sinα1
(−p

T
12Pz13p12

l12l13l23
− pT12Pz13p12

l212l13
− pT13Pz12p13

l12l213

)

= − sinα1

l12l13l23
(l212 + l12l23 + l13l23), (3.53)

where pij = pj − pi, i, j ∈ V. By using the law of sines sinα1

l23
= sinα2

l13
= sinα3

l21
, one

has
a11 = −(

sinα1

l12
+

sinα1

l13
+

sinα3

l13
) = −(g1 + f13), (3.54)

where we define fij =
sinαj
lij

, gi = (sinαi)(
1

li(i+1)
+ 1

li(i−1)
), i, j ∈ {1, 2, 3}, and

(i − 1) ∈ Ni, (i + 1) ∈ Ni. Similarly, by using simplification and the law of sines,
one also has

a22 = − sinα2

l12l13l23
(l212 + l12l13 + l23l13) = −(g2 + f23). (3.55)

Then, we calculate

a12 = (
pT13Pz12

l12l13 sinα1
+

pT12Pz13
l12l13 sinα1

)
p21 + p13

l23

=
l213 − l212 −

pT13p12p
T
12p13

l212
+

pT12p13p
T
13p12

l213

l12l13l23 sinα1

=
(l213 − l212) sinα1

l12l13l23
. (3.56)

By using the law of sines sinα1

l23
= sinα2

l13
= sinα3

l21
, one has

a12 = f12 − f13. (3.57)
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Similarly, one has

a21 =
(l223 − l221) sinα2

l12l13l23
= f21 − f23. (3.58)

Note that the matrix F̃1 is equal to Fs defined in Subsection 3.2. Then, writing
down all the other elements in matrix RB, one finds that RB has a block lower
triangular structure. Consider that for agent i, i > 4, there are two desired angles
α∗j1ij2 and α∗j2ij3 where j1, j2, j3 < i are the three neighboring agents whom the
agent i will measure the directions with respect to. Then, one has

[RB](2i−3:2i−4,2i−3:2i−4) = F̃i = (3.59)ñ
−(Nj1ij2 +Nj2ij1)(zij1 + zij2) −(Nj1ij2 +Nj2ij1)(zij2 + zij3)

−(Nj2ij3 +Nj3ij2)(zij1 + zij2) −(Nj2ij3 +Nj3ij2)(zij2 + zij3)

ô
.

By using similar simplification as for the first three agents, one also has

F̃i =

ñ
ω̄1 r̄12

r̄21 ω̄2

ô
= (3.60)[

− sinαj1ij2( 1
lij1

+ 1
lij2

)
sinαj2ij3
lij2

− sinαj1ij2+sinαj1ij3
lij1

sinαj1ij2
lij2

− sinαj2ij3+sinαj1ij3
lij3

− sinαj2ij3( 1
lij3

+ 1
lij2

)

]
.

Now, we find that F̃i, 4 6 i 6 N in (3.60) is equal to Fi defined in Subsection 3.2.
By checking other matrix elements, one obtains that the matrix R(X)B(X) in the
closed-loop error dynamics (3.45) of double-integrators is the same as the system
matrix A(ea) in the angle dynamics ėa = A(ea)ea of single-integrators (ea denotes
the column vector consisting of all the 2N − 4 independent angle errors), i.e.,

R(X)B(X) = A(ea) =


F̃1 0 0 · · · 0

∗∗ F̃4 0 · · · 0

∗∗ ∗∗ F̃5 · · · 0

· · · · · · · · ·
. . .

...
∗∗ ∗∗ ∗∗ ∗∗ F̃N

 , (3.61)

which is an important and convenient fact for the later analysis. We summarize
this using the following remark about matrices F̃i, i = 1, 4, ..., N .

Remark 3.12. Under the angle set A and control law (3.40), R(X)B(X) in the
closed-loop error dynamics (3.45) of double-integrators is the same as the system
matrix A(ea) in the angle dynamics ėa = A(ea)ea of single-integrators. Therefore,
according to [22, Theorems 7 and 8], the matrix F̃ ∗1 is always Hurwitz and F̃ ∗i ,∀4 6
i 6 N are Hurwitz if α∗j1ij3 = α∗j1ij2 + α∗j2ij3 , sinα∗j1j2i > sinα∗ij1j2 and sinα∗ij2j3 >

sinα∗j2j3i.
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In the case of single-integrators, A(ea)|ea=0 being Hurwitz is sufficient to make
the angle-based formation system ea = A(ea)ea locally and exponentially stable.
However, this is not sufficient for double-integrators due to (3.50). Note that in
the case of double-integrators, according to (3.50) and (3.61), the necessary and
sufficient condition to make (3.48) exponentially stable is that the solutions of

det[λ(λ+ ks)I2 − F̃ ∗i ] = 0, i = 1, 4, 5, · · · , N, (3.62)

have negative real parts. Before presenting the main result, we provide an example
to illustrate that improper selection of gain ks will make a stable angle-controlled
single-integrator system become unstable in angle-controlled double-integrator
system.

Example 3.1. The desired angles: α∗123 = π/2, α∗312 = π/4, α∗231 = π/4, α∗142 =

arctan(1.2), α∗243 = arctan(0.3), α∗251 = arctan(3/
√

10), α∗452 = arctan(1.2). The
initial states: p1(0) = [0.5, 0.1]T , p2(0) = [0.1, 1.2]T , p3(0) = [−1.2, 0.2]T , p4(0) =

[0.1, 2.0]T , p5(0) = [−1.4, 1.2]T , ṗ1(0) = [−0.1,−0.2]T , ṗ2(0) = [0.2,−0.1]T , ṗ3(0) =

[−0.1,−0.1]T , ṗ4(0) = [−0.1, 0.4]T , ṗ5(0) = [0.1, 0.1]T .
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i=452
i=251

Figure 3.4: Evolution of angle errors for single-integrator dynamics with Hurwitz matrices
F̃ ∗
i , i = 1, 4, 5.

This example illustrates that the proper selection of velocity damping gain ks
in angle-controlled double-integrator system is important. Now, we present the
remaining results.

Lemma 3.13. The dynamical system (3.48) is asymptotically stable if and only if

k2
sRe(λij) + (Im(λij))

2 < 0, j = 1, 2 (3.63)
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Figure 3.5: Evolution of angle errors for double-integrator dynamics with gain ks = 0.2.

holds for ∀i = 1, 4, · · · , N , where λi1 and λi2 are the two conjugated eigenvalues of
the matrix F̃ ∗i , and Re() and Im() denote the real and imaginary parts of a complex
number, respectively.

Proof. Note that one can always find a nonsingular matrix P̄ ∈ C2×2 such that

F̃ ∗i = P̄

ñ
λi1 ∗∗
0 λi2

ô
P̄−1, (3.64)

where ∗∗ represents an element which does not affect the following analysis. Then,
(3.62) can be written into

det[λ(λ+ ks)I2 − F̃ ∗i ]

= det{P̄
ñ
λ(λ+ ks)− λi1 ∗∗

0 λ(λ+ ks)− λi2

ô
P̄−1}

= [λ(λ+ ks)− λi1][λ(λ+ ks)− λi2], (3.65)

which implies that the stability of (3.48) depends on the solutions of λ(λ+ ks)−
λij = 0, i = 1, 4, · · · , N, j = 1, 2. Note that λij can be a complex number. According
to [66, Theorem 40.1], (3.63) is the necessary and sufficient condition to guarantee
that the two solutions of λ(λ+ ks)− λij = 0 have negative real parts.

Now, we further explore the condition (3.63) by calculating λi1 and λi2. Ac-
cording to Lemma 1, we have that A(ea)|ea=0 = R∗B∗ is Hurwitz which implies
that Re(λij) < 0,∀i = 1, 4, · · · , N, j = 1, 2. According to Lemma 3.13, when
Im(λij) = 0, λ(λ+ ks)− λij = 0 will always have two solutions with negative real
parts.
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• For the case of Im(λi1) = Im(λi2) = 0 in the first three agents, we require for
F̃ ∗1 in (3.51) that

∆∗1 = (a∗11 − a∗22)2 + 4a∗12a
∗
21 (3.66)

= (g∗1 + f∗13 − g∗2 − f∗23)2 + 4(f∗12 − f∗13)(f∗21 − f∗23) > 0.

By using law of sines sinα∗1
l∗23

=
sinα∗2
l∗13

=
sinα∗3
l∗12

and simplification, we can conclude
that (3.66) can be written as

(
sinα∗1
sinα∗2

+
sinα∗1
sinα∗3

+
sinα∗3
sinα∗2

− sinα∗2
sinα∗1

− sinα∗2
sinα∗3

− sinα∗3
sinα∗1

)2

+ 4(
sinα∗2
sinα∗3

− sinα∗3
sinα∗2

)(
sinα∗1
sinα∗3

− sinα∗3
sinα∗1

) > 0. (3.67)

Similarly for agents 4 to N , to guarantee Im(λij) = 0, i = 4, · · · , N, j = 1, 2 for F̃i
defined in (3.60), one has

∆∗i = (ω̄∗1 − ω̄∗2)2 + 4r̄∗12r̄
∗
21 > 0. (3.68)

Multiplying l∗2ij2 at both sides of (3.68) and simplification yields

[(
sinα∗j2j1i
sinα∗ij2j1

+ 1) sinα∗j1ij2 − (
sinα∗ij3j2
sinα∗ij2j3

+ 1) sinα∗j2ij3 ]2

+ 4(
(sinα∗j1ij2 + sinα∗j1ij3) sinα∗j2j1i

sinα∗ij2j1
− sinα∗j2ij3)

× (
(sinα∗j2ij3 + sinα∗j1ij3) sinα∗ij3j2

sinα∗ij2j3
− sinα∗j1ij2) > 0. (3.69)

• For the case of Im(λij) 6= 0, since Im(λi1) = −Im(λi2) and Re(λi1) = Re(λi2) < 0,
the stability condition (3.63) can be written as

∆∗i < 0 and 4k2
sRe(λij)−∆∗i < 0, (3.70)

where i = 1, 4, · · · , N , j = 1, 2, and Re(λij) =
a∗11+a∗22

2 when i = 1 and Re(λij) =
ω̄∗1+ω̄∗2

2 when i > 4. By combining the above two cases, one obtains the conditions
such that all the eigenvalues of D∗1 have negative real parts, which implies the
stability of the closed-loop system. In summary, we has the following result.

Theorem 3.14. Consider that N agents of double-integrator dynamics (3.39) are
governed by (3.40) with the identical gain ks, the initial errors X(0) are sufficiently
small and the initial distances are bounded away from zero. The formation stabi-
lization defined in (3.4)-(3.8) can be locally achieved if and only if (3.63) holds
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for ∀i = 1, 4, · · · , N . Moreover, (3.63) holds if and only if for each i = 1, 4, · · · , N ,
∆∗i > 0 or (3.70) holds.

Proof. Note that sinceD∗1 is Hurwitz, X = 0 is the only equilibrium of (3.48), which
is exponentially stable. We now analyze the evolution of the distance and angle
errors among agents to guarantee that the nonlinear closed-loop dynamics (3.45)
are well-defined because the collinearity case sinαjik = 0, (j, i, k) ∈ A and collision
case lij = 0, lik = 0 will make (3.41) and (3.42) invalid, respectively. For t ∈ [0, T1),
since D∗1 is Hurwitz, for an arbitrary positive definite matrix Q1 ∈ R(4N−4)×(4N−4),
there always exists a unique positive definite matrix P1 ∈ R(4N−4)×(4N−4) such that
D∗T1 P1 + P1D

∗
1 = −Q1. Now, for system (3.48), we design the Lyapunov function

candidate as
V1 = XTP1X. (3.71)

Taking the time-derivative of (3.71) yields

V̇1 = −XTQ1X 6 −
λmin(Q1)

λmax(P1)
V1. (3.72)

Then, it follows that ‖X(t)‖2 6 V1(t)
λmin(P1) 6

V1(0)
λmin(P1)e

− λmin(Q1)

λmax(P1)
t. Since ‖X(t)‖2 =

e2
1 + e2

2 + e2
41 + · · ·+ e2

N1 + e2
N2 +

∑N
i=1 ‖vi‖2, one has that for (j, i, k) ∈ A,

|αjik(t)− α∗jik| 6 ‖X(t)‖ 6
 

V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
, (3.73)

Similarly, for the velocity of agent i, one has

‖vi(t)‖ 6 ‖X(t)‖ 6
 

V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
. (3.74)

Note that (3.73) implies

α∗jik −
 

V1(0)

λmin(P1)
6 αjik(t) 6 α∗jik +

 
V1(0)

λmin(P1)
. (3.75)

According to (3.74), one has

lij(t) = lij(0) +

∫ t

0

l̇ij(τ)dτ = lij(0) +

∫ t

0

zTij(vj − vi)dτ

> lij(0)−
∫ t

0

(‖vj‖+ ‖vi‖)dτ

> lij(0)− 4

 
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(1− e−

λmin(Q1)

2λmax(P1)
t
). (3.76)
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Therefore, if

α∗jik >

 
V1(0)

λmin(P1)
and α∗jik +

 
V1(0)

λmin(P1)
< π, (3.77)

then no collinearity happens among j, i, k. If

lij(0) > 4

 
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
, (3.78)

no collision will happen between agents i and j. Because α∗jik is bounded away
from zero and π, and lij(0) is bounded away from zero, and X(0), V1(0) are suf-
ficiently small, (3.77) and (3.78) holds for t ∈ [0, T1). Assume that there exists a
collision or collinearity in [T1,∞) and denote the first time that it happens by T−2 .
Then, one has the following two cases.
• A collision between i and j happens at T−2 . Since no collision and collinearity hap-
pens in [0, T−2 ), the closed-loop system is well-defined in [0, T−2 ). Following the cal-

culations in (3.71)-(3.76), one has that lij(T−2 ) > lij(0)− 4
√

V1(0)
λmin(P1)

λmax(P1)
λmin(Q1) > 0

which is bounded away from zero. This implies a contradiction with the assumption
that collision happens at T−2 . Thus, no collision between agents i and j happens at
T−2 .
•A collinearity among j, i, k happens at T−2 . Then, one has that αjik(T−2 ) will
approach zero or π. Since no collinearity and collision happens in [0, T−2 ), using
(3.75), one has that αjik(T−2 ) is bounded away from zero and π which implies a
contradiction. Therefore, no collinearity will occur among j, i, k at T−2 .

Since none of the above two cases is possible, no collision and collinearity will
happen in [0,∞) given that the initial formation is sufficiently close to the desired
formation.

Remark 3.15. According to the parameters given in Example 1, we can check that
F̃ ∗i , i = 1, 4, 5 are Hurwitz which make the single-integrator dynamics stable in Fig.
3.4. However, ∆∗i < 0 but 4k2

sRe(λij)−∆∗i > 0, i = 4, 5, j = 1, 2, i.e., (3.70) does
not hold for i = 4, 5, which make the double-integrator dynamics unstable in Fig.
3.5.

3.3.2 The case of distinct control gains

The designed formation stabilization law (3.40) in the previous section requires
all agents to have the identical velocity feedback gains ks. To adapt for different
actuator characteristics, e.g., energy consumption or speed constraints in different
agents, in this subsection we design the formation stabilization law which allows
each agent to have distinct control gain ki, namely the control input for agent
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i, i = 1, · · · , N is given by

ui = −kivi −
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (3.79)

where ki > 0 and ki can be different from kj . By choosing the same system state
variable X in (3.44), one has the close-loop dynamics of X

Ẋ =

ñ
0(2N−4)×(2N−4) R(X)

B(X) −diag{ki} ⊗ I2

ô
X = D2(X)X, (3.80)

where diag{ki} = diag{k1, · · · , kN} ∈ RN×N . To prove the local stability of (3.80),
we consider the characteristic polynomial of D∗2 again, that is

|λI4N−4 −D∗2 | =
∣∣∣∣λI2N−4 −R∗
−B∗ diag{λ+ ki} ⊗ I2

∣∣∣∣ , (3.81)

where diag{λ+ ki} = diag{λ+ k1, · · · , λ+ kN}. According to Schur complement
theorem, one has

|λI4N−4 −D∗2 | =
N∏
i=1

{(λ+ ki)det[λI2N−4 −R∗diag{(λ+ ki)
−1} ⊗ I2B∗]}.

By multiplying matrix B∗ with diag{(λ+ ki)
−1} ⊗ I2 then with matrix R∗, it can

be observed that

R∗diag{(λ+ ki)
−1} ⊗ I2B∗ =



F̄ ∗1 0 0 · · · 0

∗∗ F̃∗4
λ+k4

0 · · · 0

∗∗ ∗∗ F̃∗5
λ+k5

· · · 0

· · · · · · · · ·
. . .

...

∗∗ ∗∗ ∗∗ ∗∗ F̃∗N
λ+kN

 , (3.82)

where F̄ ∗1 = F̄1(X)|X=0, F̄1(X) =

ñ
ã11 ã12

ã21 ã22

ô
and
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ã11 =
(N213 +N312)(−z12 − z13)

λ+ k1
+
N213(z31 + z32)

λ+ k3
,

ã12 =
N312(z21 + z23)

λ+ k2
+
N213(z31 + z32)

λ+ k3
,

ã21 =
(N321 +N123)(−z21 − z23)

λ+ k2
+
N123(z31 + z32)

λ+ k3
,

ã22 =
(N321 +N123)(−z21 − z23)

λ+ k2
+
N123(z31 + z32)

λ+ k3
.

Then, it follows that

|λI4N−4 −D∗2 | ={
3∏
i=1

(λ+ ki)}det(λI2 − F̄ ∗1 ){
N∏
i=4

det[λ(λ+ ki)I2 − F̃ ∗i ]}. (3.83)

Note that the stability condition of {
∏N
i=4 det[λ(λ + ki)I2 − F̄ ∗i ]} in (3.83) is the

same as (3.62), which implies that there is no difference for the stability condition
when agents 4 to N have identical or distinct velocity damping gains. Then, the
stability condition for agents 4 to N can be described as

k2
i Re(λij) + (Im(λij))

2 < 0, i = 4, · · · , N, j = 1, 2, (3.84)

which holds when (3.69) or (3.70) holds for i = 4, · · · , N . But this is not the case
for the first three agents. For the first three agents, the corresponding element in

{
∏3
i=1(λ+ ki)}(λI2 − F̄ ∗1 ) =

ñ
ā∗11 ā∗12

ā∗21 ā∗22

ô
becomes that

ā∗11 =[λ(λ+ k1)(λ+ k2)(λ+ k3)

− (N213 +N312)(−z12 − z13)(λ+ k2)(λ+ k3)

−N213(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗22 =[λ(λ+ k1)(λ+ k2)(λ+ k3)

− (N321 +N123)(−z21 − z23)(λ+ k1)(λ+ k3)

−N123(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗12 =− [N312(z21 + z23)(λ+ k1)(λ+ k3)

−N213(z31 + z32)(λ+ k1)(λ+ k2)]|X=0,

ā∗21 =− [(N321 +N123)(−z21 − z23)(λ+ k1)(λ+ k3)

−N123(z31 + z32)(λ+ k1)(λ+ k2)]|X=0.

By letting {
∏3
i=1(λ+ ki)}det(λI2 − F̄ ∗1 ) = 0, the stability condition of the first
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three agents becomes that the 8 solutions of the following algebraic equation all
have negative real parts

ā∗11ā
∗
22 − ā∗12ā

∗
21 = b8λ

8 + b7λ
7 + · · ·+ b1λ+ b0 = 0 (3.85)

which can be checked by Routh stability criterion [66, Theorem 40.1] or some
numerical tools (e.g., Matlab). But the explicit solution of (3.85) is hard to be
obtained due to the high order of the equation (3.85). The algebraic equation
(3.85) is related to the desired triangular formation shape and the different velocity
damping gains k1, k2, k3, which implies that an inappropriate selection of first three
agents’ velocity damping gains may cause the system unstable.

Finally, we summarize the above discussion as the following result.

Theorem 3.16. Consider that N agents of double-integrator dynamics (3.39) are
governed by (3.79) with distinct gains ki, the initial errors X(0) are sufficient small
and initial distances are bounded away from zero. The formation stabilization defined
in (3.4)-(3.8) can be locally achieved if and only if all the solutions of (3.85) have
negative real parts and (3.84) holds. Moreover, (3.84) holds if and only if for each
i = 4, · · · , N , (3.69) or (3.70) holds.

The proof of theorem is followed by the above analysis. The analysis of collision
and collinearity is similar to Theorem 1.

Remark 3.17. The formation stabilization laws (3.40) and (3.79) can be imple-
mented in each agent’s local coordinate frame, i.e., the alignment of all agents’
local coordinate frames is not needed.

Remark 3.18. Note that in the stabilization of distance rigid formations with
double-integrator dynamics [85], the fact that their control law is the gradient
of a potential function helps their stability analysis, see e.g., the multiplication
of rigidity matrix and its transpose being positive semi-definite, and symmetric
structure in the Jacobian matrix of linearized system. However, for the control
law (3.40) designed for the stabilization of angle rigid formations with double-
integrator dynamics, it can be proved that it is not a gradient-based control law
due to the asymmetric/directed direction measurements, which makes this work
challenging and essential. The relationship between single-integrator and double-
integrator dynamics for angle rigid formations is connected through the relationship
R(p)B(p) = A(ea) obtained in (3.61).

Remark 3.19. Note that all the designed formation control algorithms in this chapter
require the angle measurements to be noiseless. Now, suppose in 2D that all the
angle measurements are subjected to an additional noise δ(t) ∈ R which is bounded.
According to the calculation of interior angle αjik = (φik − φij) mod 2π, one has
that the interior angle remains the same under the noisy angle measurements
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φik + δ(t), φij + δ(t), j, k ∈ Ni. However, the direction of the bearing vector

bij =

ñ
cos(φij + δ(t))

sin(φij + δ(t))

ô
is influenced by the noise δ(t). Although the noise is

bounded, it is still possible that the angle-only formation collides into one common
point if the noise takes specific values. Thus, the general convergence analysis
under the existence of noise is challenging and is left as future work.

3.4 Simulation examples

In this section, we first provide a simulation example to validate the effectiveness of
the proposed angle rigidity-based control law (3.36). Then we compare the angle
rigidity-based formation control law with bearing rigidity-based formation control
law. To begin with, we give the desired formation shape in Fig. 3.6.
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Figure 3.6: Desired formation shape.

3.4.1 Angle rigidity-based control law

Consider 5 agents in the plane with the following initial positions

p1(0) = [0.8, 0.2]T, p2(0) = [0.1, 1.4]T, p3(0) = [−1.4, 0.3]T,

p4(0) = [0.1, 2.3]T, p5(0) = [−1.7, 1.6]T,

which are also used for other simulation examples. According to the form of A in
(3.36), we consider the desired angles shown in Fig. 3.6(a) as

α∗213 = π/4, α∗132 = π/4, α∗321 = π/2, α∗342 = arctan(0.5),

α∗241 = arctan(
1

2
), α∗254 = arctan(

1

2
), α∗152 = arctan(

3√
10

),

which leads to a globally infinitesimally angle rigid formation according to Proposi-
tion 2.12 and Theorem 2.17. To demonstrate the coordinate-independent property
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illustrated in Remark 3.11, we introduce a misalignment θ1 = 5◦ in agent 1’s coor-

dinate frame R1(θ) =

ñ
cos θ1 − sin θ1

sin θ1 cos θ1

ô
, and the other agents’ coordinate frames

are the same as the XOY shown in Fig. 3.6.

Under the control law (3.36), the simulation results are given in Fig. 3.7-Fig.
3.8.
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Figure 3.7: Formation trajectories under angle rigidity-based control law with misalignment.
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Figure 3.8: Angle errors under angle rigidity-based control law with misalignment.

3.4.2 Bearing rigidity-based control law

According to [101], a bearing rigidity-based control law is described by

ṗi = −
∑

j∈Ni
Pzijz

∗
ij , (3.86)
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where the desired bearing constraints in this simulation are defined as

z∗31 = [1, 0]T, z∗21 = [

√
2

2
,−
√

2

2
]T, z∗32 = [

√
2

2
,

√
2

2
]T,

z∗42 = [0,−1]Tz∗41 = [

√
5

5
,
−2
√

5

5
]T, z∗43 = [

−
√

5

5
,−2
√

5

5
]T,

z∗54 = [
2
√

5

5
,

√
5

5
]T, z∗52 = [1, 0]T, z∗51 = [

3
√

10

10
,
−
√

10

10
]T.

Then, we introduce the misalignment into agent 1’s coordinate frame. By
defining ‖zij − z∗ij‖ as bearing error, the simulation results are given in Fig. 3.9-Fig.
3.12.
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Figure 3.9: Formation trajectories under bearing-based control without misalignment.
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Figure 3.10: Bearing errors under bearing-based control without misalignment.

According to the above simulation results, one has that the angle rigidity-based
formation control algorithms do not require the alignment of all agents’ coordinate
frames, while bearing rigidity-based control law in [101] does.
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Figure 3.11: Formation trajectories under bearing-based control with misalignment.
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Figure 3.12: Bearing errors under bearing-based control with misalignment.

Appendix A

In view of (3.9), it follows

ż12 =
Pz12
l12

(u2 − u1) (3.87)

=
Pz12
l12

[−(α2 − α∗2)(z23 + z21) + (α1 − α∗1)(z13 + z12)].

So

żT
12z13 (3.88)

=[(α1 − α∗1)(z13 + z12)− (α2 − α∗2)(z23 + z21)]T
Pz12
l12

z13

=
(sin2 α1)(α1 − α∗1)− (cosα3 + cosα1 cosα2)(α2 − α∗2)

l12
.
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Since

cosα3 + cosα1 cosα2 =− cos(α1 + α2) + cosα1 cosα2

= sinα2sinα1, (3.89)

it follows

żT
12z13 =

sinα1

l12
[(α1 − α∗1)(sinα1)− (α2 − α∗2) sinα2].

Similarly, one gets

zT
12ż13 =

sinα1

l13
[(α1 − α∗1)(sinα1)− (α3 − α∗3) sinα3].

By using (3.10), agent 1’s closed-loop angle dynamics are

α̇1 =− (sinα1)(
1

l12
+

1

l13
)(α1 − α∗1)

+
sinα2

l12
(α2 − α∗2) +

sinα3

l13
(α3 − α∗3). (3.90)

Similarly,

α̇2 =− (sinα2)(
1

l21
+

1

l23
)(α2 − α∗2)

+
sinα1

l21
(α1 − α∗1) +

sinα3

l23
(α3 − α∗3), (3.91)

α̇3 =− (sinα3)(
1

l31
+

1

l32
)(α3 − α∗3)

+
sinα1

l31
(α1 − α∗1) +

sinα2

l32
(α2 − α∗2). (3.92)

Writing (6.11)-(3.91) into a compact form, one has the closed-loop triangular
formation dynamics given in (3.11).

Appendix B

Note that

d(cosα241)

dt
= −(sinα241)α̇241 =

d(zT
41z42)

dt
= (ż41)Tz42 + (z41)Tż42, (3.93)
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First, we calculate

ż41 =
Pz41
l41

(ṗ1 − ṗ4) =
Pz41
l41

u1 −
Pz41
l41

u4, (3.94)

and

(ż41)Tz42 =− uT
4

l41
(I2 − z41z

T
41)z42 + uT

1

Pz41
l41

z42 (3.95)

By substituting the control law for agent 4, one has

(ż41)Tz42 =− [(α241 − α∗241)(cosα241 + cos2 α241)

l41
]

− [(α342 − α∗342)(cos2 α241 + cosα241 cosα341)]

l41

+
[(α241 − α∗241)(cosα241 + 1)

l41
]

+
[(α342 − α∗342)(1 + cosα342)]

l41
− zT

42

Pz41
l41

(z12 + z13)e1

=
(α241 − α∗241) sin2 α241

l41
− zT

42

Pz41
l41

(z12 + z13)e1

+
(α342 − α∗342)(sin2 α241 + sin2 α241 cosα342)

l41

+
(α342 − α∗342) cosα241 sinα241 sinα342

l41
, (3.96)

and

zT
41ż42 =zT

41

Pz42
l42

u2 − zT
41

I2 − z42z
T
42

l42
u4

=− zT
41

Pz42
l42

(z21 + z23)e2 +
(α241 − α∗241) sin2 α241

l42

+
(α342 − α∗342)(− sinα241 sinα342)

l42
. (3.97)
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Then, it follows

α̇241 =− 1

sinα241

d(cosα241)

dt
= − ż

T
41z42 + zT

41ż42

sinα241

=− (sinα241)(
1

l41
+

1

l42
)(α241 − α∗241)

− (α342 − α∗342)(sinα241 + sinα341)

l41

+
(α342 − α∗342) sinα342

l42
+
zT

41Pz42(z21 + z23)

l42 sinα241
e2

+
zT

42Pz41(z12 + z13)

l41 sinα241
e1. (3.98)

Analogously,

α̇342 =− 1

sinα342

d(cosα342)

dt
= − ż

T
42z43 + zT

42ż43

sinα342
(3.99)

=− (sinα342)(
1

l43
+

1

l42
)(α342 − α∗342)

− (α241 − α∗241)(sinα342 + sinα341)

l43

+
(α241 − α∗241) sinα241

l42
+
zT

43Pz42(z21 + z23)

l42 sinα342
e2

− zT
42Pz43(z31 + z32)

l43 sinα342
(e1 + e2).

By combining (3.98) and (3.99), one has the compact form (3.25).

3.5 Concluding remarks

Based on the developed angle rigidity theory in 2D, we have also demonstrated
in this chapter how to stabilize a multi-agent planar formation using only angle
measurements, which can be realized in each agent’s local coordinate frame. The
exponential convergent rate of angle errors and no collision between specified
agents have also been proved.



Chapter 4

Formation maneuvering in 2D

This chapter investigates how to maneuver a planar formation of mobile agents
using designed mismatched angles. The desired formation shape is specified

by a set of interior angle constraints. To realize the maneuver of translation,
rotation and scaling of the formation as a whole, we intentionally force the agents to
maintain mismatched desired angles by introducing a pair of mismatch parameters
for each angle constraint. To allow different information requirements in the
design and implementation stages, we consider both measurement-dependent
and measurement-independent mismatches. Starting from a triangular formation,
we consider generically angle rigid formations that can be constructed from the
triangular formation by adding new agents in sequence, each having two angle
constraints associated with some existing three agents. The control law for each
newly added agent arises naturally from the angle constraints and makes full use of
the angle mismatch parameters. We show that the control can effectively stabilize
the formations while simultaneously realizing maneuvering.

4.1 Introduction

Two types of formation control problems, i.e., formation shape control and for-
mation maneuvering control, have been extensively studied recently [7, 71]. The
works in [17, 63, 101] realized the control of desired formation shapes by using the
measurements of relative positions, distances and bearings between neighboring
agents, respectively. At the same time, in many practical applications, formations
are expected to be “maneuverable”, e.g, capable of translating, scaling and rotating
to adapt to complex environments. For instance, when a team of flying unmanned
aerial vehicles aims at going through some areas containing obstacles, they need to
change the velocity, orientation, and even the scale of the whole formation. There-
fore, researchers have studied the formation maneuvering problem which requires
the achievement of not only the desired formation shape but also simultaneously
the translation, rotation or scaling of the formation [99].

To achieve formation maneuvering, some researchers have proposed several
approaches given different types of formation shape descriptions and available sens-
ing information. When a desired formation shape is described by relative positions,
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formation translation was achieved in [75] requiring the measurements of relative
positions. For rigid formations with distance constraints, the formation maneu-
vering algorithms were designed in [32, 85] by introducing a pair of mismatches
per distance constraint, in which the rotational and translational maneuvering
was achieved by using the measurement of relative positions in each agent’s local
coordinate frame. For a desired formation shape described by inter-agent bearings,
based on the bearing rigidity developed in [101], the work in [99] achieved the
scaling and translational formation maneuvering using relative positions. Note that
these works [32, 75, 85, 99] cannot fully achieve the formation maneuvering of
scaling, rotation and translation easily at the same time. The reason is that, because
of the dependence of coordinate frames, displacement constraints vary during rota-
tion and scaling, distance constraints vary during scaling, and bearing constraints
vary during rotation. Note that for most of the proposed formation maneuvering
algorithms [29, 31, 32, 41, 42, 61, 64, 75, 85, 99, 100], the measurements of
relative positions are required. Compared with relative position measurements,
angle measurements are cheaper, more reliable and accessible. With the rapid
development of sensor technologies, angle information can be obtained from the
locally equipped passive radars, sonar systems or cameras [89, 103].

Motivated by the facts that interior angle constraints are invariant during trans-
lation, rotation and scaling, this study aims at realizing the formation maneuvering
enabling translation, rotation and scaling, under the conditions that the formation
shape is described by interior angle constraints and the measurements are chosen
angles. To be more specific, based on the angle-based formation stabilization
law [11, 22], we employ the mismatches in prescribed angles, and propose to
use “designed mismatched angles” after the angle mismatches are added to each
agent’s desired interior angles. This is a different approach than designing distance
mismatches between two neighboring agents in the existing literature.

4.2 Problem Formulation

4.2.1 Angle measurements

Each agent i has its own fixed coordinate frame
∑
i which may differ from

∑
g.

Let pij denote agent j’s position in
∑
i. To simplify notation, whenever causing no

confusion, we drop the superscript reference to
∑
g, e.g., pi = pgi . Agent i measures

the angle φij ∈ [0, 2π),∀j ∈ Ni towards agent j evaluated counterclockwise from
the X-axis of

∑
i, and here Ni denotes the set of the neighbours of agent i that do

not coincide with i. We call the unit vector ziij :=
pij−p

i
i

‖pij−pii‖
=

ñ
cosφij
sinφij

ô
the bearing

from i to j which starts from pii, points towards pij , and can be uniquely determined
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by φij . For the agents i, i+ 1, and i− 1 shown in Fig. 4.1, the interior angle αi can
be calculated by

αi := ](i− 1)i(i+ 1) = arccos(zT
i(i+1)zi(i−1)). (4.1)

Note that even when
∑
i are chosen differently, αi remains the same but zgij = Rgi z

i
ij ,

where zij is the bearing from pi to pj described in
∑
g, and Rgi ∈ SO(2) denotes

the rotation matrix from
∑
i to

∑
g.

i
iX

i+1

i-1

1iX 

1iX 

i

( 1)i iz 

( 1)i iz 

Figure 4.1: The angle measurements.

4.2.2 Problem formulation

The goal of this chapter is to design the control input for each agent i such that
the N -agent system achieves a desired formation described by interior angles, and
at the same time realizes desired maneuvering. First, we study the triangular
case when N = 3, and then extend the obtained results to generically angle rigid
formations when N > 3. For the triangular case, the objective stated separately is:

(i) to achieve the desired triangular formation shape, i.e.

limt→∞ ei(t) = 0,∀i = 1, 2, 3, (4.2)

where the formation-shape error signal ei are defined to be ei(t) = αi(t) − α∗i ,
α∗i ∈ (0, π) denotes agent i’s desired interior angle, and naturally α∗1 +α∗2 +α∗3 = π;
(ii) to achieve one of the following separately defined maneuvering:

(ii.A) translational formation maneuver

limt→∞(ṗi(t)− v∗c ) = 0,∀i = 1, 2, 3, (4.3)
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where v∗c ∈ R2 is the desired translational velocity described in
∑
g.

(ii.B) rotational formation maneuver

limt→∞(ṗi(t)− ω∗Epci(t)) = 0, (4.4)

where E =
[

0 −1
1 0

]
is a skew-symmetric matrix, pci = pi−pc denotes the vector from

the maneuvering reference point pc to agent i’s position pi (thus Epci corresponding
to rotating pci by π/2 counterclockwise), and ω∗ ∈ R is the desired rotational
angular speed, with ω∗ > 0 corresponding to rotating counterclockwise. The
formation reference point pc can be chosen differently, e.g., the centroid pc =
1
N

∑N
i=1 pi; in applications, it can be chosen to be the position of a well recognized

landmark in the environment.

(ii.C) scaling formation maneuver

limt→∞ (ṗi(t)− s(t)pci(t)) = 0, (4.5)

where s(t) ∈ R is the modulation factor for the scaling speed which can be typically
chosen as s(t) = kse

−γt, γ > 0, ks ∈ R. Note that s(t) > 0 or ks > 0 corresponds to
enlarging the formation, while s(t) < 0 or ks < 0 shrinking the formation.

If the translation, rotation and scaling maneuverings are required to be achieved
simultaneously, then by combining (4.3)-(4.5) together, the maneuvering control
objective becomes

limt→∞ [ṗi(t)− (v∗c + ω∗Epci(t) + s(t)pci(t))] = 0. (4.6)

When N > 3, we aim to control those multi-agent formations that are angle
rigid. Here we briefly mention a few concepts from angle rigidity theory. The multi-
point framework that we consider consists of a set of points and angle constraints,
and it is said to be angle rigid if under appropriately chosen angle constraints, the
framework can only translate, rotate or scale as a whole when one or more of
its points are perturbed locally. An angle rigid multi-point framework with the
configuration p = [pT

1 , · · · , pT
N ]T ∈ R2N being generic, e.g., no three points are

collinear and no four points are on a circle, is said to be generically angle rigid. For
more details about angle rigidity, readers can refer to [22].

To construct a generically angle rigid N -agent formation, according to [22],
one can grow the formation by N − 2 steps as introduced in Subsection 3.2. Then,
for agents i, i = 4, . . . , N , the formation control objective is to achieve

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗j1ij2) = 0, (4.7)
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cp

g

b

Figure 4.2: Formation maneuver velocity vectors: translation, rotation and scaling.

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗j2ij3) = 0, (4.8)

where j1 < i, j2 < i, j3 < i, and α∗j1ij2 ∈ (0, π), α∗j2ij3 ∈ (0, π) denote agent i’s
two desired angles formed with agents j1, j2, j3 ∈ {1, 2, ..., i− 1} respectively, and
to achieve the maneuvering of translation, rotation and scaling as described in
(4.3)-(4.6).

Therefore, the desired formation shape is described by a set of angle constraints
α∗ = {α∗1, α∗2, α∗3, α∗142, α

∗
243, · · · , α∗j1kj2 , α∗j2kj3 , · · · , α

∗
i1Ni2

, α∗i2Ni3}. The goal is to
achieve these angles and the maneuvering objective (4.6) simultaneously.

4.3 Formation maneuvering for single-integrators

Consider in this section that for an N -agent system moving in the plane, the motion
dynamics of its agent i are modeled by single-integrators

ṗi = ui, i = 1, ..., N, (4.9)

where pi ∈ R2 denotes the position of agent i described in a fixed global coordinate
frame

∑
g, and ui ∈ R2 is the control input to be designed.
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4.3.1 Triangular formation maneuver

In this section, we aim at achieving the triangular formation maneuvering for
the first three agents. First, we will present a formation maneuver algorithm by
introducing a pair of mismatches per angle constraint. Then, for the cases of
measurement-dependent and measurement-independent mismatches, the forma-
tion maneuver control algorithms and the corresponding stability analysis will be
given respectively.

A. Formation maneuver algorithm design

In [11], using bearing measurements, three agents achieved a triangular formation
shape described by three interior angles α∗i , i = 1, 2, 3. The control algorithms
designed in [11] can be equivalently written as

ui = −ki(αi − α∗i )
zi(i+1) + zi(i−1)

‖zi(i+1) + zi(i−1)‖
, (4.10)

where ki > 0, zi(i+1) is the unit vector starting from pi and pointing towards pi+1,
and we assume (i+1) = 1 when i = 3, and (i−1) = 3 when i = 1 in this subsection.
Now, we modify the control algorithm (4.10) into

ui = −ki(αi − α∗i )(zi(i+1) + zi(i−1)). (4.11)

Now, we introduce a pair of designed-mismatches per angle constraint α∗i into
(4.11) such that the formation maneuvering with translation, rotation, and scaling
can be realized. By following [21], we design the formation maneuvering law as

ui =− ki(αi − α∗i −
µi
ki

)zi(i+1) − ki(αi − α∗i −
µ̃i
ki

)zi(i−1)

=− ki(αi − α∗i )[zi(i+1) + zi(i−1)] + [µizi(i+1) + µ̃izi(i−1)]

=ufi + umi, (4.12)

where µi ∈ R and µ̃i ∈ R are the designed-mismatches associated with agent i’s
desired angle α∗i , ufi is the formation shape control part and umi is the maneuver
control part. From (4.12) and (4.6), the steady-state velocity ṗ∗i of agent i at the
desired triangular formation shape (αi = α∗i ) with the desired maneuver can be
decomposed into three parts

ṗ∗i =ṗ∗i(translation) + ṗ∗i(rotation) + ṗ∗i(scaling) (4.13)

=v∗c + ω∗Epci + s(t)pci = µizi(i+1) + µ̃izi(i−1),

Note that in (4.13), zi(i+1) is determined by the bearing measurement φi(i+1),
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but pci is the vector from the reference point pc to agent i’s position pi which
needs to be additionally measured. In the following two subsections, we introduce
two techniques to design the mismatches to realize the desired maneuvering,
which include the measurement-dependent mismatches µi(zij , pci), µ̃i(zij , pci) or
µi(t), µ̃i(t) for short that require the real-time measurements of zij(t) and pci(t),
and the measurement-independent mismatches µi(α∗), µ̃i(α∗) or µi, µ̃i for short
that are not related to the real-time measurements but calculated in the design
stage based on the desired formation shape α∗.

B. Measurement-dependent mismatches

Now, we use the measurement-dependent mismatches to realize the desired ma-
neuvering under the measurements of zij and pci, in which we assume that all the
agents’ coordinate frames

∑
i have the same orientation as

∑
g. In the following,

we first illustrate how to design µi(t) and µ̃i(t), then analyze the stability of the
closed-loop system. Note that the desired maneuvering velocity ṗ∗i in (4.13) is a
linear combination of translation velocity v∗c , rotation velocity ω∗Epci and scaling
velocity s(t)pci. We first show in the following how to design µi and µ̃i in (4.12) to
achieve each maneuvering separately, then simultaneously.

(1) Translation

According to (4.13), only considering translation maneuvering with v∗c , one requires

v∗c = µ1(t)z12 + µ̃1(t)z13, (4.14)

v∗c = µ2(t)z23 + µ̃2(t)z21, (4.15)

v∗c = µ3(t)z31 + µ̃3(t)z32, (4.16)

where we assume that the three agents’ positions are not collinear. Then, µi(t), µ̃i(t),
i = 1, 2, 3 can be calculated byñ

µi(t)

µ̃i(t)

ô
=

ñ
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

ô−1 ñ
v∗c (1)

v∗c (2)

ô
, (4.17)

where zi(i+1)(1) and zi(i+1)(2) denote the first and second elements of vector zi(i+1).
Note that (4.14)-(4.16) are equivalent to adding the same v∗c to all agents. To make
(4.17) well-defined, the matrix [zi(i+1) zi(i−1)] should always be invertible, which
can be guaranteed if there is no collinearity among agents 1 to 3.
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(2) Rotation

Only considering rotation around pc in (4.13), one has

ω∗Epc1 = µ1(t)z12 + µ̃1(t)z13, (4.18)

ω∗Epc2 = µ2(t)z23 + µ̃2(t)z21, (4.19)

ω∗Epc3 = µ3(t)z31 + µ̃3(t)z32. (4.20)

Similarly, µi(t), µ̃i(t), i = 1, 2, 3 can be calculated byñ
µi(t)

µ̃i(t)

ô
=

ñ
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

ô−1 ñ
−ω∗pci(2)

ω∗pci(1)

ô
. (4.21)

(3) Scaling

Only considering scaling with respect to pc in (4.13), one has

s(t)pc1 = µ1(t)z12 + µ̃1(t)z13, (4.22)

s(t)pc2 = µ2(t)z23 + µ̃2(t)z21, (4.23)

s(t)pc3 = µ3(t)z31 + µ̃3(t)z32. (4.24)

Also, µi(t), µ̃i(t), i = 1, 2, 3 can be calculated byñ
µi(t)

µ̃i(t)

ô
=

ñ
zi(i+1)(1) zi(i−1)(1)

zi(i+1)(2) zi(i−1)(2)

ô−1 ñ
s(t)pci(1)

s(t)pci(2)

ô
. (4.25)

Then, by applying translation, rotation and scaling simultaneously, one hasñ
µi(t)

µ̃i(t)

ô
=[zi(i+1) zi(i−1)]

−1(v∗c + ω∗Epci + s(t)pci) (4.26)

=[zi(i+1) zi(i−1)]
−1

ñ
v∗c (1)− ω∗pci(2) + s(t)pci(1)

v∗c (2) + ω∗pci(1) + s(t)pci(2)

ô
,

which is well-defined when [zi(i+1) zi(i−1)] is invertible. By applying the designed
mismatches (4.26) into control law (4.12), we are ready to give the following
result.

Theorem 4.1. Consider a 3-agent formation described by (4.9), with the control
signal (4.12) and mismatches µi(t), µ̃i(t), i = 1, 2, 3 as designed in (4.26). If the
initial angle errors ei(0) are sufficiently small, αi(0) 6= 0, and ‖pi(0)− pj(0)‖, i 6= j

are sufficiently away from zero, then the 3-agent formation converges exponentially to
its desired shape and maneuvers with the combination of the prescribed translation
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(4.3), rotation (4.4) and scaling (4.5) .

Proof. Note that the angle error dynamics ėi are affected by the combination of
formation shape control part ufi = −ki(αi − α∗i )(zi(i+1) + zi(i−1)) and maneuver
control part umi = µizi(i+1) + µ̃izi(i−1). According to Appendix A, the angle error
dynamics can be described by

ė =

α̇1

α̇2

α̇3

 = F1(e)e =

−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

e1

e2

e3

 , (4.27)

where fij = kj(sinαj)/lij , gi = (sinαi)(ki/li(i+1) + ki/li(i−1)), and lij = ‖pi − pj‖
denotes the distance between agents i and j. According to Appendix A and (4.27),
the maneuver control part umi has no contribution to the angle error dynamics ėi,
which is reasonable since the whole formation’s translation, rotation and scaling
will not change its interior angles.

First, we prove that the 3-agent formation will not become collinear under
(4.27) if it is not initially collinear. If for a fixed i, αi → π, one has αi−1 → 0 and
αi+1 → 0 because αi + αi−1 + αi+1 = π. Note that α∗i , i = 1, 2, 3 are bounded
away from zero and π, which implies that ei > 0 and ei+1 < 0, ei−1 < 0. Then,
since gi > 0 and fij > 0, j = i − 1, i + 1, from agent i’s angle error dynamics
ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1, one has ėi < 0, which implies that α̇i makes
it impossible to achieve αi = π. Similarly should αi → 0, one would obtain the
contradicting result that αi increases. Since αi has to be 0 or π in the collinear
situation, the contradictions we have constructed imply that the three agents will
not become collinear if their initial positions are not collinear. Therefore, it follows
that the calculation of (4.26) is well-defined.

Since e1 + e2 + e3 ≡ 0, the angle error dynamics (4.27) can be reduced to

ės =

ñ
ė1

ė2

ô
=

ñ
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

ô ñ
e1

e2

ô
= Fs1(es)es. (4.28)

Let U ∈ R2 denote the neighborhood of the origin {e1 = e2 = 0}, in which we
investigate the local stability of (6.15). Linearizing (6.15) at the origin, we obtain

ės = A1es, (4.29)

where A1 = Fs1(es)|es=0. Then, under es = 0, i.e., αi = α∗i , one has

tr(A1(α∗)) = −g1 − f13 − g2 − f23 < 0, (4.30)
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det(A1(α∗)) =(g1 + f13)(g2 + f23)− (f21 − f23)(f12 − f13)

>g1f23 + g2f13 + f21f13 + f12f23 > 0, (4.31)

where we have used the fact that g1g2 > f21f12. According to (4.30) and (4.31),
one has that A1 is Hurwitz. By following the Lyapunov Theorem [54, Theorem
4.6], for an arbitrary positive definite matrix Q1 ∈ R2×2, there always exists a
positive definite matrix P1 ∈ R2×2 such that −Q1 = P1A1 +AT

1 P1. We then design
the Lyapunov function candidate as

V1 = eT
s P1es,

whose time-derivative is

V̇1 = −eT
s Q1es 6 −

λmin(Q1)

λmax(P1)
V1. (4.32)

where λmin() and λmax() denote the minimum and maximum eigenvalues of a
square matrix, respectively. Then, one has

e2
1 + e2

2 = ‖es‖2 6
V1

λmin(P1)
6

V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (4.33)

Also, one has

e2
3 = e2

1 + e2
2 + 2e1e2 6 2(e2

1 + e2
2) 6

2V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
,

which implies that ei under the dynamics (4.27) is exponentially stable when the
initial states lie in U. Then, according to (4.9) and (4.12), one has limt→∞ ṗi(t) =

µi(t)zi(i+1)(t)+ µ̃i(t)zi(i−1)(t). Therefore, if (4.14)-(4.16), (4.18)-(4.20), or (4.22)-
(4.24) are applied separately in (4.13), one has that the maneuvering defined in
(4.3)-(4.5) is achieved separately. Meanwhile, if they are applied simultaneously
by (4.26), the maneuverings consisting of translation, rotation and scaling are
achieved simultaneously.

C. Measurement-independent mismatches

Now, we consider that agent i can only measure zi(i+1) and zi(i−1) in (4.12). The
mismatches µi and µ̃i are calculated in the design stage by using the information of
the desired formation shape. Towards this end, we first define a body frame

∑
b(t)

whose origin is fixed at the position p1(t) of agent 1, and X-axis points from the
position p1(t) of agent 1 to the position p2(t) of agent 2, and Y -axis follows the
direction under right-hand rule.
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Figure 4.3: Relationship between several coordinate frames.

At the initial design stage t = 0, consider the static and reference formation
configuration pb∗ = [(pb∗1 )T, (pb∗2 )T, · · · , (pb∗N )T]T ∈ R2N described in

∑
b(0), which

satisfies all the desired angle constraints α∗. As shown in Fig. 4.3, according to the
definition of

∑
b(0), one has pb∗1 = [0, 0]T, pb∗2 = [xp∗2 , 0]T where xp∗2 can be chosen

as an arbitrary positive number; then, one can calculate pb∗3 , ..., p
b∗
N using the angle

constraints α∗. If one has a reference configuration p∗ = [(p∗1)T, (p∗2)T, · · · , (p∗N )T]T

of the desired formation described in
∑
g with p∗1 = [0, 0]T, p∗2 = [xp∗2 , 0]T, then one

directly has pb∗ = p∗. Now, we use pb∗ for the design of measurement-independent
mismatches.

(1) Translation

Only considering translational maneuvering, similar to (4.14)-(4.16), one has

vb∗c = Rb(0)
g v∗c = µiz

b∗
i(i+1) + µ̃iz

b∗
i(i−1), i = 1, 2, 3 (4.34)

where zb∗ij =
pb∗j −p

b∗
i

‖pb∗j −pb∗i ‖
is the bearing calculated by pb∗. Then, µi, µ̃i, i = 1, 2, 3 can

be calculated by ñ
µi
µ̃i

ô
=

ñ
zb∗i(i+1)(1) zb∗i(i−1)(1)

zb∗i(i+1)(2) zb∗i(i−1)(2)

ô−1 ñ
vb∗c (1)

vb∗c (2)

ô
. (4.35)

Since the bearing vectors zb∗i(i+1), z
b∗
i(i−1) are not collinear in a generically angle

rigid formation according to [22, Definition 4] and Assumption 3.1, the matrix
[zb∗i(i+1) zb∗i(i−1)] is invertible. Since the desired velocity vb∗c is described in

∑
b(0)

in (4.34), the control objective (4.3) for translation maneuvering in this case is
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modified to
limt→∞(Rb(t)g ṗi(t)− vb∗c ) = 0, (4.36)

where Rb(t)g is the rotation matrix from
∑
g to

∑
b(t).

(2) Rotation

Considering rotation around the centroid in (4.13), one has

ω∗Epb∗ci = µiz
b∗
i(i+1) + µ̃iz

b∗
i(i−1), i = 1, 2, 3, (4.37)

where pb∗ci = pb∗i − pb∗c = pb∗i − 1
N

∑N
j=1 p

b∗
j . Then, µi, µ̃i, i = 1, 2, 3 can be similarly

calculated as (4.25).

(3) Scaling

Only considering scaling with respect to the centroid in (4.13), one has

s(t)pb∗ci = µiz
b∗
i(i+1) + µ̃iz

b∗
i(i−1). (4.38)

Then, µi, µ̃i, i = 1, 2, 3 can be calculated. Then, by applying translation, rotation
and scaling simultaneously, one hasñ

µi
µ̃i

ô
=[zb∗i(i+1) z

b∗
i(i−1)]

−1
(
vb∗c + ω∗Epb∗ci + s(t)pb∗ci

)
(4.39)

which is well-defined since [zb∗i(i+1) z
b∗
i(i−1)] ∈ R2×2 is invertible. Now, we apply the

constant mismatches designed in (4.39) into control law (4.12).

Theorem 4.2. Consider the 3-agent formation described by (4.9), with the control
inputs (4.12) and mismatches µi, µ̃i, i = 1, 2, 3 as designed in (4.39). If the initial
angle error ei(0), and the designed-mismatches are sufficiently small, αi(0) 6= 0 and
‖pi(0)− pj(0)‖, i 6= j are sufficiently away from zero, then the 3-agent formation con-
verges exponentially to its desired shape and maneuvers with the prescribed translation
(4.36), rotation (4.4) and scaling (4.5) simultaneously.

Proof. To analyze the convergence of ei, we first aim at obtaining the angle error
dynamics ėi, i = 1, 2, 3. Note that the analysis method of angle error dynamics
given in [11] cannot be used in this case because of the part µizi(i+1) + µ̃izi(i−1) in
control law (4.12). Instead, we derive the angle error dynamics by using the dot
product of two bearings. According to Appendix B, one has the following angle
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error dynamics

ė = [α̇1 α̇2 α̇3]T = F2(e)e+H2(e, µ, µ̃) =

−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

α1 − α∗1
α2 − α∗2
α3 − α∗3

+

h1

h2

h3

 ,
(4.40)

where gi and fij have the same forms as (4.27), and

hi =
µ̃i sinαi − µi+1 sinαi+1

li(i+1)
+
µi sinαi − µ̃i−1 sinαi−1

li(i−1)
.

Now, we analyze the local stability of (4.40). Since e1 + e2 + e3 = 0, one has the
following sub-dynamics

ės =

ñ
ė1

ė2

ô
= Fs2(es)es +Hs2(es)U2

=

ñ
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

ô ñ
α1 − α∗1
α2 − α∗2

ô
+

ñ
h11 h12 h13 h14 h15 h16

h21 h22 h23 h24 h25 h26

ô
U2,

(4.41)

where U2 = [µ1, µ2, µ3, µ̃1, µ̃2, µ̃3]T, h11 = sinα1

l13
, h12 = − sinα2

l12
, h13 = h15 = 0,

h14 = sinα1

l12
, h16 = − sinα3

l13
, h21 = h26 = 0, h22 = sinα2

l21
, h23 = − sinα3

l23
, h24 =

− sinα1

l21
, h25 = − sinα2

l23
. It can be verified that H2(0, µ, µ̃) = 0 which implies that

e = 0 is an equilibrium of (4.40). To obtain the local stability of (4.41), we linearize
the dynamics (4.41) at the origin. The linearized system of (4.41) at the origin can
be written as

ės = A1es +B1es = (A1 +B1)es,

whereB1 = ∂Hs2(es)U2

∂es
|es=0 = [∂Hs2(es)

∂e1

∂Hs2(es)
∂e2

](I2⊗U2)|es=0, andA1 = Fs2(es)|es=0

which implies that for an arbitrary positive definite matrix Q2 ∈ R2×2, there exists
a positive definite matrix P2 ∈ R2×2 such that Q2 = −(P2A1 +AT

1 P2). Since U2(t)

is bounded, we then check the stability of (4.41) when es lies in a neighborhood
region U2 of the origin es = 0. Consider the Lyapunov function candidate

V2 = eT
s P2es,

whose time-derivative is

V̇2 6 −λmin(Q2)‖es‖2 + eT
s (BT

1 P2 + P2B1)es 6 (−λmin(Q2) + q1)‖es‖2, (4.42)

where q1 = 2‖B1‖λmax(P2). For a neighborhood of the equilibrium, one can obtain
λmin(Q2) > q1 by choosing
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• small designed-mismatches µi, µ̃i since δ2(µ) in q1 grows with µ continuously
and δ2(µ) > δ2(0) = 0, which in general require that the maneuvering speed
‖v∗c‖, ω∗, ks should be small according to (4.39);
• big feedback gain ki when k1 = k2 = k3 which only makes
λmax(P2) smaller but not λmin(Q2) because Q2 is given and δ2(µ) is not related to
ki.

When λmin(Q2) > q1, the sub-dynamics (4.41) are locally exponentially stable.
By following (4.32)-(4.33), one has

e2
1 + e2

2 = ‖es‖2 6
V2

λmin(P2)
6

V2(0)

λmin(P2)
e
−λmin(Q2)−q1

λmax(P2)
t
. (4.43)

Since e1 = e2 = 0 implies e3 = 0, the overall dynamic system (4.40) is lo-
cally exponentially stable, i.e., limt→∞ ei = 0, which implies that limt→∞ ṗi(t) =

limt→∞(µizi(i+1)(t) + µ̃izi(i−1)(t)). Then, it follows that limt→∞R
b(t)
g ṗi(t) =

limt→∞R
b(t)
g (µizi(i+1)(t)+µ̃izi(i−1)(t)) = limt→∞(µiz

b(t)
i(i+1)(t)+µ̃iz

b(t)
i(i−1)(t)) = vb∗c

where we have used the facts that
∑
b(t) is rigidly attached at the real-time

formation and z
b(t)
ij (t) → zb∗ij when αi → α∗i . For rotation and scaling, since

ksp
b∗
ci = µiz

b∗
i(i+1) + µ̃iz

b∗
i(i−1) implies that kspci = µizi(i+1) + µ̃izi(i−1), one has that

the rotation and scaling are also achieved. Therefore, the maneuvering defined in
(4.36), and (4.4)-(4.5) is achieved. Note that the formation’s eventual orientation
Rgb(∞) is not necessarily equal to Rgb(0) and the overall maneuvering velocity de-
scribed in

∑
g is limt→∞ ṗi(t) = limt→∞[Rgb(t)v

b∗
c +ω∗Epci(t) + kspci(t)] where the

formation’s eventual orientation Rgb(∞) depends on the initial states of the agents
and the rotation maneuvering that the formation conducted. Finally, we analyze
the non-collinearity in this case. Note that (4.43) implies that ∀i = 1, 2, 3

|ei| = |αi − α∗i | 6
 

2V2(0)

λmin(P2)
e
−λmin(Q2)−q1

2λmax(P2)
t 6

 
2V2(0)

λmin(P2)
,

If we choose initial formation errors ei(0) such that V2(0) is sufficiently small
(corresponding to local stability), one has that αi(t) will be bounded away from
zero and π because α∗i , i = 1, 2, 3 are bounded away from zero and π. This implies
that no collinearity will occur in this case.

Remark 4.3. Each agent’s position in (4.9) is described in the global coordinate
frame, but it is not used in the maneuver control algorithm (4.12). For the case of
measurement-independent mismatches, (4.12) can be realized in each agent’s local
coordinate frame which can have different orientation from

∑
g since (4.12) can
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be equivalently written as

Rgi u
i
i =− ki(αi − α∗i )R

g
i (z

i
i(i+1) + zii(i−1))

+ µiR
g
i z
i
i(i+1) + µ̃iR

g
i z
i
i(i−1), (4.44)

where Rgi ∈ SO(2) is the rotation matrix from agent i’s local coordinate frame
∑
i

to the global coordinate frame
∑
g, u

i
i is the controller input applied in agent i’s

local coordinate frame
∑
i, and zii(i+1), z

i
i(i−1) are the bearings measured in agent

i’s local coordinate frame. Since (αi − α∗i ) and µi, µ̃i are scalars, (4.44) can be
reduced to

uii = −ki(αi − α∗i )(zii(i+1) + zii(i−1)) + µiz
i
i(i+1) + µ̃iz

i
i(i−1)

which is equivalent to (4.12). Note that the measurement-independent mismatch
design in (4.39) can be calculated in the design stage which uses the formation of
the desired formation shape pb∗ described in

∑
b(0). However, the implementation

of (4.12) is completely distributed, i.e., no aligned coordinate frames or global
information is required to be shared among agents.

Remark 4.4. Note that the desired translation velocity in (4.14)-(4.16) is described
in a global coordinate frame, but in (4.34) is described in

∑
b(0). To achieve

a desired translational velocity described in the global coordinate frame in the
measurement-independent mismatch case, one can align one real-time bearing
zij to the bearing zb∗ij described in

∑
b(0) [32]. However, the mismatch design for

rotation and scaling in both time-varying and constant cases is not influenced by
the global or local coordinate frame because the rotation and scaling is conducted
with respect to the formation’s reference point pc instead of an external reference
frame, see Fig. 4.2 and (4.3)-(4.5).

Remark 4.5. For the case of measurement-dependent mismatches, one can also
add the desired maneuvering velocity v∗c + ω∗Epbi + s(t)pbi directly into (4.11).
The reasons for designing measurement-dependent mismatches are supported by
two facts. The first is that the controllers for the cases of measurement-dependent
and measurement-independent mismatches have the same form (4.12). Therefore,
when the measurements of relative position are available, the formation maneu-
vering can be realized with measurement-dependent mismatches, but when they
are unavailable, the formation maneuvering can be realized with measurement-
independent mismatches whose control law has the same structure as measurement-
dependent case. The second is that the analysis of angle error dynamics (4.40)
in the case of measurement-independent mismatches is based on the angle error
dynamics (4.27) in the case of measurement-dependent mismatches. We show
that when the mismatches are measurement-dependent, the angle error dynamics
(4.27) are not related with the mismatches anymore, which is reasonable since the
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whole formation’s maneuvering in terms of translation, rotation and scaling will
not change the magnitude of agents’ interior angles.

4.3.2 Collision analysis

Note that the bearing vector zij =
pj−pi
‖pj−pi‖ , j ∈ Ni used in the maneuver control law

(4.12) is not well-defined if there exists collision between neighboring agents i and
j. Therefore, the analysis on the collision among the three agents is needed. Since
we are controlling interior angles, we would like to show that the distance lij =

‖pi−pj‖ does not vary much, which is not obvious when maneuvering is conducted.
Therefore we need to assess the order of magnitude of how much lij can grow or
shrink from the initial conditions. Consequently, we provide the following analysis
considering the cases of measurement-dependent and measurement-independent
mismatches, respectively.

A. Measurement-dependent mismatches

Taking agents 1 and 2 as an example (the other cases can be similarly analyzed),
one has

l12(t) = l12(0) +

∫ t

0

l̇12(τ)dτ

= l12(0) +

∫ t

0

(p1 − p2)T(ṗ1 − ṗ2)

‖p1 − p2‖
dτ

= l12(0) +

∫ t

0

zT
21(uf1 − uf2 + um1 − um2)dτ. (4.45)

First, we consider the formation part uf1 − uf2 in (4.45)∫ t

0

zT
21(uf1 − uf2)dτ =

∫ t

0

k2e2z
T
21(z21 + z23)− k1e1z

T
21(z12 + z13)dτ

6
∫ t

0

(2k1|e1|+ 2k2|e2|)dτ 6 2k̄12

∫ t

0

»
e2

1 + e2
2 + 2|e1||e2|dτ

62
√

2k̄12

∫ t

0

»
e2

1 + e2
2dτ, (4.46)

where k̄12 = max{k1, k2} and we have used the fact that 2|e1||e2| 6 e2
1 + e2

2. By
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using (4.33), one has∫ t

0

»
e21 + e22dτ 6

 
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1)

Å
1− e−

λmin(Q1)

2λmax(P1)
t
ã

6
2λmax(P1)

λmin(Q1)

 
V1(0)

λmin(P1)
. (4.47)

Then, we consider the maneuver part um1 − um2 in (4.45). By using (4.12) and
(4.26), one has∫ t

0

zT
21(um1 − um2)dτ =

∫ t

0

zT
21[ω∗E + s(τ)I2](pc1 − pc2)dτ =

∫ t

0

s(τ)l12(τ)dτ,

(4.48)

where we have used the fact that zT
21Ez21 = 0 and pc1 − pc2 = z21l12. According

to (4.54), the translational and rotational maneuvering has no impact on the
change of l12(t), and only scaling has. Note that when modulation factor for the
scaling speed s(t) > 0, i.e., conducting formation enlargement, one always has∫ t

0
s(τ)l12(τ)dτ > 0. By substituting (4.46)-(4.54) into (4.45), when s(t) > 0 one

has

l12(t) > l12(0) +

∫ t

0

s(τ)l12(τ)dτ − 4k̄12λmax(P1)

λmin(Q1)

 
2V1(0)

λmin(P1)

> l12(0)− 4k̄12λmax(P1)

λmin(Q1)

 
2V1(0)

λmin(P1)
. (4.49)

However, the case of s(t) < 0 is also important in obstacle avoidance task
because it corresponds to shrink the formation. To achieve the task of shrinking the
formation, a typical form of s(t) < 0 is s(t) = −e−γt. Now, we analyze the impact
of this special case of shrinking formation on the change of l12(t). By using the
integration by parts, one has∫ t

0

s(τ)l12(τ)dτ =

∫ t

0

γ−1l12(τ)de−γτ = γ−1l12e
−γt − γ−1

∫ t

0

e−γτdl12(τ)

=γ−1l12e
−γt − γ−1

∫ t

0

e−γτs(τ)l12(τ)dτ − γ−1

∫ t

0

e−γτ [zT
21(uf1 − uf2)]dτ.

(4.50)

Note that in (4.50), γ−1l12e
−γt > 0 and −γ−1

∫ t
0
e−γτs(τ)l12(τ)dτ > 0 since
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s(t) < 0. In addition, by using (4.46), one has

− γ−1

∫ t

0

e−γτ [zT
21(uf1 − uf2)]dτ

6γ−12
√

2k̄12

∫ t

0

e−γτ
»
e2

1 + e2
2 dτ

6γ−12
√

2k̄12

 
V1(0)

λmin(P1)

∫ t

0

e
−(γ+

λmin(Q1)

2λmax(P1)
)τdτ

6γ−12
√

2k̄12

 
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1) + 2γλmax(P1)
. (4.51)

By substituting (4.46)-(4.54) and (4.50)-(4.51) into (4.45), when s(t) = −e−γt
one has

l12(t) >l12(0)− 4k̄12λmax(P1)

λmin(Q1)

 
2V1(0)

λmin(P1)
(4.52)

− γ−12
√

2k̄12

 
V1(0)

λmin(P1)

2λmax(P1)

λmin(Q1) + 2γλmax(P1)
.

Finally, we summarize the above analysis into a proposition.

Proposition 4.6. Consider a 3-agent formation described by (4.9), with the control
signal (4.12) and mismatches µi(t), µ̃i(t), i = 1, 2, 3 as designed in (4.26) and

αi(0) 6= 0. For the case of s(t) > 0, if l12(0) > 4k̄12λmax(P1)
λmin(Q1)

√
2V1(0)
λmin(P1) , no collision

will happen between agents 1 and 2. For the case of s(t) = −e−γt < 0, if l12(0) >
4k̄12λmax(P1)
λmin(Q1)

√
2V1(0)
λmin(P1) + γ−12

√
2k̄12

√
V1(0)

λmin(P1)
2λmax(P1)

λmin(Q1)+2γλmax(P1) , then no collision
will happen between agents 1 and 2.

Proof. For the case of s(t) > 0, since l12(0) > 0, ∃T2 > 0 such that in [0, T2], no
collision happens between agents 1 and 2. Assume that there exists a collision
between agents 1 and 2 in [T2,∞), then there must exist an escape time Tc such
that l12(Tc) = 0. Since no collision happens in [T2, T

−
c ), the closed-loop system is

well-defined in [T2, T
−
c ). Following the calculations in (4.45)-(4.49), one has that

l12(T−c ) > l12(0) − 4k̄12λmax(P1)
λmin(Q1)

√
2V1(0)
λmin(P1) > 0 which is bounded away from zero.

This implies a contradiction with the assumption that collision happens at Tc. Thus,
no collision happens in [0,∞). The case of s(t) < 0 can be similarly obtained.

B. Measurement-independent mismatches

For the case of measurement-independent mismatches, the description of l12(t) in
(4.45) still holds. By following the analysis from (4.45) to (4.47), one has the effect



4.3. Formation maneuvering for single-integrators 77

of formation part uf1 − uf2 on l21(t)∫ t

0

zT
21(uf1 − uf2)dτ 6 2

√
2k̄12

∫ t

0

»
e2

1 + e2
2dτ 6

4k̄12λmax(P2)

λmin(Q2)− q1

 
2V2(0)

λmin(P2)
.

(4.53)

Then, we discuss the maneuver part um1 − um2 in (4.45). By using (4.12) and
(4.39), one has∫ t

0

zT
21(um1 − um2)dτ =

∫ t

0

zT
21(µ1z12 + µ̃1z13 − µ2z23 − µ̃2z21)dτ

=

∫ t

0

(−µ1 − µ̃2 − µ̃1 cosα1 − µ2 cosα2)dτ. (4.54)

By using αi = ei + α∗i , one has

− µ1 − µ̃2 − µ̃1 cosα1 − µ2 cosα2

=− µ1 − µ̃2 − µ̃1(cos e1 cosα∗1 − sin e1 sinα∗1)− µ2(cos e2 cosα∗2 − sin e2 sinα∗2).

Now, we use the Taylor series to describe cos ei and sin ei

cos ei = 1− e2
i

2!
+
e4
i

4!
+ · · ·+ (−1)ne2n

i

(2n)!
, (4.55)

sin ei = ei −
e3
i

3!
+
e5
i

5!
+ · · ·+ (−1)ne2n+1

i

(2n+ 1)!
, (4.56)

where n→∞ and n! denotes the factorial of n. Since ei(0) is sufficiently small and
ei(t) converges to zero at an exponential speed, we only focus on the first main
part in (4.55) and (4.56). Then, one has

− µ1 − µ̃2 − µ̃1 cosα1 − µ2 cosα2

≈− µ1 − µ̃1 cosα∗1 − µ̃2 − µ2 cosα∗2 + µ̃1e1 sinα∗1 + µ2e2 sinα∗2. (4.57)

On the one hand, by using (4.39) for the first part of (4.57), one has

− µ1 − µ̃1 cosα∗1 − µ̃2 − µ2 cosα∗2 = −
î
1 (zb∗12)>zb∗13

ó ñµ1

µ̃1

ô
−
î
(zb∗21)>z∗23 1

ó ñµ2

µ̃2

ô
=− (zb∗12)>

î
zb∗12 zb∗13

ó
[zb∗12 z

b∗
13]−1

(
vb∗c + ω∗Epb∗c1 + s(t)pb∗c1

)
− (zb∗21)>

î
zb∗23 zb∗21

ó
[zb∗23 z

b∗
21]−1

(
vb∗c + ω∗Epb∗c2 + s(t)pb∗c2

)
=(zb∗12)>[ω∗E(pb∗2 − pb∗1 ) + s(t)(pb∗2 − pb∗1 )] = s(t)lb∗12, (4.58)
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where we have used the fact that cosα∗1 = (zb∗12)>zb∗13. On the other hand, for the
second part of (4.57), one has∫ t

0

(µ̃1e1 sinα∗1 + µ2e2 sinα∗2)dτ 6
∫ t

0

µmax 12(|e1|+ |e2|)dτ,

where µmax 12 = max{|µ̃1|, |µ2|} and we have used that fact that | sinα∗i | < 1. By
following (4.46) and (4.47), one has∫ t

0

(|e1|+ |e2|)dτ 6
√

2

∫ t

0

»
e2

1 + e2
2dτ 6

2λmax(P2)

λmin(Q2)− q1

 
2V2(0)

λmin(P2)
. (4.59)

By substituting (4.53) and (4.54)-(4.59), one has

l12(t) >l12(0) +

∫ t

0

s(t)lb∗12dτ − 4k̄12λmax(P2)

λmin(Q2)− q1

 
2V2(0)

λmin(P2)

− 2µmax 12λmax(P2)

λmin(Q2)− q1

 
2V2(0)

λmin(P2)
, (4.60)

where
∫ t

0
s(t)lb∗12dτ > 0 when ks > 0. For the case of ks < 0, the conclusion can be

similarly analyzed by following (4.50)-(4.51). Finally, we summarize the above
analysis into a proposition.

Proposition 4.7. Consider the 3-agent formation described by (4.9), with the control
inputs (4.12) and mismatches µi, µ̃i, i = 1, 2, 3 as designed in (4.39), and the initial
angle error ei(0), and the designed-mismatches are sufficiently small, αi(0) 6= 0

and ks > 0. If l12(0) > 4k̄12λmax(P2)
λmin(Q2)−q1

√
2V2(0)
λmin(P2) + 2µmax 12λmax(P2)

λmin(Q2)−q1

√
2V2(0)
λmin(P2) , then no

collision will happen between agents 1 and 2.

The proof can be similarly obtained by following Proposition 4.6.

4.3.3 Extension to generically angle rigid formation

In this section, we aim at realizing N -agent formation maneuver control by using
designed mismatches. Since the maneuvering for the first three agents is realized,
we now consider how agent i, i = 4, · · · , N can be added to the formation by giving
two desired angles α∗j1ij2 and α∗j2ij3 , j1 < i, j2 < i, j3 < i. As shown in Fig. 3.2, we
first investigate how agent 4 can be merged with the first triangular formation, and
then we illustrate how agents 5 to N can be similarly merged into the resulting
formations.

We can design a similar stabilization control algorithm for agent 4 to achieve
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the two desired angles α∗142 and α∗243

u4 =− k41(α142 − α∗142)(z41 + z42)− k42(α243 − α∗243)(z42 + z43), (4.61)

where k41 and k42 are positive constants. To make agent 4 also maneuver with
the desired translation, rotation and scaling, we modify the stabilization control
algorithm (4.61) as the following formation maneuver control algorithm

u4 =− k41(α142 − α∗142 −
µ4

k41
)(z41 + z42)− k42(α243 − α∗243 −

µ̃4

k42
)(z42 + z43)

=− k41(α142 − α∗142)(z41 + z42)− k42(α243 − α∗243)(z42 + z43)

+ µ4z41 + (µ4 + µ̃4)z42 + µ̃4z43

=uf4 + um4, (4.62)

where µ4 ∈ R and µ̃4 ∈ R are the designed-mismatches associated with agent 4’s
desired angles α∗142 and α∗243.

By following the similar steps given in Subsections. III. B and C, we give the fol-
lowing procedure for the measurement-dependent and measurement-independent
mismatch cases, respectively.

A. Measurement-dependent mismatches

Similar to the design procedure (4.14)-(4.26), we use the measurement-dependent
mismatches µ4(t), µ̃4(t) to realize the desired maneuvering under the measure-
ments of z4i, i = 1, 2, 3 and pc4 = p4 − pc.

(1) Translation

According to (4.13), only considering translation maneuvering, one requires

v∗c = µ4(t)z41 + (µ4(t) + µ̃4(t))z42 + µ̃4(t)z43, (4.63)

Then, µ4(t) and µ̃4(t) can be calculated byñ
µ4(t)

µ̃4(t)

ô
=

ñ
(z41 + z42)(1) (z42 + z43)(1)

(z41 + z42)(2) (z42 + z43)(2)

ô−1 ñ
v∗c (1)

v∗c (2)

ô
.

(2) Rotation

Based on (4.13), considering rotation maneuvering, one has

ω∗Epc4 = µ4(t)z41 + (µ4(t) + µ̃4(t))z42 + µ̃4(t)z43. (4.64)
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Similarly, µ4(t), µ̃4(t) can be calculated.

(3) Scaling

Only considering scaling maneuvering in (4.13), one has

s(t)pc4 = µ4(t)z41 + (µ4(t) + µ̃4(t))z42 + µ̃4(t)z43. (4.65)

Then, µ4(t), µ̃4(t) can be calculated. By applying translation, rotation and scaling
simultaneously, one hasñ

µ4(t)

µ̃4(t)

ô
=[z41 + z42 z42 + z43]−1(v∗c + ω∗Epc4 + s(t)pc4). (4.66)

Now, we give the result for the 4-agent case.

Theorem 4.8. Consider a 4-agent formation described by (4.9), with the con-
trol (4.12) for agents 1 to 3, the control (4.62) for agent 4, and the mismatches
µi(t), µ̃i(t), i = 1, 2, 3 as designed in (4.26), and µ4, µ̃4 as designed in (4.66). If
the initial angle errors ei(0), i = 1, 2, 3 and e41(0), e42(0) are sufficiently small,
αi(0) 6= 0, sinα∗124 > sinα∗214, sinα∗423 > sinα∗234, and α∗143 = α∗142 + α∗243 and
‖pi(0)− pj(0)‖, i 6= j are sufficiently away from zero, then the 4-agent formation con-
verges exponentially to its desired shape and maneuvers with the prescribed translation,
rotation and scaling simultaneously.

Proof. According to Appendix C, one has agent 4’s angle error dynamics

ė4 =

ñ
ė41

ė42

ô
= F4(e4)e4 +W (e4)es (4.67)

=

ñ
−ḡ1 f̄12

f̄21 −ḡ2

ô ñ
α142 − α∗142

α243 − α∗243

ô
+

ñ
w11 w12

w21 w22

ô ñ
e1

e2

ô
,

where ḡ1 = k41 sinα142(1/l41 + 1/l42), ḡ2 = k42 sinα243(1/l43 + 1/l42),

f̄12 = −k42(sinα142+sinα143)
l41

+k42 sinα243

l42
, f̄21 = −k41(sinα243+sinα143)

l43
+k41 sinα142

l42
, w11 =

zT42Pz41 (z12+z13)

l41 sinα142
, w12 =

zT41Pz42 (z21+z23)

l42 sinα142
, w21 = − z

T
42Pz43 (z31+z32)

l43 sinα243
, w22 =

zT43Pz42 (z21+z23)

l42 sinα243

− zT42Pz43 (z31+z32)

l43 sinα243
.

By considering a small neighborhood of the origin {e1 = 0, e2 = 0, e41 =

0, e42 = 0}, (4.67) can be linearized to

ė4 = A2e4 +B2es, (4.68)
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where A2 = F4(e4)|e4=0,es=0, and B2 = W (e4)|e4=0,es=0. Then, one has

tr(A2) = (−ḡ1 − ḡ2)|e4=0,es=0 < 0,

det(A2)

k41k42
|e4=0,es=0 =

ḡ1ḡ2 − f̄12f̄21

k41k42
|e4=0,es=0

=
l∗41(sinα∗241 sinα∗342 + sin2 α∗342 + sinα∗342 sinα∗341)

l∗41l
∗
42l
∗
43

+
l∗43(sinα∗241 sinα∗342 + sin2 α∗241 + sinα∗241 sinα∗341)

l∗42l
∗
41l
∗
43

− l∗42(sinα∗241 sinα∗341 + sinα∗341 sinα∗342 + sin2 α∗341)

l∗41l
∗
42l
∗
43

.

Then, if det(A2) > 0, one has that A2 is Hurwitz. It can be observed that
det(A2) > 0 if l∗41 > l∗42 and l∗43 > l∗42 hold because on the one hand

l∗43 sinα∗241 sinα∗341 > l∗42 sinα∗241 sinα∗341, l∗41 sinα∗341 sinα∗342 > l∗42 sinα∗341 sinα∗342,

since sinα∗341 sinα∗342 > 0. On the other hand,

sin2 α∗341 = [sinα∗241 cosα∗342 + cosα∗241 sinα∗342]2

= sin2 α∗241 cos2 α∗342 + cos2 α∗241 sin2 α∗342 + 2 sinα∗241 cosα∗342 cosα∗241 sinα∗342,

and

l∗41 sin2 α∗342 > l∗42 sin2 α∗342 cos2 α∗241, l∗43 sin2 α∗241 > l∗42 sin2 α∗241 cos2 α∗342,

since cos2 α∗241 < 0, cos2 α∗342 < 1, and

l∗41 sinα∗241 sinα∗342 + l∗43 sinα∗241 sinα∗342 > 2l∗42 sinα∗241 sinα∗342

>2l∗42 sinα∗241 cosα∗342 cosα∗241 sinα∗342.

since sinα∗241 sinα∗342 > 0 and cosα∗342 cosα∗241 < 1. Based on law of sines,
the conditions l∗41 > l∗42 and l∗43 > l∗42 are equivalent to sinα∗124 > sinα∗214 and
sinα∗423 > sinα∗234, respectively.

Combining (4.29) and (4.68), one has the linearized 4-agent angle error dy-
namics

˙̄e4 =

ñ
ės
ė4

ô
= A4ē4 =

ñ
A1 0

B2 A2

ô ñ
es
e4

ô
. (4.69)

When A1 and A2 are Hurwitz, one has that A4 is also Hurwitz. Then, for an
arbitrary positive definite matrix Q3 ∈ R4×4, there always exists a positive definite



82 4. Formation maneuvering in 2D

matrix P3 ∈ R4×4 such that −Q3 = P3A4 +AT
4 P3. Design the Lyapunov function

candidate as
V3 = ēT

4 P3ē4,

whose time-derivative is

V̇3 = −ēT
4 Q3ē4 6 −λmin(Q3)‖ē4‖2 6 −

λmin(Q3)

λmax(P3)
V3.

Then, one has

‖e4‖2 6 ‖ē4‖2 6
V3

λmin(P3)
6

V3(0)

λmin(P3)
e
− λmin(Q3)

λmax(P3)
t
, (4.70)

which implies that ‖e4‖ also exponentially converges to zero when the four agents’
initial angle errors are in a small neighborhood of the origin {e1 = 0, e2 = 0, e41 =

0, e42 = 0}. To make the calculation of (4.66) valid and W (e4) well-defined,
one has to guarantee that z41(t) 6= ±z42(t), z42(t) 6= ±z43(t),∀t > 0, which are
equivalent to α142(t) 6= 0, π and α243(t) 6= 0, π,∀t > 0, respectively. From (4.70),

one has |e41(t)| 6
√

V3(0)
λmin(P3) , which implies

−
 

V3(0)

λmin(P3)
+ α∗142 6 α142(t) 6

 
V3(0)

λmin(P3)
+ α∗142.

Therefore, if»
V3(0) <

»
λmin(P3) ∗min{π − α∗142, α

∗
142, π − α∗243, α

∗
243},

one obtains 0 < α142(t) < π, 0 < α243(t) < π,∀t > 0, which guarantee the valid-
ness of the calculation of (4.66) since the first three agents are not collinear for ∀t >
0. Then, according to (4.9) and (4.62), one has limt→∞ ṗ4(t) = limt→∞ um4(t) =

limt→∞[µ4(t)z41 + (µ4(t) + µ̃4(t))z42 + µ̃4(t)z43] = limt→∞ ṗ∗4(t). By using (4.63)-
(4.65), one has that the maneuvering defined in (4.13) is achieved.

To guarantee that ‖W (e4)‖ is bounded and control law (4.62) is well-defined,
the collision between agent 4 and agents 1 to 3 needs to be avoided. Similar to
the 3-agent formation case, we conduct the collision analysis by considering l41(t)

which takes agent 1 as an example

l41(t) = l41(0) +

∫ t

0

zT
41(uf1 − uf4 + um1 − um4)dτ. (4.71)
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On the one hand, by using (4.33) and (4.70), one has∫ t

0

zT
41(uf1 − uf4)dτ 6

∫ t

0

2(k1|e1|+ k41|e41|+ k42|e42|)dτ

6
∫ t

0

2(k1

»
e2

1 + e2
2 +
√

2k̄4

»
e2

41 + e2
42)dτ

6
4k1λmax(P1)

λmin(Q1)

 
V1(0)

λmin(P1)
+

4k̄4λmax(P3)

λmin(Q3)

 
2V3(0)

λmin(P3)
,

where k̄4 = max{k41, k42}. On the other hand, by using (4.26) and (4.66), one has∫ t

0

zT
41(um1 − um4)dτ =

∫ t

0

zT
41 (ω∗E + s(τ)I2) (pc1 − pc4)dτ

=

∫ t

0

s(τ)l41(τ)dτ > 0 (4.72)

when s(t) > 0. For the case of s(t) < 0, the conclusion can be similarly analyzed by
following (4.50)-(4.51). Similarly, one has the following proposition.

Proposition 4.9. Consider a 4-agent formation described by (4.9), with the con-
trol (4.12) for agents 1 to 3, the control (4.62) for agent 4, and the mismatches
µi(t), µ̃i(t), i = 1, 2, 3 as designed in (4.26), and µ4(t), µ̃4(t) as designed in (4.66)
and s(t) > 0. If the initial angle errors ei(0), i = 1, 2, 3 and e41(0), e42(0) are
sufficiently small, αi(0) 6= 0, sinα∗124 > sinα∗214, sinα∗423 > sinα∗234, and α∗143 =

α∗142 + α∗243. If l41(0) > 4k1λmax(P1)
λmin(Q1)

√
V1(0)

λmin(P1) + 4k̄4λmax(P3)
λmin(Q3)

√
2V3(0)
λmin(P3) , then no colli-

sion will happen between agents 4 and 1.

Now, we design a general formation maneuver control algorithm for arbitrary
agent i, 4 6 i 6 N

ui =− ki1(αj1ij2 − α∗j2ij3 −
µi
ki1

)(zij1 + zij2)− ki2(αj2ij3 − α∗j2ij3 −
µ̃i
ki2

)(zij2 + zij3)

=− ki1(αj1ij2 − α∗j1ij2)(zij1 + zij2)− ki2(αj2ij3 − α∗j2ij3)(zij2 + zij3)

+ µizij1 + (µi + µ̃i)zij2 + µ̃izij3

=ufi + umi, (4.73)

where µi(t), µ̃i(t) can be similarly designed according to (4.63)-(4.66), and j1, j2, j3 <
i. Under the fact that 4-agent formation achieves the desired shape exponentially,
we suppose for a 4 < k < N , the k-agent formation converges to the desired shape
exponentially. We need to prove that for (k + 1)-agent formation, the angle errors
e(k+1)1 = αj1(k+1)j2 −α∗j1(k+1)j2

and e(k+1)2 = αj2(k+1)j3 −α∗j2(k+1)j3
converges to

zero exponentially. Similar to the proof from (4.61) to (4.70), one has that the an-
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gle errors e(k+1)1 and e(k+1)2 exponentially converge to zero. Therefore, the control
algorithm (4.73) can locally stabilize agent k + 1, i.e., the (k + 1)-agent formation
converges to the desired shape exponentially. So, by using induction, N -agent for-
mation converges to the desired formation shape exponentially. Similarly, the forma-
tion maneuvering is achieved since limt→∞ ṗi(t) = limt→∞ umi(t) = limt→∞ ṗ∗i (t).

B. Measurement-independent mismatches

Similar to the design procedure (4.63)-(4.66), we use the measurement-independent
mismatches to realize the desired maneuvering under the measurements of z4i, i =

1, 2, 3, and the information of desired formation shape pb∗ described in
∑
b(0) is

required to be known in the mismatch design stage.
By applying translation, rotation and scaling simultaneously, one has

µ4z
b∗
41 + (µ4 + µ̃4)zb∗42 + µ̃4z

b∗
43 = vb∗c + ω∗Epb∗c4 + s(t)pb∗c4, (4.74)

where zb∗4j =
pb∗j −p

b∗
4

‖pb∗j −pb∗4 ‖
. Then, mismatches µ4, µ̃4 can be calculated byñ

µ4

µ̃4

ô
=[zb∗41 + zb∗42 z

b∗
42 + zb∗43]−1(vb∗c + ω∗Epb∗c4 + s(t)pb∗c4) (4.75)

which is well-defined when [zb∗41 + zb∗42 z
b∗
42 + zb∗43]−1 is invertible. Since no three

points are collinear in the desired generically angle rigid formation[22, Definition
4], the matrix [zb∗41 + zb∗42 z

b∗
42 + zb∗43] is invertible. Now, we present the main result.

Theorem 4.10. Consider a 4-agent formation described by (4.9), with the con-
trol (4.12) for agents 1 to 3, the control (4.62) for agent 4, and the mismatches
µi, µ̃i, i = 1, 2, 3 as designed in (4.39), and µ4, µ̃4 as designed in (4.75). If the
initial angle error ei(0), i = 1, ..., 3, e41(0), e42(0) and the designed-mismatches are
sufficiently small, αi(0) 6= 0 and ‖pi(0) − pj(0)‖, i 6= j are sufficiently away from
zero and sinα∗124 > sinα∗214, sinα∗423 > sinα∗234, and α∗143 = α∗142 + α∗243, then the
4-agent formation converges exponentially to its desired shape and maneuvers with
the prescribed translation (4.36), rotation (4.4) and scaling (4.5) simultaneously.

Proof. According to Appendix D, one has agent 4’s angle error dynamics

ė4 = F4(e4)e4 +W (e4)es +H4(e4)U4 (4.76)

=

ñ
−ḡ1 f̄12

f̄21 −ḡ2

ô ñ
α142 − α∗142

α243 − α∗243

ô
+

ñ
w11 w12

w21 w22

ô ñ
e1

e2

ô
+

ñ
h11 h12 h13 h14 h15 h16 h17 h18

h21 h22 h23 h24 h25 h26 h27 h28

ô
U4,
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where F4(e4), W (e4) have the same definitions as (4.67), h11 = −zT
42

Pz41
l41 sinα142

z12,

h12 = −zT
41

Pz42
l42 sinα142

z23, h13 = 0, h14 = zT
42

Pz41
l41 sinα142

z42 + zT
41

Pz42
l42 sinα142

z41, h15 =

−zT
42

Pz41
l41 sinα142

z13, h16 = −zT
41

Pz42
l42 sinα142

z21, h17 = 0, h18 = zT
42

Pz41
l41 sinα142

(z42 +

z43) + zT
41

Pz42
l42 sinα142

z43, h21 = 0, h22 = −zT
43

Pz42
l42 sinα243

z23, h23 = −zT
42

Pz43
l43 sinα243

z31,

h24 = zT
42

Pz43
l43 sinα243

(z41 + z42) + zT
43

Pz42
l42 sinα243

z41, h25 = 0, h26 = −zT
43

Pz42
l42 sinα243

z21,

h27 = −zT
42

Pz43
l43 sinα243

z32, h28 = zT
42

Pz43
l43 sinα243

z42 + zT
43

Pz42
l42 sinα243

z43,
U4 = [µ1, µ2, µ3, µ4, µ̃1, µ̃2, µ̃3, µ̃4]T.

Note that ‖es‖ and ‖U4‖ are sufficiently small. Therefore, the angle error
dynamics (4.76) are locally stable when F4(e4)|e4=0 is Hurwitz. To obtain the local
stability of (4.76), by using the similar analysis steps from (4.68) to (4.72), one
has the local stability of angle error dynamics (4.76). Also, when the initial angle
errors are sufficiently small and the initial distances are sufficiently away from zero,
no collision will happen. Similarly, it can be proved that the prescribed formation
maneuvering in terms of translation, rotation and scaling can be achieved. For
agents 4 < i 6 N , under the formation maneuver algorithm (4.73) with constant
mismatches which are similarly designed according to (4.66), one can also prove
that the formation shape and maneuvering can be achieved simultaneously.

Remark 4.11. Note that the formation shape given in Fig. 3.2 is described by the
angles ]ijk, which will be maintained by agent j under the bearing measurements
of zji and zjk. Therefore, the bearing measurements among the first three agents
are undirected, while for agents from 4 to N , the bearing measurements are
directed. In addition, since pbi − pbj = pi− pc− (pj − pc) = pi− pj , the maneuvering
reference point pc can be set as other well-selected point of interest, which is not
necessary the centroid of the formation. Although the results in Theorems 1-4
and Propositions 1-3 are local, this work first realizes formation maneuvering by
controlling interior angles and using bearing measurements.

4.4 Formation maneuvering for double-integrators

Consider in this section that for an N -agent system moving in the plane, the motion
dynamics of its agent i are modeled by double-integrators

ṗi = vi, (4.77)

v̇i = ui, i = 1, ..., N,

where vi ∈ R2 denotes the velocity of agent i. Note that the maneuvering reference
point pc used in rotation (4.4) and scaling (4.5) is usually set as the formation
centroid or a leader agent’s position in practical tasks. Considering the cascading
construction of desired angle rigid formation in section 2.3, we assume in this
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section that agent 1’s position is the maneuvering reference point of the rotational
and scaling motions, i.e., pc = p1. Then, the desired maneuvering velocity for agent
i,∀i ∈ V can be described by

vmi(t) = v∗c + γ∗c e
−tpi1 + ω∗cEpi1, (4.78)

where pi1 = p1 − pi. Therefore, the objective of this section is to design control
input ui under the available information of zij , j ∈ Ni and vi − vmi such that the
formation maneuvering defined in (4.3)-(4.5) can be achieved. In the following,
we consider two cases that the relative velocity v1 − vi can or cannot be measured
by agent i, i = 2, · · · , N , respectively.

4.4.1 The case with relative velocity measurement

Now, we design the maneuvering control algorithm as

ui =v̇mi − ks(vi − vmi)−
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), (4.79)

where v̇mi is the feedforward term for the agent’s double-integrator dynamics
which can be calculated by

v̇mi =(γ∗c I2 + ω∗cE)ṗi1 − γ∗c e−tpi1 (4.80)

=(γ∗c I2 + ω∗cE)(v1 − vi)− γ∗c e−tpi1.

Note that the relative velocity information v1 − vi is included in (4.80).

Theorem 4.12. Consider that N agents of double-integrator dynamics (4.77) are
governed by (4.79), the initial angle and velocity errors are sufficiently small, and the
initial distances are bounded away from zero. The formation maneuvering defined
in (4.2), and (4.6)-(4.8) can be locally achieved if and only if (3.63) holds for
∀i = 1, 4, · · · , N .

Proof. First, we analyze the angle error dynamics and velocity error dynamics of
the closed-loop system under the designed maneuvering control algorithm. In this
maneuvering case, we define the following system state variables

Y = [e1, e2, e41, e42, · · · , eN1, eN2, v
T
1 − vTm1, · · · , vTN − vTmN ]T . (4.81)

Our objective is to prove that Y = 0 is a locally stable equilibrium under (4.79).
Similar to the formation stabilization case, p̈i(0) is bounded if the initial velocity
vi(0) is bounded and lij(0), lik(0), sinαjik(0) are bounded away from zero. There-
fore, ∃T2 > 0 such that lij(t), lik(t), sinαjik(t),∀(j, i, k) ∈ A are bounded away
from zero for t ∈ [0, T2). We first analyze angle error and velocity error dynamics
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for t ∈ [0, T2). According to (3.43), one has

α̇jik =− zTik
Pzij

lij sinαjik
vj − zTij

Pzik
lik sinαjik

vk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vi. (4.82)

Note that the velocity error variable in this case is vi − vmi instead of vi. Therefore,
we rewrite (4.82) into

α̇jik =− zTik
Pzij

lij sinαjik
vj − zTij

Pzik
lik sinαjik

vk + (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vi

=− zTik
Pzij

lij sinαjik
(vj − vmj)− zTij

Pzik
lik sinαjik

(vk − vmk)

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)(vi − vmi)

− zTik
Pzij

lij sinαjik
vmj − zTij

Pzik
lik sinαjik

vmk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)vmi. (4.83)

In the following, we investigate the effect of the maneuverings in the last three
components of (4.83) on the angle dynamics α̇jik. For translational maneuvering
vmi = v∗c ,∀i ∈ V, one has

− zTik
Pzij

lij sinαjik
v∗c − zTij

Pzik
lik sinαjik

v∗c + (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)v∗c = 0.

(4.84)

For scaling maneuvering, one has

− γ∗c zTik
Pzij

lij sinαjik
pj1 − γ∗c zTij

Pzik
lik sinαjik

pk1

+ γ∗c (zTik
Pzij

lij sinαjik
+ zTij

Pzik
lik sinαjik

)pi1 = 0. (4.85)

For rotational maneuvering, one has

−
ω∗cz

T
ikPzijEpj1

lij sinαjik
−
ω∗cz

T
ijPzikEpk1

lik sinαjik
+ ω∗c (

zTikPzij
lij sinαjik

+
zTijPzik

lik sinαjik
)Epi1 = 0,

(4.86)

where we have used the fact that Pzijzij = 0.
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Therefore, (4.84)-(4.86) imply that the maneuvering in terms of translation,
rotation and scaling has no effect on the angle dynamics α̇jik, (j, i, k) ∈ A in (4.83).
This is because the whole formation’s translation, rotation and scaling will not
change the interior angle αjik. Therefore, one still has the similar angle dynamics
α̇jik in (4.83) as the case of formation stabilization (3.42).

Then, we analyze the velocity error dynamics of vi − vmi. By using (4.79), one
has

v̇i − v̇mi = −ks(vi − vmi)−
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik)

which is also similar to the velocity dynamics of formation stabilization due to the
usage of the feedforward term v̇mi in (4.79). Therefore, we obtain the following
overall dynamics

Ẏ =

ñ
0(2N−4)×(2N−4) R(Y )

B(Y ) −ks ⊗ I2N

ô
Y = D3(Y )Y, (4.87)

where R(Y ) and B(Y ) have the same definitions as (3.46) and (3.47). There-
fore, using linearization for (4.87) around Y = 0, one can obtain the local and
exponential convergence of the closed-loop dynamics (4.87) around the desired
equilibrium Y = 0, which is the same as the local and exponential convergence
of (3.48) around X = 0. Now, we extend T2 to infinity to establish the stability
for (4.87). Similar to (3.71)-(3.77), by constructing V2 = Y TP1Y , one has that
no collinearity will happen since (3.73) and (3.77) still hold. The analysis for the
distance change lij is slightly different. Note that (3.74) is changed to

‖vi − vmi‖ 6 ‖Y (t)‖ 6
 

V2(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
, (4.88)

Also, (3.76) is changed to

lij(t) = lij(0) +

∫ t

0

zTij(vj − vi)dτ

> lij(0)−
∫ t

0

(‖vj − vmj‖+ ‖vi − vmi‖+ zTij(vmi − vmj))dτ

> lij(0)− 4

 
V2(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(1− e−

λmin(Q1)

2λmax(P1)
t
) + γ∗c

∫ t

0

e−τ lij(τ)dτ, (4.89)

where the last part γ∗c
∫ t

0
e−τ lij(τ)dτ describes the distance change under scaling

maneuvering. Therefore, when γ∗c > 0, i.e., enlarging the formation, the satisfied
condition (3.78) is enough to guarantee lij(t) > 0 in this case. When γ∗c < 0, i.e.,
shrinking the formation, we need to further analyze how much the shrinking will
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conduct in the last part of (4.89). By using the integration by parts, one has

γ∗c

∫ t

0

e−τ lij(τ)dτ = −γ∗c e−tlij + γ∗c

∫ t

0

e−tdlij

= −γ∗c e−tlij + γ∗2c

∫ t

0

e−2τ lij(τ)dτ

+ γ∗c

∫ t

0

e−tzTij(vj − vmj − vi + vmi)dτ, (4.90)

where −γ∗c e−tlij + γ∗2c
∫ t

0
e−2τ lij(τ)dτ > 0. For the last part of (4.90), one has

γ∗c

∫ t

0

e−tzTij(vj − vmj − vi + vmi)dτ

6|γ∗c |
∫ t

0

(‖vj − vmj‖+ ‖vi − vmi‖)dτ

64|γ∗c |
 

V2(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(1− e−

λmin(Q1)

2λmax(P1)
t
). (4.91)

By summing up (4.89)-(4.91), one has that if

lij(0) > 4(|γ∗c |+ 1)

 
V2(0)

λmin(P1)

λmax(P1)

λmin(Q1)
, (4.92)

then lij(t) > 0. Since V2(0) is sufficiently small, the right side of (4.92) is also
sufficiently small. Therefore (4.92) holds and T2 can be extended to infinity. Then,
it follows that limt→∞ Y (t) = 0, which implies that e1, e2 and ei1, ei2, i = 4, ..., N

are locally and exponentially achieved. By summarizing the above analysis, we
come to the conclusion that the formation maneuvering in terms of translation,
rotation and scaling can be achieved under (4.79).

4.4.2 The case without relative velocity measurement

Now, we consider that the relative velocity information v1 − vi is unavailable for
agent i, i = 2, · · · , N . First, we rewrite (4.80) into

v̇mi =(γ∗c I2 + ω∗cE)(v1 − vi)− γ∗c e−tpi1
=(γ∗c I2 + ω∗cE)[(v1 − vm1)− (vi − vmi)]
− (γ∗c I2 + ω∗cE + γ∗c e

−tI2)pi1. (4.93)

Note that if the formation achieves the desired collective motion, then (v1 − vm1)

and (vi − vmi) converge to zero. This motivate us to investigate whether the



90 4. Formation maneuvering in 2D

following control law

ui =− (γ∗c I2 + γ∗c e
−tI2 + ω∗cE)pi1 − ks(vi − vmi)

−
∑

(j,i,k)∈A
(αjik − α∗jik)(zij + zik), i ∈ V (4.94)

is sufficient to achieve the desired formation shape together with the desired
collective motion. In comparison to the maneuvering control law (4.79), no
relative velocity measurement (v1 − vi) is needed in (4.94).

Theorem 4.13. Consider that N agents of double-integrator dynamics (4.77) are
governed by (4.94), the initial angle and velocity errors are sufficiently small, and the
initial distances are bounded away from zero. The formation maneuvering defined
in (4.2), and (4.6)-(4.8) can be locally achieved if (3.63) holds for ∀i = 1, 4, · · · , N
and the rotational ω∗c and scaling speed γ∗c are sufficiently small.

Proof. By following steps from (4.82)-(4.87), the linearized closed-loop dynamics
under (4.94) will become

Ẏ =(D∗1 +D3)Y = (D∗1 +

ñ
0(2N−4)×(2N−4) 0

0 D4

ô
)Y, (4.95)

where D4 =


0 0 0 · · · 0

−B̄ B̄ 0 · · · 0

−B̄ 0 B̄ · · · 0

−B̄ 0 0 · · · B̄

 and B̄ = γ∗c I2 + ω∗cE + γ∗c e
−tI2. According

to the conclusion in Theorem 1, under condition (3.63), D∗1 is Hurwitz. Now, we
design the Lyapunov function candidate

V3 =
1

2
Y TP1Y. (4.96)

Taking the time-derivative of (4.96) yields

V̇3 = −Y TQ1Y + Y T (D3P1 + P1D
T
3 )Y (4.97)

6 −λmin(Q1)Y TY + 2‖P1‖‖D3‖Y TY
6 − [λmin(Q1)− 16(N − 1)(|γ∗c |+ |ω∗c |)‖P1‖]Y TY,

where we used the fact that ‖D3‖2 6 (4N − 4)‖D3‖max = 8(N − 1)(2|γ∗c |+ |ω∗c |).
Because Q1 is an arbitrary given matrix, one can select sufficiently small ‖P1‖ and
2|γ∗c |+ |ω∗c | such that λmin(Q1) > 16(N − 1)(2|γ∗c |+ |ω∗c |)‖P1‖ holds. According to
(3.71), one has P1 =

∫∞
0
eD
∗T
1 tQ1e

D∗1 tdt where Re(λ(D∗1)) < 0 since D∗1 is Hurwitz.
According to (3.50), one can select proper ks to obtain smaller ‖P1‖. Therefore,
by properly choosing ks, γ

∗
c , ω

∗
c , one obtains that V̇3 < 0. Since (4.97) implies



4.5. Simulation examples 91

exponential stability, the convergence analysis of the closed-loop dynamics can
be extended to infinity, which implies that limt→∞ Y (t) = 0. By following similar
steps as Theorem 4.12, one also obtains that the formation maneuvering in terms
of translation, rotation and scaling can be achieved under (4.94).

Remark 4.14. To make the formation maneuvering laws (4.79) and (4.94) imple-
ment in all agents’ local coordinate frame, the desired translational maneuvering
velocity v∗c needs to be described in each agent’s local coordinate frame in the
design stage. But this is not required for rotation and scaling maneuverings since
ω∗c and γ∗c are scalars which are independent on the orientation of coordinate
frames.

4.5 Simulation examples

In this section, to verify the effectiveness of the proposed formation maneuver
control algorithms, we present numerical simulation examples by conducting the
4-agent obstacle avoidance task. The desired angles describing the formation
shape are set as α∗1 = π/4, α∗2 = π/2, α∗3 = π/4, α142 = arctan 0.5, α243 =

arctan 0.5. The initial positions of all agents are p1(0) = [0.8;−3.2], p2(0) =

[0.1;−4.4], p3(0) = [−1.4;−3.3], p4(0) = [0.1;−5.3]. The positions described in∑
b∗ are pb∗1 = [0.9619; 4.6234], pb∗2 = [−0.1706; 3.1289], pb∗3 = [−1.6666; 4.2629],

pb∗4 = [0.0134; 1.8154], which satisfy all the desired angle constraints. The control
gains are set to be ki = 1, i = 1, 2, 3, k41 = k42 = 1. For the case of time-varying
mismatches, the maneuvering command velocity is v∗c = [0; 1.2], t ∈ [0, 9]; v∗c =

[1; 0], t ∈ [11, 20]; ω∗ = −π8 , t ∈ [7, 11]; s(t) = −0.8e−0.4(t−12), t ∈ [12, 13]; s(t) =

0.8e−0.4(t−16), t ∈ [16.5, 17]. The corresponding simulation results are shown in Fig.
4-5.

For the case of constant mismatches, the maneuvering command velocity is
vb∗c = [0.5795; 0.9933], t ∈ [0, 9]; vb∗c = [[1.2957; 0.7558], t ∈ [13, 20]; ω∗ = −π8 , t ∈
[9, 13]; s(t) = −0.4e−0.4(t−12), t ∈ [14, 15]; s(t) = 0.4e−0.4(t−12), t ∈ [16.5, 17].

The corresponding simulation results are shown in Fig. 6-7.
From the above simulation results, it is clear that in both the constant and

time-varying mismatch cases, the translation, rotation and scaling maneuvering
can be conducted simultaneously. The angle errors converge at an exponential
speed in both cases.

4.6 appendices

Appendix A: For Section III. B, we use the dot product of two bearings to obtain the
angle error dynamics. In the following, we consider the maneuvering of translation,
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Figure 4.4: The formation maneuvering trajectories under measurement-dependent mis-
matches.
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Figure 4.5: The evolution of angle errors under measurement-dependent mismatches.

rotation and scaling simultaneously. Take agent 1 as an example,

d(cosα1)

dt
= − sin(α1)α̇1 =

d(zT
12z13)

dt
= (ż12)Tz13 + (z12)Tż13. (4.98)
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Figure 4.6: The formation maneuvering trajectories under measurement-independent
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Figure 4.7: The evolution of angle errors under measurement-independent mismatches.

Considering that for x ∈ R2, x 6= 0, d
dt (

x
‖x‖ ) =

I2− x
‖x‖

xT

‖x‖
‖x‖ ẋ and denoting Px/‖x‖ =

I2 − x
‖x‖

xT

‖x‖ , one has

ż12 =
Pz12
l12

(ṗ2 − ṗ1). (4.99)
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By using (4.12), one has

ż12 =
Pz12
l12

(u2 − u1) (4.100)

=
Pz12
l12

[−k2(α2 − α∗2)(z23 + z21) + µ2(t)z23 + µ̃2(t)z21

+ k1(α1 − α∗1)(z13 + z12)− µ1(t)z12 − µ̃1(t)z13].

According to (4.26), one has

µ2(t)z23 + µ̃2(t)z21 − µ1(t)z12 − µ̃1(t)z13

=v∗c + (ω∗E + s(t)I2)pc2 − v∗c − (ω∗E + s(t)I2)pc1

= (ω∗E + s(t)I2) (pc2 − pc1). (4.101)

Substituting (4.101) into (4.100) yields

(ż12)Tz13 =[k1(α1 − α∗1)(z13 + z12)− k2(α2 − α∗2)(z23 + z21) (4.102)

+ (ω∗E + s(t)I2)(pc2 − pc1)]T
Pz12
l12

z13

=
1

l12
[k1(sin2 α1)(α1 − α∗1)− k2(sinα1 sinα2)(α2 − α∗2)]− ω∗zT

12EPz21z13,

where we have used the fact that Pxx = 0 for all x ∈ R2 and s(t)l12z
T
12Pz21z13 = 0.

Since xTEx = 0 for all x ∈ R2, one has

−ω∗zT
12EPz21z13 = −ω∗zT

12Ez13.

Similarly, one can get

(z12)Tż13 =ω∗zT
12Ez13 +

1

l13
[k1(sin2 α1)(α1 − α∗1) (4.103)

− k3(cosα2 + cosα1 cosα3)(α3 − α∗3)].

Substituting (4.102) and (4.103) into (4.98), one has the angle error dynamics of
agent 1

α̇1 =− (sinα1)(
k1

l12
+
k1

l13
)(α1 − α∗1) + k2

sinα2

l12
(α2 − α∗2) + k3

sinα3

l13
(α3 − α∗3).

(4.104)



4.6. appendices 95

By using the same analysis steps, one has

α̇2 =− (sinα2)(
k2

l21
+
k2

l23
)(α2 − α∗2) + k1

sinα1

l21
(α1 − α∗1) + k3

sinα3

l23
(α3 − α∗3),

(4.105)

α̇3 =− (sinα3)(
k3

l31
+
k3

l32
)(α3 − α∗3) + k1

sinα1

l31
(α1 − α∗1) + k2

sinα2

l32
(α2 − α∗2).

(4.106)

Writing (4.104), (4.105) and (4.106) into a compact form, one has the overall angle
error dynamics (4.27), which are independent of the time-varying mismatches µi(t)
and µ̃i(t).

Appendix B: For Section III. C, to obtain the angle error dynamics of agent 1
under constant mismatches, by using (4.99) and (4.12), one has

ż12 =
Pz12
l12

[−k2(α2 − α∗2)(z23 + z21) + µ2z23 + µ̃2z21

+ k1(α1 − α∗1)(z13 + z12)− µ1z12 − µ̃1z13].

Then, one has

(ż12)Tz13 =
1

l12
[k1(sin2 α1)(α1 − α∗1)− k2(cosα3 + cosα1 cosα2)×

(α2 − α∗2)− µ̃1 sin2(α1) + µ2(cosα3 + cosα1 cosα2)].

Similarly, one can get

(z12)Tż13 =
1

l13
[k1(sin2 α1)(α1 − α∗1)− k3(cosα2 + cosα1 cosα3)×

(α3 − α∗3)− µ1 sin2(α1) + µ̃3(cosα2 + cosα1 cosα3)].

Using (4.98), one has

α̇1 =− (sinα1)(
k1

l12
+
k1

l13
)(α1 − α∗1) + k2

sinα2

l12
(α2 − α∗2)

+ k3
sinα3

l13
(α3 − α∗3) +

µ̃1 sinα1 − µ2 sinα2

l12
+
µ1 sinα1 − µ̃3 sinα3

l13
.

(4.107)
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Similarly, we can also get

α̇2 =− (sinα2)(
k2

l21
+
k2

l23
)(α2 − α∗2) + k1

sinα1

l21
(α1 − α∗1)

+ k3
sinα3

l23
(α3 − α∗3) +

µ̃2 sinα2 − µ1 sinα1

l21
+ (µ2 sinα2 − µ̃3 sinα3)/l23

α̇3 =− (sinα3)(
k3

l31
+
k3

l32
)(α3 − α∗3) + k1

sinα1

l31
(α1 − α∗1) (4.108)

+ k2
sinα2

l32
(α2 − α∗2) +

µ̃3 sinα3 − µ1 sinα1

l31
+
µ3 sinα3 − µ̃2 sinα2

l32
.

Writing (4.107)-(4.108) in a compact form, one has the angle error dynamics
given in (4.40).

Appendix C: For Section IV. A, we use a similar approach to obtain the angle
error dynamics of e41 and e42 for agent 4 under the control algorithm (4.62). In
the following, we consider the maneuvering of translation, rotation and scaling
simultaneously. According to (4.98), one has

α̇142 =
zT

42ż41 + zT
41ż42

− sinα142
. (4.109)

By using (4.12) and (4.62), one has

ż41 =
Pz41
l41

(ṗ1 − ṗ4) =
Pz41
l41

(uf1 − uf4 + um1 − um4).

By substituting the definitions of ufi and umi, one has

zT
42

Pz41
l41

(uf1 − uf4) =
−zT

42Pz41(z12 + z13)e1 + k41(α142 − α∗142) sin2 α142

l41

+
k42(α243 − α∗243)(sinα142)(sinα142 + sinα143)

l41
. (4.110)

On the other hand, one has

zT
42

Pz41
l41

(um1 − um4) =
zT

42Pz41(ω∗E + s(t)I2)(p1 − p4)

l41
= ω∗zT

42Ez41, (4.111)

where we have used the fact that Pz41z41 = 0 and zT
41Ez41 = 0. Similarly, one also
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has

zT
41ż42 =zT

41

Pz42
l42

(uf2 − uf4 + um2 − um4)

=
−zT

41Pz42(z21 + z23)e2 + k41(α142 − α∗142) sin2 α142

l42

+
k42(α243 − α∗243)(− sinα142 sinα243)

l42
+ ω∗zT

41Ez42. (4.112)

By substituting (4.110), (4.111) and (4.112) into (4.109), one has the dynamics
of α142

α̇142 =− (sinα142)(
k41

l41
+
k41

l42
)(α142 − α∗142)− k42(α243 − α∗243)(sinα142 + sinα143)

l41

+
k42(α243 − α∗243) sinα243

l42
+
zT

41Pz42(z21 + z23)e2

l42 sinα142
+
zT

42Pz41(z12 + z13)e1

l41 sinα142
.

(4.113)

α̇243 =− (sinα243)(
k42

l43
+
k42

l42
)(α243 − α∗243)−

uT
f2Pz42z43

l42 sinα243

− k41(α142 − α∗142)(sinα243 + sinα143)

l43

+
k41(α142 − α∗142) sinα142

l42
−
uT
f3Pz43z42

l43 sinα243
. (4.114)

By combining (4.113) and (4.114), one has the angle error dynamics given
in (4.67), which are independent of the time-varying mismatches µi(t), µ̃i, i =

1, · · · , 4.

Appendix D: For Section IV. B, by using the same approach, one has

ż41 =
Pz41
l41

(ṗ1 − ṗ4) =
Pz41
l41

(uf1 − uf4) +
Pz41
l41

(um1 − um4).

Then, one obtains

(ż41)Tz42 =
uT
f1Pz41z42

l41
+
k41(α142 − α∗142) sin2 α142

l41
+ zT

42

Pz41
l41

(um1 − um4)

+
k42(α243 − α∗243)(sin2 α142 + sin2 α142 cosα243 + cosα142 sinα142 sinα243)

l41
.
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By using the same approach, one can also has

zT
41ż42 =

zT
41Pz42uf2

l42
− zT

41

Pz42
l42

u4 + zT
41

Pz42
l42

(um2 − um4)

=
k41(α142 − α∗142) sin2 α142

l42
+ zT

41

Pz42
l42

(um2 − um4)

+
k42(α243 − α∗243)(− sinα142 sinα243)

l42
+
uT
f2Pz42z41

l42
. (4.115)

Using (4.109), one has the dynamics of α142 and α243

α̇142 =− (sinα142)(
k41

l41
+
k41

l42
)(α142 − α∗142)− k42(α243 − α∗243)(sinα142 + sinα143)

l41

+
k42(α243 − α∗243) sinα243

l42
−
uT
f2Pz42z41

l42 sinα142
−
uT
f1Pz41z42

l41 sinα142

− zT
42

Pz41
l41 sinα142

(um1 − um4)− zT
41

Pz42
l42 sinα142

(um2 − um4). (4.116)

α̇243 =− (sinα243)(
k42

l43
+
k42

l42
)(α243 − α∗243)− k41(α142 − α∗142)(sinα243 + sinα143)

l43

+
k41(α142 − α∗142) sinα142

l42
−
uT
f3Pz43z42

l43 sinα243
− zT

42

Pz43
l43 sinα243

(um3 − um4)

−
uT
f2Pz42z43

l42 sinα243
− zT

43

Pz42
l42 sinα243

(um2 − um4). (4.117)

By substituting umi, i = 1, · · · , 4 from (4.12) and (4.62) into (4.116) and
(4.117), one has the angle error dynamics given in (4.76).

4.7 Concluding remarks

This chapter has realized the formation maneuver control in 2D by using the
designed-mismatch angle approach. The formation has been described by angles
and constructed from a triangular shape and grown with two angle constraints for
each newly added agent. Two types of designed-mismatches have been investigated:
measurement-dependent case and measurement-independent case. For both cases,
the formation maneuver control algorithms have been proposed to realize the
desired maneuvering. To analyze the stability of the angle errors, the angle error
dynamics have been derived by using the dot product of two bearings.
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Angle rigidity and formation
control in 3D





Chapter 5

Angle rigidity in 3D

This chapter establishes the notion and properties of 3D angle rigidity for
multi-point frameworks, and then designs control laws to stabilize angle rigid

formations of mobile agents in 3D. Angles are defined using the interior angles
of triangles within the given framework, which are independent of the choice of
coordinate frames, can be conveniently measured using monocular cameras, and
thus are fundamentally different from the bearings, which depend on the choice of
coordinate systems. We show that 3D angle rigidity is a local property, which is in
contrast to the 3D bearing rigidity as has been proved to be a global property in the
literature. We show how to construct some classes of 3D angle rigid frameworks
by adding repeatedly new points to the original small angle rigid framework with
carefully chosen angle constraints. Furthermore, we also investigate how to merge
two 3D angle rigid frameworks. We pay special attention to angle rigidity of convex
polyhedra.

5.1 Introduction

Distance rigidity has been first defined for frameworks in a d-dimensional space
whose only allowed smooth motions are those that preserve the distance be-
tween every pair of its points [9]. The necessary and sufficient condition for a
generic framework’s rigidity is closely associated with the dimension d [9]. For
the necessary and sufficient condition for global rigidity, it has been proven that
Hendrickson’s conjecture is true for d = 1, 2 but false for d > 3 [26, 50]. Bearing
rigidity has been established by using bearing constraints [101]. When all bearings
are described in the coordinate frames in Rd with the same orientation, it has been
shown that local bearing rigidity implies global bearing rigidity for an arbitrary
d. However, this is not the case for angle rigidity, which has been developed in
2D in Chapter 2. When signed angles are employed in 2D, it has been shown in
Chapter 2 that the resulting angle rigidity is in fact not a global property. Note that
angle rigidity in 3D is more complicated and its related properties have not been
adequately studied before in the literature.
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5.2 Angularity and its rigidity in 3D

The notion of “angularity” has been introduced in Chapter 2 to study angle rigidity
in 2D. We now extend it to 3D. All the discussions in this chapter are confined to
3D and the right-hand rule applies to all rotation operations of vectors.

5.2.1 Angularity

The definitions of vertex set V , angle set A in 3D have the same definitions as in 2D.
Now consider the embedding of the vertex set V in R3 through which each vertex i
is associated with a distinct position pi ∈ R3 and let p = [pT

1 , · · · , pT
N ]T ∈ R3N be

the configuration of all the vertices. Then the combination of the vertex set V, the
angle set A and the position vector p is an angularity A(V,A, p) in 3D. As shown
in Fig. 5.1, an element (j, i, k) in A, when pi, pj and pk are distinct, corresponds
to the interior angle formed by the rays

−→
ij and

−→
ik; more specifically, using the

position vector p, the angle ]jik ∈ [0, π] corresponding to the triplet (j, i, k) in A
can be calculated by

]jik = arccos

Å
(pj − pi)T(pk − pi)
‖pj − pi‖‖pk − pi‖

ã
. (5.1)

where ]jik = ]kij which is different from the 2D case. In 3D, we define the
direction vector bij =

pj−pi
‖pj−pi‖ starting from pi and pointing towards a different

position pj .

jik
i.

j

k
m

. .
.

jim

Figure 5.1: Angles used in defining 3D angle rigidity

5.2.2 Angle rigidity

Before defining angle rigidity, we give the definitions of equivalence and congruence
for two angularities in 3D.
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Definition 5.1. [22] We say two angularities A(V,A, p) and A′(V,A, p′) in 3D with
the same V and A are equivalent if

]jik(pj , pi, pk) = ]jik(p′j , p
′
i, p
′
k) for all (j, i, k) ∈ A.

We say that A and A′ are congruent if

]jik(pj , pi, pk) = ]jik(p′j , p
′
i, p
′
k) for all j, i, k ∈ V.

Although Definitions 5.1 is similar to Definition 2.1, they are inherently different
because the angle in 2D is defined with direction but not in 3D. Then, we have the
same definitions for global angle rigidity and angle rigidity in 3D as Definitions 2.2
and 2.3. Note that global angle rigidity always implies angle rigidity in 3D; however,
the inverse is not necessarily true. Note that this is different from bearing rigidity
for which global bearing rigidity and bearing rigidity are equivalent [36, 101].

Theorem 5.2. An angle rigid angularity A(V,A, p) in 3D is not necessarily globally
angle rigid.

We prove this theorem by constructing an angularity that is angle rigid but
not globally angle rigid. Consider the angularity A(V,A, p) in Fig. 5.2 with
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Figure 5.2: Flex ambiguity in angle rigid angularity

V = {1, 2, 3, 4}, A = {(1, 3, 2), (3, 1, 2), (1, 4, 2), (1, 4, 3), (2, 4, 3)}, and the embed-
ding p1 = [0, 0, 0]T, p2 = [0, 3, 0]T, p3 = [4, 5, 0]T, p4 = [2, 4, 2.5]T. Then, the
corresponding angles ]132,]312,]142,]341,]243 can be calculated by using
(5.1).

We first check that A(V,A, p) is angle rigid. In 4123, one can uniquely deter-
mine ]123 = π − ]132 − ]312, which implies that the interior angles in 4123

are uniquely determined. Should point 4’s position be uniquely determined by
]142,]143,]243, the other angles formed by 4 and 1,2,3 would also be uniquely
determined. To check the uniqueness of point 4 under ]142,]143,]243, we first
show the surface which satisfies the angle constraint of ]142 given points 1 and
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2. The angle constraint of ]142 in 3D gives rise to a closed surface (Fig.5.3 (b))
formed by rotating the major arcı12 along the line 12 in Fig.5.3 (a). Given points 1,

4

2 1

142 

(a) Angle in 2D (b) Angle in 3D

Figure 5.3: Angle in 2D and 3D

2 and 3 and angles ]142,]143,]243, point 4 can be determined by three surfaces.
By numerically checking the intersections of these three surfaces in Fig. 5.4, one

Figure 5.4: Intersection of three surfaces

can see that there are four separate intersection points on these three surfaces.
Therefore, when p1, p2, p3, p4 are locally perturbed, there is only one unique posi-
tion for 4 in the neighborhood of its current position because these four intersection
points are separate. So, the angularity is angle rigid.

We now show that A(V,A, p) is not globally angle rigid. By perturbing p4 in R3,
one finds another point p′4 = [0.0802, 4.0778, 1.4765]T which satisfies all the angle
constraints associated with A together with p1, p2, p3. This flex ambiguity implies
that A is not globally angle rigid. �

Note that non-generic embeddings of p in R3 may change the rigidity of an
angularity. Consider the three different embeddings of the following 4-vertex
angularity.

When ]213 = 0,]143 = 0 as shown in Fig 4.(a), the angularity is angle rigid
but not globally angle rigid since if 2 and 3 swap their positions, ]213,]143 remain
the same but ]234 changes by π. On the other hand, Fig. 4(b) shows that when the
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Figure 5.5: Non-generic p changes rigidity

same two angles are assigned to be ]213 = π,]143 = π, the angularity becomes
globally angle rigid according to Definition 2.2. Note that in the above two cases,
all the four points are collinear. When only three points are collinear as in Fig
4(c), this angularity is in general flexible if fewer than 4 angle constraints are given
according to 2D angle rigidity in Chapter 2 since points 1,2,3,4 are in a plane in
this case. By giving three generic angles (e.g., not 0 or π) for ]213,]143,]413

and one non-generic angle ]234 = π in Fig. 4(c), the angularity becomes globally
angle rigid because ]124 = π − ]213 − ]143 − ]413, ]132 = ]413 + ]143 and
]134 = π − ]132 are all uniquely determined. However, 4 vertices in general form
a tetrahedron in 3D. To rule out non-generic situations for p, the notion of generic
positions can be utilized [22, 28].

When p is generic, e.g., no three points are collinear and no four points are on a
circle, angle rigidity only depends on V andA, which is also called generic rigidity of
A(V,A, p). Now we provide some sufficient conditions for an angularity to be angle
rigid or globally angle rigid. First, for two angularities A(V,A, p) and A′(V ′,A′, p′),
we say A is a sub-angularity of A′ if V ⊂ V ′, A ⊂ A′ and p is the corresponding
sub-vector of p′. For the smallest angularities with only three vertices, there is no
difference between generic angle rigidity and generic global angle rigidity.

Lemma 5.3. For a 3-vertex angularity in 3D, if it is generically angle rigid, it is also
generically globally angle rigid.

Proof. This is straightforward by following the proof in 2D angle rigidity in Chapter
2.

Now, we develop the vertex addition operations for 3D angle rigidity to construct
an angle rigid angularity from the smallest 3-vertex angularity. Towards this end,
we first define some related notions.

Definition 5.4. For a given angularity A(V,A, p), we say that a new vertex i posi-
tioned at pi is linearly constrained with respect to A if there is j ∈ V such that pi 6= pj
and pi is constrained to be on a ray, which is fixed once pj is fixed, starting from pj;
we also say i is conically constrained with respect to A if there are j, k ∈ V such
that {pi, pj , pk} is generic and pi is constrained to be on a cone, which is fixed once
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pj and pk are fixed, with pj as the cone’s apex and
−→
jk as the cone’s axis; finally we

say i is near-spherically constrained with respect to A if there are j, k ∈ V such that
{pi, pj , pk} is generic and pi is constrained to be on a near-spherical surface, which is
fixed once pj and pk are fixed, with jk in the surface’s rotation axis. For convenience,
we also simply say i’s angle constraint is linear, conic and near-spherical in the above
three cases, respectively.

Definition 5.5. For four generic points pi, pj , pk, pm, we say i, j, k are in a coun-
terclockwise (resp. clockwise) direction with respect to m if the signed volume
of the tetrahedron formed by pm and pi, pj , pk is positive (resp. negative), i.e.,

Vm−ijk =
(pi−pm)T[(pj−pm)×(pk−pm)]

6 > 0 where × denotes the cross product. Corre-
spondingly, when the sign of the tetrahedron is fixed to be positive (resp. negative), we
say the four points are under a counterclockwise (resp. clockwise) constraint.

Remark 5.6. Two non-coincident conic constraints sharing the same apex pj will
lead to two cones intersecting at no more than two rays, denoted by

−→
ji1 and

−→
ji2.

Since
−→
ji1 and

−→
ji2 are symmetric with respect to the plane formed by the two cones’

rotation axes
−→
jk1 and

−→
jk2, one has that Vi1−jk1k2 and Vi2−jk1k2 have different signs.

Therefore, each linear constraint can be obtained by two conic constraints with a
common apex and an associated counterclockwise constraint.

Definition 5.7 (Type-I vertex addition). For a given angularity A(V,A, p), we say
the angularity A′ with the augmented vertex set {V ∪ {i}} is obtained from A through
a Type-I vertex addition if the new vertex i’s constraints with respect to A contain at
least one of the following:
Case 1: two linear constraints, not aligned but intersecting, each of which is associated
with three vertices in V, e.g.,

−→
j1i and

−→
j2i in Fig. 5.6.(a);

Case 2: one linear constraint
−→
j1i and one conic constraint whose rotation axis j1j2

passes through the linear constraint ray’s starting point pj1 .

Definition 5.8 (Type-II vertex addition). For a given angularity A(V,A, p), we say
the angularity A′ with the augmented vertex set {V ∪ {i}} is obtained from A through
a Type-II vertex addition if the new vertex i’s constraints with respect to A contain at
least one of the following:
Case 1: three near-spherical constraints associated with three vertices {j1, j2, k1} in V ,
and {pi, pj1 , pj2 , pk1} are generic;
Case 2: two near-spherical constraints and one conic constraint associated with three
vertices {j1, j2, k1} in V, and {pi, pj1 , pj2 , pk1} are generic.

Now we are ready to present a sufficient condition for global angle rigidity
using Type-I vertex addition.

Proposition 5.9. An angularity in 3D is globally angle rigid if it can be obtained
through a sequence of Type-I vertex additions starting from a generically angle rigid
3-vertex angularity.
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Figure 5.6: Type-I vertex addition and Type-II vertex addition

Proof. According to Lemma 5.3, a generically angle rigid 3-vertex angularity is
globally angle rigid. Consider the two cases in the Type-I vertex addition. If
case 1 applies, each linear constraint corresponds to a ray according to Definition
5.5. Then the position pi of the newly added vertex i is unique since two rays,
not aligned, starting from two different points may intersect only at one point;
if case 2 applies, pi is again unique since a ray starting from the axis of a cone
can have only one intersection with the cone. Therefore, pi is always globally
uniquely determined, after which all the involved angles are also globally uniquely
determined. Then, iteratively, after a sequence of type-I vertex additions, the
obtained angularity is globally angle rigid.

In comparison, type-II vertex additions can only guarantee angle rigidity instead
of global angle rigidity.

Proposition 5.10. An angularity in 3D is angle rigid if it can be obtained through a
sequence of Type-II vertex additions starting from a generically angle rigid 3-vertex
angularity.

The proof can be easily constructed following similar arguments as those for
Proposition 5.9 and Theorem 5.2. The only difference is that pi now may have
multiple isolated solutions and is only unique locally. Also note that only two types
of constraints are defined in Type-II vertex addition operation in Definition 5.8, but
there are more possible combinations of constraints which can also guarantee a
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locally unique point pi.

Remark 5.11. Note that in Type-II vertex addition, we further require the positions
of the three associated vertices in A to be generic. Otherwise, the position of the
added vertex i is not locally unique. For example, in Fig. 5.6(c), if j1, j2, k1 are
collinear, then the solution of pi under the given three near-spherical constraints
will be a circle which can be obtained by rotating i in the triangle 4ij1j2 along
j1j2.

Corollary 5.12. For an angularity A(V,A, p), if there exists an angle rigid (resp.
globally angle rigid) sub-angularity A′(V,A′, p) with A′ ⊂ A, then A(V,A, p) is also
angle rigid (resp. globally angle rigid).

Proof. Since the vertex set in the sub-angularity A′ is the same as A, it is straight-
forward from Definitions 2.2 and 2.3 that angle rigidity of the sub-angularity A′

implies angle rigidity of A.

Remark 5.13. The associated counterclockwise direction constraint introduced in
Definition 5.5 can be used to remove the reflection ambiguity such that the position
of the added vertex i in the Type-I vertex addition operation (Definition 5.7) can
be globally uniquely determined. But this constraint is not sufficient to make the
position of the added point in Type-II vertex addition operation (Definition 5.8)
globally uniquely determined. An example is given in Fig. 5.2, where points 1,2,3
are in the clockwise direction with respect to both points 4 and 4’. In other words,
not only reflection ambiguity but also flex ambiguity may exist in Type-II vertex
addition operation.

5.2.3 Merging two angle rigid angularities

After introducing how to add one vertex to an angularity in Propositions 5.9 and
5.10, we now investigate how to add 3 vertices to an angularity, which becomes
useful later for merging two angle rigid angularities.

Definition 5.14 (3-vertex addition operation). For a given angularity A(V,A, p) and
three new vertices {i1, i2, i3}, we say that the angularity A′ with the augmented vertex
set {V ∪ {i1, i2, i3}} is obtained from A through a 3-vertex addition operation if the
new vertices’ constraints with respect to A contain: two unaligned linear constraints
for i1, two unaligned linear constraints for i2, and one conic constraint and one
associated counterclockwise constraint Vi3−i2i1k1 for i3 with i1 or i2 being the cone’s
apex and k1 in the cone’s rotation axis. We further denote the angle set corresponding
to these added angle constraints by A{i1,i2,i3}.

Now we merge a 3-vertex generically angle rigid angularity to a globally angle
rigid angularity by the 3-vertex addition operation.



5.2. Angularity and its rigidity in 3D 109

l

2
3

i1

…...

j1

k1

j2

k4

k2

k3

i2

i3

Figure 5.7: The 3-vertex addition operation

Proposition 5.15. For a globally angle rigid angularity A(V,A, p) and a 3-vertex
generically angle rigid angularity A3({i1, i2, i3},A3, [p

T
i1
, pT
i2
, pT
i3

]T), if one merges A
and A3 by adding the vertices i1, i2, i3 to A through the 3-vertex addition operation,
then the merged angularity A′(V ∪ {i1, i2, i3},A∪A3 ∪A{i1,i2,i3}, [pT, pT

i1
, pT
i2
, pT
i3

]T)

is globally angle rigid.

Proof. Note that the positions of the added vertices i1 and i2 are globally unique
according to Proposition 5.9 (case 1 of Type I vertex addition). After pi1 and pi2
are fixed, the vertex i3 is constrained on the intersection of two cones with i1i2
as those two cones’ rotation axis because A3 is generically angle rigid and ]i3i1i2
and ]i3i2i1 are fixed. By further using the given conic constraint for i3 together
with the associated counterclockwise constraint, one has that the position of the
added vertex i3 is also globally unique according to Proposition 5.9 (case 2 of
Type-I vertex addition).

Fig. 5.7 also shows the original angle constraints to realize the 3-vertex addition
operation. Note that the number of these angle constraints in Fig. 5.7 is 7. This is
because the total degrees of freedoms for vertices i1, i2, i3 in 3D is 9, and at least
2 angle constraints are needed to make A3 generically angle rigid. Thus, at least
9-2=7 angle constraints related to i1, i2, i3 are needed to merge A3 with A. Now
we are ready to discuss how to merge two angle rigid angularities as shown in Fig.
5.8.

Proposition 5.16. Suppose that the angularity A1(V1,A1, p) is globally angle rigid
and A2(V2,A2, p

′) with V1 ∩ V2 = ∅ has a sub-angularity A′2(V2,A′2, p′) which can
be obtained through a sequence of Type-I vertex additions from a generically angle
rigid 3-vertex angularity A3({i1, i2, i3},A3, [p

T
i1
, pT
i2
, pT
i3

]T). If one merges A1 and A2

by adding the vertices i1, i2, i3 to A1 through the 3-vertex addition operation, then
the merged angularity A′′(V1 ∪ V2,A1 ∪ A2 ∪ A{i1,i2,i3}, [pT, p′T]T) is globally angle
rigid.
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Figure 5.8: Merging two angle rigid angularities

Proof. First, by adding the vertices i1, i2, i3 to A1 through the 3-vertex addition
operation, one has global angle rigidity of the merged angularity with augmented
vertex set {V1∪{i1, i2, i3}} according to Proposition 5.15. Since A′2 can be obtained
through a sequence of Type-I vertex additions from A3, one has global angle rigidity
of the angularity A′1−2(V1∪V2,A1∪A′2∪A{i1,i2,i3}, [pT, p′T]T) after merging A1 and
A′2 according to Proposition 5.9. Because the angularity A′1−2 is a sub-angularity
of A′′, the merged angularity A′′ is globally angle rigid according to Corollary
5.12.

5.2.4 Angle rigidity of convex polyhedron

Note that Type-I, Type-II and 3-vertex addition operations are developed in Subsec-
tions 5.2.2, 5.2.3 to check angle rigidity of the angularity which can be sequentially
constructed from a triangle. However, not all angularities can be constructed
through such sequential operations, e.g., a convex polyhedron1 with angle con-
straints2 all on its surfaces. As is well known, distance rigidity of convex polyhedra
is one of the oldest geometric problems and has been studied by Euler [38], Cauchy
[18], and Gluck [40], to name a few. Although many distance rigidity-related
results have been obtained for convex polyhedra, the problem of angle rigidity of
convex polyhedra has not been investigated so far. In this subsection, we discuss
angle rigidity of convex polyhedra. Before presenting the results, we first define
the angularity corresponding to a convex polyhedron and provide some related
lemmas.

For a convex polyhedron P, we define the corresponding angularity A(V,A, p),
where V is the vertex set consisting of all the vertices of P, A is the angle set
consisting of all the angles of the faces of P, and p is the position vector of the 3D
embedding of the vertices in V . Define the angle function fA(p) := [f1, · · · , fM ]T ∈

1We only consider closed polyhedra in this thesis.
2Note that for a closed polyhedron, one can easily distinguish the inside that its surfaces enclose

from its outside, so it is possible to define the positive directions of the faces to be the normals pointing
outwards. Therefore, the angle constraints on the surfaces of such a polyhedron can be associated with
the clockwise or counterclockwise directions.
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RM for the angularity A(V,A, p) where M = |A|, fm : R9 → [0, π], m = 1, · · · ,M ,
is the mapping from the position vector [pT

i , p
T
j , p

T
k ]T of the mth element (i, j, k) in

A to the angle ]ijk ∈ [0, π].

Lemma 5.17 ([6], Section 10.3.2, Theorem 1). If all angles on the faces of a convex
polyhedron P remain constant when A is perturbed, then all dihedral angles of P
remain constant as well.

Lemma 5.18 ([6], Section 10.4.1, Theorem 1). If all edge lengths, angles in faces
and dihedral angles of a convex polyhedron P remain constant under a perturbation
of A, then the perturbation must be a translation or rotation of A.

Now, we have the following result.

Theorem 5.19. The angularity A(V,A, p) obtained from a convex polyhedron P with
all faces being triangles is angle rigid.

Proof. Following Definition 2.3, we consider A’s equivalent angularity A′(V,A, p′)
with ‖p′ − p‖ < ε, ε > 0, and denote by P′ the corresponding polyhedron. Since A
and A′ are equivalent, each two corresponding face angles in A and A′ have the
same value (i.e., fA(p) = fA(p′)). According to Lemma 5.17, one has that each
two corresponding dihedral angles formed by two adjacent faces in P and P′ have
the same value.

Considering an arbitrary face triangle4ijk, i, j, k ∈ V , one has4ijk(pi, pj , pk) ∼
4ijk(p′i, p

′
j , p
′
k). Now, we scale A′ to obtain A′′ which satisfies ‖pi−pj‖ = ‖p′′i −p′′j ‖,

‖pi − pk‖ = ‖p′′i − p′′k‖ and ‖pk − pj‖ = ‖p′′k − p′′j ‖. We denote the scaled poly-
hedron by P′′. Since the scaling will not change all (face or dihedral) angles
of a polyhedron, one has fA∗−A(p′) = fA∗−A(p′′) and fA(p′) = fA(p′′), where
A∗ = {(i, j, k)|∀i, j, k ∈ A, i 6= j 6= k} is the complete angle set. Now, we check
A and A′′. First, all the face angles have the same values in A and A′′ because
fA(p) = fA(p′) = fA(p′′). Secondly, all the dihedral angles in P and P′′ have the
same values because P and P′ have the same dihedral angles and A′′ is a scaling of
A′. Thirdly, because 4ijk(pi, pj , pk) ' 4ijk(p′′i , p

′′
j , p
′′
k), the lengths of the edges in

P have the same values as the lengths of the corresponding edges in P′′ which can
be obtained by using the law of sines iteratively for the face triangles in P and P′′.
From the above three facts and using Lemma 5.18 for A and A′′, one has that A′′ is
the translation or rotation of A, under which the values of all triple-vertex angles
remain unchanged. It follows that fA∗−A(p) = fA∗−A(p′′) = fA∗−A(p′). Therefore,
A and A′ are congruent, and A is angle rigid.

However, the above result about convex polyhedra with triangular faces is
restrictive. We now study the case of convex polyhedra whose faces are not
necessarily triangles by using the operations of the polygonal triangulation and
surface triangulation.
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Definition 5.20 (Polygonal triangulation [27]). Polygonal triangulation is the de-
composition of a polygon into a set of triangles where any two of these triangles
intersect at a common vertex, edge, or empty set.

Definition 5.21 (Surface triangulation). Surface triangulation for a polyhedron P is
the decomposition of the surface of P using polygonal triangulation for each face of P
and at the same time any two decomposed triangles from two faces of P only intersect
at a common vertex, edge, or empty set.

Then, we define the corresponding triangulated angularity.

Definition 5.22 (Triangulated polyhedral angularity). Let K be a surface trian-
gulation of a polyhedron P with the vertex set V = {1, 2, ..., N} and embedding
p = [pT1 , ..., p

T
N ]T . Then we call A(V ∪ V ′,A, [pT , p′T ]T ) a triangulated polyhedral

angularity, where V ′ is the vertex set consisting of the vertices added in the surface
triangulation K, p′ is the corresponding embedding of the vertices in V ′, and A denotes
the angle set consisting of the interior angles of all polygonal faces of the polyhedron
with vertices V ∪ V ′ and embedding [pT , p′T ]T and all the interior angles of triangles
obtained by K for the surface of P. Then, the polyhedron corresponding to K is called
a triangulated polyhedron P̃.

Note that if P is convex, we say its corresponding A is a convex triangulated
polyhedral angularity. Then, we present the result about the convex triangulated
polyhedral angularity.

Theorem 5.23. A convex triangulated polyhedral angularity A(V ∪V ′,A, [pT , p′T ]T )

without any vertex of V ′ lying in the interior of a face of P is angle rigid.

We first give two lemmas which will be used in the proof of Theorem 5.23.

Lemma 5.24. When locally perturbing the convex triangulated polyhedral angularity
A(V ∪ V ′,A, [pT , p′T ]T ), the vertices of V ∪ V ′ that are on a face of P̃ are always
coplanar under the angle constraints given in A.

Proof. We first prove that under the given angle constraints all the triangles
in a face of P̃ will be coplanar under the local perturbation. Consider an ar-
bitrary face S of P̃ whose vertices consist of I = {i1, ..., im} where m > 3.
Suppose that ik, 1 6 k 6 m is one of the vertices in S and is involved in
face triangles 4j1ikj2,4j2ikj3, ...,4jn−1ikjn where j1, ..., jn ∈ I and j1, ..., jn 6=
ik. Note that if j1 = jn−1 and j2 = jn, i.e., ik is only involved in one tri-
angle 4j1ikj2 in S, then one has that j1, ik, j2 are coplanar since three arbi-
trary points in 3D are coplanar. When ik is involved in more than one triangle
in S, one has {(j1, ik, j2), (j2, ik, j3), ..., (jn−1, ik, jn)} ∈ A, (j1, ik, jn) ∈ A and
]j1ikj2 + ]j2ikj3 + ...]jn−1ikjn = ]j1ikjn. Therefore, under the local perturba-
tion, ik, j1, j2, ..., jn must be coplanar; otherwise ]j1ikj2+]j2ikj3+...]jn−1ikjn >
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]j1ikjn which violates the given angle constraint. Note that for each triangle 4ijk
in face S, there always exists another triangle in face S which shares a common
edge with 4ijk. Without loss of generality, assume that the another triangle is
4ijk̃ and the intersected edge is ij. Consider the first case that i is only involved
in these two triangles in face S. Then {(j, i, k), (j, i, k̃)} ∈ A, (k, i, k̃) ∈ A and
]jik + ]jik̃ = ]kik̃. Under local perturbation, these two triangles are coplanar.
The second case is that i is involved in multiple triangles, using the same argument
for the shared vertex as ik, one has that these triangles are coplanar.

Now, consider that vertex ik is involved in n − 1 coplanar triangles in face S
and its neighboring vertex ik+1 is involved in ñ coplanar triangles in S. Note that
those n− 1 triangles from ik and ñ triangles from ik+1 must share at least common
triangle because of the existence of edge ikik+1. Then, those n+ ñ−2 triangles of ik
and ik+1 should be coplanar, and thus all the these triangles’ vertices are coplanar.
Next, if ik + 1 has a different neighboring vertex than ik, we consider this vertex
and label it ik+2. Using the previous argument again, one has that all triangles of
ik, ik+1, ik+2 are coplanar. Using this argument repeatedly for new neighboring
vertices until one reaches all vertices in I, one has that all the triangles in S ∩ K
are coplanar since the vertices of each triangle in S ∩ K lie in I. Because all the
triangles in S ∩K cover all the vertices in I, one has that the vertices of V ∪ V ′ that
is in S are coplanar under the perturbation. The same holds for the other faces of
P̃.

Lemma 5.25. When locally perturbing the convex triangulated polyhedral angularity
A(V ∪V ′,A, [pT , p′T ]T ), if the scale of a triangle in a face of P̃ remains constant, then
all the edge lengths of P̃ remain constant.

Proof. Note that after triangulating the faces of the polyhedron P, the surface of
P̃ becomes K, in which each triangle 4ijk ∈ K has three neighboring triangles
and each of them shares a different edge with the triangle 4ijk. When the scale
of this arbitrary triangle 4ijk in K is fixed, its three neighboring triangles also
have the same fixed scale using the law of sines. Now, we show why the scales
of all the other triangles in K are fixed as well. Let the face where 4ijk lies be
S1 and the total number of triangles in S1 is m. Then, after fixing the scale of
the three neighboring triangles of 4ijk, one can fix 4ijk’s neighboring triangles’
neighboring triangle; such a propagating fixing process will fix the scales of all
the triangles in S1. Now consider S1’s neighbouring face S2 which shares at least
one edge with S1. Since the scales of all triangles in S1 are fixed, the length of
this shared edge is fixed and the scale of the triangle containing this edge in S2

is also fixed. Apply for S2 the same argument for S1, all the triangles in S2 can
be fixed. Because the polyhedron P is closed, under the triangulation K, one can
always fix the neighboring triangles from those triangles with fixed scale until all
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the triangles in K are fixed. Therefore, all the edge lengths are constant provided
that one triangle’s scale is constant.

Proof of Theorem 5.23 We prove Theorem 5.23 following the proof of Theorem 5.19.
According to Lemma 5.24, one has that the vertices of V ∪ V ′ that are involved in a
face of P̃ will be coplanar under the perturbation. Therefore, using Lemma 5.17,
each corresponding dihedral angle formed by two adjacent faces keep constant
under the perturbation. On the other hand, Lemma 5.25 implies that all the edge
lengths of P̃ keep constant under the given conditions. Based on these two facts
and the proof of Theorem 5.19, one has that A is angle rigid. �

Instead of triangulating the surface of convex polyhedra, we now give the result
when each face of the convex polyhedron is infinitesimally angle rigid. A face in a
convex polyhedron is said to be infinitesimally angle rigid if it can only translate,
rotate and scale as a whole under any local perturbation of the polyhedron.

Corollary 5.26. A convex polyhedron with infinitesimally angle rigid faces is angle
rigid.

The proof of this corollary follows the proof of Theorem 5.19. On the one hand,
all angles in each face will remain constant under a perturbation according to the
definition of infinitesimally angle rigid face. On the other hand, translation and
rotation of a face will not change the lengths of its edges. When one edge length is
fixed under the perturbation, the scale of the infinitesimally angle rigid face is also
fixed which implies that the lengths of the other edges of the face are fixed. Note
that each face of the convex polyhedron has at least three neighboring faces and
each pair of them share a different edge with the original face. Therefore, by fixing
edge length iteratively, all the edge lengths of the polyhedron will be fixed given
one fixed edge length in the polyhedron. From the above two facts and Lemma
5.18, one has that the convex polyhedron is angle rigid.

5.2.5 Angle rigidity matrix

Note that the above proposed checking conditions do not work when the angularity
cannot be constructed by Type-I, Type-II, merging operations or is not a convex
polyhedron. To develop a general checking condition, taking an angle β = ]ijk ∈
(0, π) in fA(p) as an example, one has

β̇ = Nkjiṗi − (Nkji +Nijk)ṗj +Nijkṗk, (5.2)

where Nkji = − b
T
jkPbji
lji sin β ∈ R1×3, i, j, k ∈ V. Then, one will have the angle rigidity

matrix R(p) = ∂fA(p)
∂p ∈ RM×3N , which has the same structure as it in the 2D case.
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Now, we study the null space of the angle rigidity matrix R(p). First, we introduce

q1 = 1N ⊗

1

0

0

 , q2 = 1N ⊗

0

1

0

 , q3 = 1N ⊗

0

0

1

 , (5.3)

q4 =
î
(Q1p1)T, (Q1p2)T, · · · , (Q1pN )T

óT
, (5.4)

q5 =
î
(Q2p1)T, (Q2p2)T, · · · , (Q2pN )T

óT
, (5.5)

q6 =
î
(Q3p1)T, (Q3p2)T, · · · , (Q3pN )T

óT
, (5.6)

q7 =
î
pT

1, pT
2, · · · , pT

N

óT
, (5.7)

where ⊗ represents Kronecker product, Q1 =

 0 1 0

−1 0 0

0 0 0

, Q2 =

 0 0 1

0 0 0

−1 0 0

, Q3 =

0 0 0

0 0 1

0 −1 0

 and 1N denotes the N × 1 column vector of all ones. Note that q1, q2

and q3 correspond to translation, q4, q5, q6 rotation, and q7 scaling. Now we present
the theorem.

Theorem 5.27. For an angle rigidity matrix R(p), it always holds that

Span{q1, q2, q3, q4, q5, q6, q7} ⊆ Null(R(p))

and correspondingly Rank(R(p)) 6 3N − 7.

Proof. Because each row sum of R(p) equals zero, one has R(p)q1 = 0, R(p)q2 = 0

and R(p)q3 = 0. Taking an arbitrary row ]ijk in R(p) as an example, one has the
corresponding row in R(p)q4

NkjiQ1(pi − pj) +NijkQ1(pk − pj)

=
bT
jkPbjiQ1bji + bT

jiPbjkQ1bjk

− sinβ
=
bT
jkQ1bji + bT

jiQ1bjk

− sinβ

=0,

where we have used QT
1 = −Q1 and bT

jiQ1bji = 0. The case for Q2, Q3 can be
similarly obtained. Then, for R(p)q7, one has Nkji(pi − pj) + Nijk(pk − pj) =
bT
jkPbjibji+b

T
jiPbjk bjk

− sin β = 0, where we have used the fact that Pbjibji = 0. Therefore,
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Span{q1, q2, q3, q4, q5, q6, q7} ⊆ Null(R(p)).
Because each vertex i,∀i ∈ V has a distinct position pi, one has that q4, q5, q6, q7

are linearly independent from q1, q2 and q3; otherwise the linear combination of q1,
q2 and q3, i.e., γ1q1 + γ2q2 + γ3q3, γi ∈ R, i = 1, 2, 3 will give the same coordinate
components p1 = p2 = · · · = pN . Since qT

1q2 = 0, qT
1q3 = 0 and qT

2q3 = 0, one has
that q1, q2, q3 are linearly independent from each other. Since the Z-coordinate of
the vector Q1pi, i = 1, · · · , N is always zero and the Y -coordinate of the vector
Q2pi, i = 1, · · · , N is zero, one has that q4 and q5 are linearly independent, which
is similar to the cases of q4 and q6, and q5 and q6. Then, q4, q5, q6 are linearly
independent. Also, qT

4q7 = 0, qT
5q7 = 0 and qT

6q7 = 0 imply that q4, q5, q6 are linearly
independent from q7. Therefore, one has that q1, q2, q3, q4, q5, q6, q7 are linearly
independent, which implies Rank(R(p)) 6 3N − 7.

Based on Theorem 5.27 and Chapter 2, one can also define infinitesimal angle
rigidity in 3D and its checking condition using the rank of angle rigidity matrix.
The main purpose of defining angle rigidity matrix and infinitesimal angle rigidity
is to check angle rigidity of angularity which cannot be explicitly constructed by
type-I or type-II vertex additions.

Remark 5.28. In 2D angle rigidity in Chapter 2, several combinatoral necessary
conditions are developed for infinitesimal angle rigidity (including cyclic angles,
angles with the same middle vertex and over constrained angle subset), which are
not necessary anymore in 3D angle rigidity. However, to check the generic rigidity
of A(V,A, p), one can use the rank condition by a random realization of p [43].

5.3 Concluding remarks

In this Chapter, we have studied angle rigidity in 3D case. First, we have shown that
angle rigidity in 3D is a local property because of the existence of flex ambiguity.
Two types of vertex addition operations have been developed to construct a globally
angle rigid angularity or an angle rigid angularity, respectively. We have also shown
how to merge two globally angle rigid angularities into one globally angle rigid
angularity. Angle rigidity of convex polyhedra has been studied.



Chapter 6

Formation stabilization in 3D

U
sing the developed 3D angle rigidity theory in Chapter 5, we propose formation
control algorithms in this chapter for a team of mobile agents to achieve a

desired angle rigid formation in 3D, in which only local direction measurements
are needed. The formation is constructed based on the proposed vertex-addition
operations which start from a triangular formation and then add each new vertex
into the existing formation by three new angle constraints. We will also show how
to achieve convex polyhedral formations in which angles constraints are in the
surfaces of the formations.

6.1 Introduction

Different from the 2D formations for ground robots in chapters 3 and 4, in the
applications of autonomous aerial refueling [91], drone swarm’s group display [3]
and satellite formation keeping [90], a desired spatial formation is usually required
to be formed by those teams of vehicles. Similar to the motivation of 2D formations,
to make full use of low-cost, lightweight, and low-power onboard sensors [22, 102]
and avoid the requirement on the alignment of coordinate frames [52, 55, 72, 85],
there is a great need to further study multi-agent formations in 3D. In this chapter
we design a control algorithm to stabilize a multi-agent formation by only using
direction measurements with the help of 3D angle rigidity theory that we have
developed in Chapter 5.

6.2 Multi-agent sequential formations

Consider a group of N agents, labeled by 1, 2, · · · , N , in 3D, each of which is
governed by single-integrator dynamics

ṗi = ui, i = 1, · · · , N, (6.1)

where pi ∈ R3 denotes agent i’s position, and ui is the control input to be designed.
Each agent i can only measure the direction

−→
ij , j ∈ Ni, where Ni denotes agent
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i’s neighbor set. We consider that the desired formation is constructed through
a sequence of Type-I or Type-II vertex additions from a generically angle rigid
triangular formation, which is globally angle rigid or angle rigid according to
Propositions 5.9 and 5.10, respectively. Correspondingly, we propose to control
the first three agents to form the desired triangular formation and then control the
remaining agents following the sequence of Type-I or Type-II vertex additions.

6.2.1 Formation control for the first three agents

In this subsection, we show how to achieve a desired triangular formation for the
first three agents. The control objectives for agents 1 to 3 are

limt→∞ e1(t) = limt→∞(α312(t)− α∗312) = 0, (6.2)

limt→∞ e2(t) = limt→∞(α123(t)− α∗123) = 0, (6.3)

limt→∞ e3(t) = limt→∞(α231(t)− α∗231) = 0, (6.4)

where α∗jik ∈ (0, π), i, j, k ∈ {1, 2, 3} denotes agent i’s desired angle formed with
agents j, k. Motivated by [16], we design the following cyclic pursuing rule

u1 = −(α312 − α∗312)b12, (6.5)

u2 = −(α123 − α∗123)b23, (6.6)

u3 = −(α231 − α∗231)b31, (6.7)

where αjik = arccos(bTijbik) and each agent i, i = 1, 2, 3 only needs to measure the

directions
−→
ij and

−→
ik in its own coordinate frame to implement (6.5)-(6.7). Note

that the direction
−→
ij in 3D has a unique correspondence to azimuth and altitude

angles described in agent i’s coordinate frame. Now, we study the angle error
dynamics.

Suppose lij(0) 6= 0 and sinαjik(0) 6= 0, i, j, k = 1, 2, 3, then ∃T1 > 0 such that
for t ∈ [0, T1), lij(t) 6= 0 and sinαjik(t) 6= 0. Then for t ∈ [0, T1), taking e1 as an
example, according to (5.2), one has

ė1 = α̇312 = − ḃ
T
13b12 + bT13ḃ12

sinα312
(6.8)

= −[
Pb13(ṗ3 − ṗ1)

l13 sinα312
]Tb12 − bT

13

Pb12
l12 sinα312

(ṗ2 − ṗ1).
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By substituting (6.5)-(6.7) into (6.8), it follows

bT13ḃ12 =
bT13Pb12
l12

[(α312 − α∗312)b12 − (α123 − α∗123)b23]

=− sinα312 sinα123

l12
(α123 − α∗123). (6.9)

Similarly,

ḃT13b12 =
bT12Pb13
l13

[(α312 − α∗312)b12 − (α231 − α∗231)b31]

=
sin2 α312

l13
(α312 − α∗312). (6.10)

By substituting (6.9) and (6.10) into (6.8), one obtains

ė1 = − sinα312

l13
e1 +

sinα123

l12
e2. (6.11)

By following the steps similar to (6.8)-(6.11), one has

ė2 = − sinα123

l21
e2 +

sinα231

l23
e3, (6.12)

ė3 = − sinα231

l32
e3 +

sinα312

l31
e1. (6.13)

Writing (6.11)-(6.13) into the matrix form, one has the overall angle error
dynamics of the first three agents

ėf = [ė1 ė2 ė3]T = F1(ef )ef

=

−g312 g123 0

0 −g123 g231

g312 0 −g231

α312 − α∗312

α123 − α∗123

α231 − α∗231

 , (6.14)

where gjik =
sinαjik
lji

, i, j, k ∈ {1, 2, 3}. Since e1 + e2 + e3 ≡ 0, (6.14) is equivalent
to

ės =

ñ
ė1

ė2

ô
=

ñ
−g312 g123

−g231 −(g123 + g231)

ô ñ
e1

e2

ô
= Fs(es)es. (6.15)

Although (6.15) is derived for t ∈ [0, T1), we now show that T1 can be extended to
infinity.

Lemma 6.1 (Non-collinearity). For the 3-agent formation under the control law
(6.5)-(6.7), if the formation is not initially collinear, it will not become collinear for
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∀t > 0, and thus (6.15) applies for any t > 0.

Proof. We prove by contradiction. Suppose collinearity may occur for t > T1, and
let Ts be the first time at which the three agents approach being collinear. Then
at T−s , it must be true that for the triangular formation formed by these three
agents, two interior angles approach zero and the third approaches π. Without loss
of generality, assume that agent 1 is the agent associated with the interior angle
approaching π, and thus α1(T−s ) = π − ε1, α2(T−s ) = ε2 and α3(T−s ) = ε3 for some
infinitesimally small positive numbers ε1, ε2 and ε3 satisfying ε1 = ε2 + ε3. For
t ∈ [0, Ts), one has

ė1 = −g312e1 + g123e2. (6.16)

Since α∗1 is bounded away from π, e1(T−s ) > 0; since α∗2 is bounded away from zero,
e2(T−s ) < 0. In addition, one can further check that at T−s , g312 > 0 and g123 > 0.
Hence, ė1(T−s ) < 0, which implies that at T−s , if time further evolves, α1 decreases
away from π, which contradicts the assumption that at Ts, the three agents become
collinear and thus α1 becomes π. So we have reached the contradiction and the
proof is complete.

Now we present the convergence result for the first three agents.

Theorem 6.2. For the three-agent formation under the control law (6.5)-(6.7), if
α312(0), α123(0), α231(0) are not zero, the initial angle errors ei(0), i = 1, 2, 3 are
sufficiently small and the initial distances l12(0), l23(0), l31(0) are bounded away from
zero, then the angle errors ei(t) converge exponentially to zero.

Proof. To show the local convergence of ei, we use linearization to analyze the
angle error dynamics (6.15). By taking e1 as an example, the linearized dynamics
around the desired equilibrium es = 0 are

ė1 =

ï
∂(−g312e1 + g123e2)

∂e1
|es=0

ò
e1 +

ï
∂(−g312e1 + g123e2)

∂e2
|es=0

ò
e2

=

ïÅ
−g312 −

∂g312

∂e1
e1 +

∂g123

∂e1
e2

ã
|es=0

ò
e1

+

ïÅ
g123 +

∂g123

∂e2
e2 −

∂g312

∂e2
e1

ã
|es=0

ò
e2

=− g∗312e1 + g∗123e2, (6.17)

where g∗jik = gjik|es=0, j 6= i 6= k and j, i, k ∈ {1, 2, 3}. Then, by following the
same step as (6.17) for e2, the linearized dynamics of (6.15) can be written as

ės = A1es, (6.18)

where A1 = Fs(es)|es=0 is a 2 × 2 constant matrix. Then, it is obvious that
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tr(A1) = −g∗312−g∗123−g∗231 < 0, det(A1) = g∗312(g∗123 +g∗231)+g∗123g
∗
231 > 0, where

tr() and det() represent the trace and determinant of a square matrix, respectively.
It follows that A1 is Hurwitz. Then, for the 2× 2 identity matrix I2 ∈ R2×2, there
always exists a positive definite matrix P1 ∈ R2×2 such that −I2 = P1A1 + AT

1P1

[54, Theorem 4.6]. Consider the Lyapunov function candidate

V1 = eT
sP1es. (6.19)

Taking the time-derivative of (6.19) yields

V̇1 = −eT
ses 6 −

V1

λmax(P1)
, (6.20)

where λmax() denote the maximum eigenvalue of a real symmetric matrix. Then
one has that V1(t) 6 V1(0)e

− t
λmax(P1) . Because P1 is positive definite, one has

e2
1 + e2

2 = ‖es‖2 6
V1

λmin(P1)
6

V1(0)

λmin(P1)
e
− t
λmax(P1) . (6.21)

where λmin() denote the minimum eigenvalue of a real symmetric matrix. Since
e1 + e2 + e3 ≡ 0, one has

e2
3 = e2

1 + e2
2 + 2e1e2 6 2(e2

1 + e2
2) 6

2V1(0)

λmin(P1)
e
− t
λmax(P1)

which implies that ei, i = 1, 2, 3, under the dynamics (6.14) is locally exponentially
stable.

In the following subsections, we study the control of the overall formation.

6.2.2 Formation control for the remaining agents by Type-I ver-
tex addition

In this subsection, we show how to control the remaining agents to the formation
by Type-I vertex addition (case 2) developed in Definition 5.7. To be specific, the
control objectives for agent i, 4 6 i 6 N, are

limt→∞ ei1(t) = limt→∞(αij1j2(t)− α∗ij1j2) = 0, (6.22)

limt→∞ ei2(t) = limt→∞(αij2j1(t)− α∗ij2j1) = 0, (6.23)

limt→∞ ei3(t) = limt→∞(αij2j3(t)− α∗ij2j3) = 0, (6.24)

where i = 4, · · · , N , j1 6= j2 6= j3 j1 < i, j2 < i, j3 < i, and α∗ij1j2 ∈ (0, π), α∗ij2j1 ∈
(0, π), α∗ij2j3 ∈ (0, π) denote three desired angles that agent i aims at maintaining
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with its neighboring agents j1, j2, j3.
We first illustrate how to control agent 4, and then extend the result to the

N -agent case. We propose the following control law for agent 4

u4 =(α412 − α∗412)b42 + (α421 − α∗421)b41 + (α423 − α∗423)b43. (6.25)

Note that in (6.25), the real-time angle information α412 = arccos(bT14b12) cannot
be calculated by agent 4’s own direction measurements, but can be calculated via
agent 1’s direction measurements

−→
14,
−→
12. Therefore, the implementation of control

law (6.25) relies on not only agent 4’s direction measurements
−→
41,
−→
42,
−→
43, but also

the real-time angle information α412(t), α421(t), α423(t) which can be sent to agent
4 through wireless communication. Now we present the convergence of agent 4.

Theorem 6.3. For the four-agent formation under the control law (6.5)-(6.7) and
(6.25), if α123(0),α231(0),α312(0), α412(0),α421(0),α423(0) are not zero or π, the ini-
tial angle errors ei(0), e4i(0), i = 1, 2, 3 are sufficiently small, the initial distances
ljk(0), j 6= k, j, k ∈ {1, 2, 3, 4} are bounded away from zero and p4(0) is sufficiently
away from the plane formed by p1(0), p2(0), p3(0), then the angle errors e4i(t) con-
verge exponentially to zero.

Proof. Since ljk(0) 6= 0 and sinα412(0), sinα421(0), sinα423(0) are not zero, ∃T2 >

0 such that for t ∈ [0, T2), ljk(t) 6= 0 and sinα412(t), sinα421(t), sinα423(t)

are not zero. Now we study the dynamics of angle errors e41 = α412 − α∗412,
e42 = α421−α∗421, e43 = α423−α∗423. Taking e41 as an example, by using (5.2), one
has

ė41 = α̇412 =− [
Pb14

l14 sinα412
(ṗ4 − ṗ1)]Tb12 − bT

14

Pb12
l12 sinα412

(ṗ2 − ṗ1). (6.26)

Substituting (6.25) and (6.5)-(6.7) into (6.26) yields

ė41 =− sinα142

l14
(α412 − α∗412)− bT12Pb14b43

l14 sinα412
(α423 − α∗423)

− bT12Pb14b12

l14 sinα412
e1 +

bT14Pb12b23

l12 sinα412
e2. (6.27)

Similarly, one can compute ė42 and ė43 to obtain

ė4 =
î
ė41 ė42 ė43

óT
= F4(es, e4)e4 +G4(es, e4)es (6.28)

=

−
sinα142

l14
0 − bT12Pb14b43

l14 sinα412

0 − sinα142

l24
− bT21Pb24b43
l24 sinα421

0 − bT23Pb24b41
l24 sinα423

− sinα243

l24


e41

e42

e43

+

G11 G12

G21 G22

G31 G32

ñe1

e2

ô
,
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where G11 = − bT12Pb14b12
l41 sinα412

, G12 =
bT14Pb12b23
l12 sinα412

, G21 = 0, G22 = −(
bT21Pb24b23
l24 sinα421

+
bT24Pb21b23
l21 sinα421

), G31 = − bT24Pb23b31
l23 sinα423

, G32 = −(
bT23Pb24b23
l24 sinα423

+
bT24Pb23b31
l23 sinα423

). Now, we check
the local stability of the 4-agent formation for the region close to the desired equi-
librium {es = 0, e4 = 0}. Linearizing (6.28) around {es = 0, e4 = 0} by following
(6.17), one has the linearized dynamics

ė4 = A4e4 +B4es, (6.29)

where A4 = F4(es, e4)|es=0,e4=0, B4 = G4(es, e4)|es=0,e4=0 are constant matrices.
Now, we check whether A4 is Hurwitz.

det(λI3 −A4) =(λ+
sinα∗142

l∗14

)(λ+
sinα∗142

l∗24

)(λ+
sinα∗243

l∗24

)

− (λ+
sinα∗142

l∗14

)
(b∗T21 Pb∗24b

∗
43)

l∗24 sinα∗421

(b∗T23 Pb∗24b
∗
41)

l∗24 sinα∗423

,

where λ ∈ C denotes the eigenvalue of A4, l∗ji and b∗ji, j, i ∈ V are the distance
and bearing evaluated at {es = 0, e4 = 0}, respectively. Checking the eigenvalues
of A4 by letting det(λI3 − A4) = 0, one has that A4 always has an eigenvalue
− sinα∗142

l∗14
< 0. However, it is quite challenging to check the sign of the real parts of

the remaining two eigenvalues of A4. Here, we first calculate

(b∗T21 Pb∗24b
∗
43)(b∗T23 Pb∗24b

∗
41) (6.30)

=
l∗23(b∗T21 Pb∗24b

∗
23)

l∗43

l∗43(b∗T43 Pb∗24b
∗
41)

l∗23

=[cosα∗123 − cosα∗423 cosα∗421][cosα∗143 − cosα∗142 cosα∗243],

where we have used the facts that b43 = (p3−p2)+(p2−p4)
l43

, Pb24(p2 − p4) = 0, and

b23 = (p3−p4)+(p4−p2)
l23

. Then, the other two eigenvalues of A4 satisfy

λ2 + (
sinα∗142

l∗24

+
sinα∗243

l∗24

)λ+ ε1 = 0, (6.31)

where ε1 = − [cosα∗123−cosα∗423 cosα∗421]
l∗24 sinα∗421

[cosα∗143−cosα∗142 cosα∗243]
l∗24 sinα∗423

+
sinα∗142
l∗24

sinα∗243
l∗24

. If ε1 > 0, then the remaining two eigenvalues of A4 have negative
real parts, which implies that A4 is Hurwitz. Note that ε1 > 0 is equivalent to

sinα∗421 sinα∗423 sinα∗142 sinα∗243 > (6.32)

[cosα∗123 − cosα∗423 cosα∗421][cosα∗143 − cosα∗142 cosα∗243].

Now, we prove that (6.32) holds for arbitrary tetrahedron formations formed by
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agents 1-4. Splitting (6.32) into two inequalities sinα∗421 sinα∗423 > | cosα∗123 −
cosα∗423 cosα∗421| and sinα∗142 sinα∗243 > | cosα∗143 − cosα∗142 cosα∗243|, we first illus-
trate how to prove the first inequality by using the facts that α∗123 ∈ (0, π), α∗423 ∈
(0, π), α∗421 ∈ (0, π), and α∗123 + α∗423 + α∗421 < 2π, 2π > α∗ijk + α∗ijm > α∗kjm >

0, i, j, k,m ∈ {1, 2, 3, 4}.
• Case 1: cosα∗123 > cosα∗423 cosα∗421. When 0 < α∗421 − α∗423 < π, by using
0 < α∗421 < α∗123 + α∗423 < π, one has that 0 < α∗421 − α∗423 < α∗123 < π. It fol-
lows that cos(α∗421 − α∗423) > cosα∗123, which gives sinα∗421 sinα∗423 > cosα∗123 −
cosα∗423 cosα∗421. When −π < α∗421−α∗423 < 0, by using α∗423 < α∗421 +α∗123, one has
−π < −α∗123 < α∗421 − α∗423 < 0. It follows that cos(α∗421 − α∗423) > cos(−α∗123) =

cos(α∗123), which also gives sinα∗421 sinα∗423 > cosα∗123 − cosα∗423 cosα∗421.
• Case 2: cosα∗123 < cosα∗423 cosα∗421. When π < α∗421 + α∗423 < 2π, by using
α∗123 ∈ (0, π), (2π − (α∗421 + α∗243)) ∈ (0, π) and α∗123 < 2π− (α∗421 +α∗423), one has
cosα∗123 > cos(2π− (α∗421 + α∗423)) = cos(α∗421 +α∗423). It follows sinα∗421 sinα∗423 >

cosα∗423 cosα∗421 − cosα∗123. When 0 < α∗421 + α∗423 < π, by using 0 < α∗123 <

α∗421 + α∗423 < π, one also has sinα∗421 sinα∗423 > cosα∗423 cosα∗421 − cosα∗123.
Combining the above two cases together, one has that sinα∗421 sinα∗423 > | cosα∗123−
cosα∗423 cosα∗421| holds for an arbitrary tetrahedron formation. The same analysis
can be conducted for the second inequality, which proves (6.32).

By combining (6.30)-(6.32), one has that A4 is alway Hurwitz for arbitrary
tetrahedron formation formed by agents 1-4. Writing (6.18) and (6.29) into a
compact form yields

˙̄e4 =

ñ
ės
ė4

ô
= H4ē4 =

ñ
A1 0

B4 A4

ô ñ
es
e4

ô
. (6.33)

Because A1 and A4 are Hurwitz, one has that H4 is also Hurwitz [13, Proposition
5.5.13]. Then, for the 5 × 5 identity matrix I5 ∈ R5×5, there exists a positive
definite matrix P2 ∈ R5×5 such that P2H4 +HT

4 P2 = −I5. Construct the Lyapunov
function

V2 = ēT
4 P2ē4. (6.34)

Taking the time-derivative of (6.34) yields

V̇2 = −ēT
4 ē4 6 −

V2

λmax(P2)
. (6.35)

Then, it follows that

‖e4‖2 6 ‖ē4‖2 6
V2

λmin(P2)
6

V2(0)

λmin(P2)
e
− t
λmax(P2) , (6.36)

which implies the exponential stability of ‖e4(t)‖ for ∀t ∈ [0, T2). Note that
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‖ṗ4‖ 6 |e41| + |e42| + |e43| 6
√

3‖e4‖ 6
√

3V2(0)
λmin(P2)e

− t
2λmax(P2) which implies

‖p4(t) − p4(0)‖ 6
∫ t

0
‖ṗ4(τ)‖dτ 6 2λmax(P2)

√
3V2(0)
λmin(P2)

Ä
1− e−

t
2λmax(P2)

ä
for ∀t ∈

[0, T2). Since V2(0) is sufficiently small, ‖p4(t) − p4(0)‖ is also sufficiently small
for ∀t ∈ [0, T2). Since p4(0) is sufficiently away from the plane formed by
p1(0), p2(0), p3(0), one has that p4(T−2 ) is also sufficiently away from the plane
formed by p1(0), p2(0), p3(0) which implies that l4i(T

−
2 ) 6= 0, i = 1, 2, 3, and

sinα412(T−2 ), sinα421(T−2 ), sinα423(T−2 ) are not zero. Then, one can extend T−2
to T3, T3 > T2. In fact one can check that when T3 → ∞, ‖p4(t) − p4(0)‖ is still
sufficiently small for ∀t ∈ [0,∞) which implies that (6.28) is always well-defined
and ‖e4(t)‖ is exponentially stable for ∀t ∈ [0,∞).

Remark 6.4. Note that the first three agents always lie in the plane formed by
p1(0), p2(0), p3(0) since the control actions (6.5)-(6.7) are confined in this plane.
If ∃T3 such that p4(T3) lies in that plane, then p4(t),∀t > T3 will always be in that
plane according to the control law (6.25). Then the angle error in (6.28) will
not converge to zero because in this case F4(es, e4) becomes singular. Therefore,
Theorem 6.3 requires that p4(0) is sufficiently away from the plane formed by
p1(0), p2(0), p3(0).

Now, we precisely describe the requirements on l4i(0), i = 1, 2, 3, e4i(0) and the
initial distance h4−123(0) between p4(0) and the plane formed by p1(0), p2(0), p3(0),
respectively such that (6.28) is well-defined. Taking l41 as an example, one has

l41(t) = l41(0) +

∫ t

0

l̇41(τ)dτ (6.37)

> l41(0)−
∫ t

0

|bT41(ṗ1 − ṗ4)|dτ

> l41(0)−
∫ t

0

(|e1|+ |e41|+ |e42|+ |e43|)dτ

> l41(0)− 2

∫ t

0

»
e2

1 + e2
41 + e2

42 + e2
43dτ

> l41(0)− 4

 
V2(0)

λmin(P2)
λmax(P2)(1− e−

t
2λmax(P2) ).

To guarantee that 1/ sinα412 is well-defined in (6.26), one requires 0 < α412(t) <

π. According to (6.36), one has

|e41| = |α412 − α∗412| 6 ‖e4‖ 6
 

V2(0)

λmin(P2)
. (6.38)
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It follows that

α∗412 −
 

V2(0)

λmin(P2)
6 α412(t) 6 α∗412 +

 
V2(0)

λmin(P2)
.

Therefore, if »
V2(0) <

»
λmin(P2) ∗min{π − α∗412, α

∗
412}, (6.39)

one always has 0 < α412(t) < π.
The distance h4−123(t) between p4(t) and the plane formed by p1(0), p2(0), p3(0)

can be calculated by

h4−123(t) =
V4−123

S123(0)
=

pT
41̄(t) (p42̄(t)× p43̄(t))

3l12(0)l13(0) sinα213(0)
, (6.40)

where p4ī(t) = pi(0)− p4(t), i = 1, 2, 3. Then, one has

V̇4−123 =
1

6
ṗT

4 (p42̄ × p43̄) + pT
41̄ [ṗ4 × (p3(0)− p2(0))]

6
1

6
(|e41|+ |e42|+ |e43|)[l42(max)l43(max)

+ l32(0)l41(max)], (6.41)

where l4i(max) = max{‖p4ī(t)‖,∀t > 0} = l4i(0) + 4
√

V2(0)
λmin(P2)λmax(P2), and we

have used the fact that ‖p4ī(t)‖ 6 l4i(0) +
∫ t

0
‖ṗ4(τ)‖dτ 6 l4i(0) +

∫ t
0
(|e41|+ |e42|+

|e43|)‖dτ 6 l4i(0) + 4
√

V2(0)
λmin(P2)λmax(P2). Therefore, one has

h4−123(t) > h4−123(0)−
∫ t

0

|ḣ4−123(τ)|dτ

> h4−123(0)−
∫ t

0

|V̇4−123(τ)|
S123(0)

dτ

> h4−123(0)− ε2(1− e−
t

2λmax(P2) ), (6.42)

where ε2 =
4[l42(max)l43(max)+l32(0)l41(max)]

3l12(0)l13(0) sinα213(0)
λmax(P2)

√
V2(0)

λmin(P2)
. Now, we summarize

the results from (6.37) to (6.42).

Corollary 6.5. Consider that the four-agent formation under the control law (6.5)-
(6.7) and (6.25), sinαjik(0) 6= 0, j, i, k ∈ {1, 2, 3, 4} and ei(0) are sufficiently small.

If l41(0) > 4
√

V2(0)
λmin(P2)λmax(P2), then no collision between agents 1 and 4 will occur

for t > 0; if
√
V2(0) <

√
λmin(P2) ∗min{π − α∗412, α

∗
412}, then no collinearity will

happen among agents 1, 2, 4; if h4−123(0) > ε2, then agent 4 will never reach the
plane formed by agents 1, 2, 3.
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The proof of Corollary 6.5 is straightforward using proof of contradiction. Now,
we extend the results to the N -agent case by designing the following control law
for agent i, 4 6 i 6 N

ui =(αij1j2 − α∗ij1j2)bij2 + (αij2j1 − α∗ij2j1)bij1

+ (αij2j3 − α∗ij2j3)bij3 . (6.43)

Theorem 6.6. For the N -agent formation under the control law (6.5)-(6.7) and
(6.43), if sinαjik(0) 6= 0, j, i, k ∈ {1, ..., N}, the initial angle errors em(0), eim,m =

1, 2, 3 are sufficiently small, the initial distances lji(0) are bounded away from zero and
pi(0) is sufficiently away from the plane formed by pj1(0), pj2(0), pj3(0), j1, j2, j3 ∈
Ni, then the angle errors eim(t) converge exponentially to zero.

The proof of Theorem 6.6 can be obtained by combining Theorems 6.2 and 6.3.

6.2.3 Formation control for the remaining agents by Type-II
vertex addition

Now, we investigate how to add the remaining agents by Type-II vertex addition
(case 1) developed in Definition 5.7. We design the following control law for agent
4

u4 =− (α142 − α∗142)(b41 + b42)− (α243 − α∗243)(b42 + b43)

− (α341 − α∗341)(b43 + b41), (6.44)

where α∗142 ∈ (0, π), α∗243 ∈ (0, π), α∗341 ∈ (0, π) are three desired angles that agent
4 aims at achieving with agents 1, 2, 3. The implementation of (6.44) only relies
on agent 4’s direction measurements

−→
41,
−→
42, and

−→
43. To obtain the convergence of

ẽ41 = α142 − α∗142, ẽ42 = α243 − α∗243, ẽ43 = α341 − α∗341, we first aim at obtaining
the dynamics of ẽ41, ẽ42, ẽ43. Since the three components in (6.44) are similar, we
first analyze the dynamics of αi4k, i, k ∈ {1, 2, 3} by taking its time-derivative with
respect to time

α̇i4k =Nk4iṗi − (Ni4k +Nk4i)ṗ4 +Ni4kṗk

=Nk4iṗi +Ni4kṗk + (Ni4k +Nk4i)[e4i(b4i + b4k)

+ e4k(b4k + b4m) + e4m(b4m + b4i)]

=Nk4iṗi +Ni4kṗk + e4i(Ni4kb4i +Nk4ib4k)

+ e4k(Nk4ib4k +Ni4kb4m +Nk4ib4m)

+ e4m(Ni4kb4m +Nk4ib4m +Ni4kb4i), (6.45)
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where Nkji ∈ R1×3 is defined in (5.2) and m = {1, 2, 3}/{i, k}. By defining
fijk = −Nijkbji =

sinαijk
ljk

> 0 and using i = 1, k = 2,m = 3 in (6.45), one has

˙̃e41 =−N142(b21 + b23)e2 −N241(b12 + b13)e1

− ẽ41(f142 + f241)

+ ẽ42(−f241 +N142b43 +N241b43)

+ ẽ43(−f142 +N241b43 +N142b43). (6.46)

Following the similar steps for ẽ42 and ẽ43, one has the overall angle error dynamics

˙̃e4 =
î

˙̃e41
˙̃e42

˙̃e43

ó
= F̃4(es, ẽ4)ẽ4 + G̃4(es, ẽ4)es

=

 −f142 − f241 −f241 + h(142,3) −f142 + h(142,3)

−f243 + h(243,1) −f243 − f342 −f342 + h(243,1)

−f143 + h(143,2) −f341 + h(143,2) −f341 − f143

ẽ41

ẽ42

ẽ43


+

G̃11 G̃12

G̃22 G̃22

G̃31 G̃32

ñe1

e2

ô
, (6.47)

where h(ijk,m) = (Nijk+Nkji)bjm, and G̃11 = −N241(b12+b13), G̃22 = −N142(b21+

b23), G̃21 = −N342(b21 + b23), G̃22 = −[N243(b31 + b32) + N342(b21 + b23)], G̃31 =

−N341(b31 + b32)−N143(b31 + b32), G̃32 = −N143(b31 + b32). Now, we present the
convergence result.

Theorem 6.7. For the four-agent formation under the control law (6.5)-(6.7) and
(6.44), if

0 < h∗(i4k,j) < 2 min{f∗k4i, f
∗
i4k}, (6.48)

i, j, k ∈ {1, 2, 3}, i 6= j 6= k, sinαj4k(0) 6= 0, the initial angle errors ẽ4i(0) are
sufficiently small, the initial distances l4i(0) are bounded away from zero and p4(0) is
sufficiently away from the plane formed by p1(0), p2(0), p3(0), then the angle errors
ẽ4(t) converge exponentially to zero.

Proof. Linearizing (6.47) around {es = 0, e4 = 0} by following (6.17), one has the
linearized dynamics

˙̃e4 = Ã4ẽ4 + B̃4es, (6.49)

where Ã4 = F̃4(es, ẽ4)|es=0,ẽ4=0, B4 = G4(es, e4)|es=0,e4=0 are constant matrices.
Now, we check whether Ã4 is Hurwitz. To obtain the stability of the linearized
system (6.49), we aim at proving that Ã4 is Hurwitz. By using the Gershgorin circle
theorem [46, Theorem 6.1.1], one has that the three eigenvalues of matrix Ã4 must
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lie within the union of the following three Gershgorin discs

|λ+ f∗
142 + f∗

241| 6 | − f∗
241 + h∗

(142,3)|+ | − f∗
142 + h∗

(142,3)|, (6.50)

|λ+ f∗
243 + f∗

342| 6 | − f∗
243 + h∗

(243,1)|+ | − f∗
342 + h∗

(243,1)|, (6.51)

|λ+ f∗
341 + f∗

143| 6 | − f∗
143 + h∗

(143,2)|+ | − f∗
341 + h∗

(143,2)|. (6.52)

where λ ∈ C denotes the eigenvalue of Ã4. Note that f∗i4k > 0 for all i, k = 1, 2, 3.
Therefore, by using (6.48), one has

0 < | − f∗
241 + h∗

(142,3)|+ | − f∗
142 + h∗

(142,3)| < f∗
142 + f∗

241, (6.53)

0 < | − f∗
241 + h∗

(142,3)|+ | − f∗
142 + h∗

(142,3)| < f∗
243 + f∗

342, (6.54)

0 < | − f∗
143 + h∗

(143,2)|+ | − f∗
341 + h∗

(143,2)| < f∗
341 + f∗

143. (6.55)

By combining (6.50)-(6.52) with (6.53)-(6.55), one has that the union of the
three Gershgorin discs in (6.50)-(6.52) always lies in the left half of the complex
plane, which implies that the three eigenvalues of Ã4 have negative real parts.
Therefore, (6.48) is a sufficient condition to guarantee that matrix Ã4 is Hurwitz
which implies the exponential convergence of ẽ4 by following (6.33)-(6.36).

Also, by following (6.37)-(6.42), one can precisely describe the requirements
on lji(0), ẽ4i(0) and the initial distance h4−123(0) in this case. Similarly, we can
extend the results to N -agent case by designing the following control law for agent
i, 4 6 i 6 N

ui =− (αj1ij2 − α∗j1ij2)(bij1 + bij2)

− (αj2ij3 − α∗j2ij3)(bij2 + bij3)

− (αj3ij1 − α∗j3ij1)(bij3 + bij1), (6.56)

where α∗j1ij2 ∈ (0, π), α∗j2ij3 ∈ (0, π), α∗j3ij1 ∈ (0, π). Then, the result similar to
Theorem 6.6 can also be obtained.

Remark 6.8. It can be checked that to implement the proposed formation control
laws in Section IV, each agent is allowed to have its own local coordinate frame
[22]. In subsections IV. B and C, two types of formation control algorithm are
designed for the remaining agents from 4 to N by following the Type-I and Type-II
vertex addition operations developed in 3D angle rigidity theory, respectively. Note
that the control law (6.56) can be implemented by only using the local measured
bearing information, while the control law (6.43) needs additional communication.
However, (6.43) can be used to stabilize an arbitrary tetrahedron formation, and
(6.56) can stabilize tetrahedron formation satisfying (6.48).

Remark 6.9. Although the presentation structure of this 3D case is similar to the 2D
case [22], the employed methodologies are different due to the different performing
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forms of angles as shown in Fig. 5.3. In the 3-D angle rigidity part, we develop
Type-I and Type-II vertex additions, which are more challenging than 2-D case
since each angle constraint is unsigned and shows a complicated surface. Also, the
merging operation towards two angle rigid angularities is investigated.

6.3 Convex polyhedral formations

In this section, we assume that the angle constraints are only in the faces of a
convex polyhedral formation. According to Theorem 5.19, a convex polyhedron
with all faces being triangles is angle rigid. In the following, we first show how
to stabilize a convex polyhedral formation with 4 triangular faces and 12 angle
constraints. Then, we show how to extend it to more general cases. Assume that

.
.

2.

4

1
3

.

Figure 6.1: Convex polyhedral formation with 12 face angle constraints

four agents are governed by single-integrator dynamics (6.1). The aim is to design
ui, i = 1, 2, 3, 4, such that those 12 desired angles in the four triangular faces of
the tetrahedron formation can be achieved. Towards this end, the control laws are
designed as

u1 = −e312b12 − e214b14 − e413b13

u2 = −e321b21 − e423b23 − e124b24

u3 = −e231b31 − e432b32 − e134b34

u4 = −e341b41 − e243b43 − e142b42 (6.57)

where eijk = αijk − α∗ijk, and i 6= j 6= k, i, j, k ∈ {1, 2, 3, 4}, and α∗ijk ∈ (0, π) is

the desired angle between
−→
ji and

−→
jk,. Following the calculations and analysis in
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Section 6.2, one has the angle error dynamics

ėijk =Nijk(ṗk − ṗj) +Nkji(ṗi − ṗj)
=Nijk(−eikmbkm − ejkibki + eijmbjm + ekjibji)

+Nkji(−ejikbik − ekimbim + eijmbjm + emjkbjk) (6.58)

where Nijk is defined in (5.2), and m = {1, 2, 3, 4}/{i, j, k}. For example, when
i = 4, j = 2, k = 3, (6.58) becomes

ė423 =N423(−e431b31 − e234b34 + e421b21 + e324b24)

+N324(−e243b43 − e341b41 + e421b21 + e123b23) (6.59)

where N423b24 = − sinα423

l23
, N423b34 = − sinα234

l23
and N324b43 = − sinα342

l24
. By speci-

fying all possible i, j, k and using (6.58), one will have the error dynamics of the 12
face angles. However, the three angles in each face of the tetrahedron is linearly de-
pendent, e.g., e123 + e231 + e312 = 0. Therefore, we choose in each face two interior
angles to form the state variable es = [e123, e231, e234, e243, e214, e241, e341, e314]T

and takeA1 = {(1, 2, 3), (2, 3, 1), (2, 3, 4), (2, 4, 3), (2, 1, 4), (2, 4, 1), (3, 4, 1), (3, 1, 4)}.
Then, one has the closed-loop angle error dynamics

ės = A(es)es (6.60)

Following the linearization steps in Section 6.2, (6.60) can be linearized as ės =

A∗ses where A∗s = A(es)|es=0. Then, one has the result.

Theorem 6.10. For the four-agent convex polyhedral formation under the control
(6.57), if

sinα∗ijk + sinα∗jki
l∗jk

>|
sinα∗kij
l∗ji

− sinαjki
l∗jk

|+ |N∗ijkb∗km|+ |N∗ijkb∗jm|

+ |N∗kjib∗im|+ |N∗kjib∗jm|+ |N∗kjib∗jk|, (6.61)

where (i, j, k) ∈ A1, m = {1, 2, 3, 4}/{i, j, k}, sinαijk(0) 6= 0, the initial angle errors
eijk(0) are sufficiently small, and the initial distances lij(0) are bounded away from
zero, then the angle errors eijk(t) converge exponentially to zero.

Proof. To check the local stability of (6.60), one needs to analyze the eigenvalue
distribution of matrix A∗s ∈ R8×8. Using Gershgorin circle theorem [46, Theorem
6.1.1], for each row of A∗s, if the sum of the absolute values of the off-diagonal
entries is less than the absolute value of the negative diagonal entry, all the eigen-
values of the matrix lie in left half-plane. Now, take the angle dynamics (6.62) as
an example. Because e423 + e234 + e243 = 0, the linearized dynamics of (6.62) can
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be written as

ė423 =− (
sinα∗423

l∗23

+
sinα∗234

l∗23

)e423 + (
sinα∗342

l∗24

− sinα∗234

l∗23

)e243

−N∗423b
∗
31e431 +N∗423b

∗
21e421

−N∗324b
∗
41e341 +N∗324b

∗
21e421 +N∗324b

∗
23e123 (6.62)

Therefore, one requires

sinα∗423

l∗23

+
sinα∗234

l∗23

>| sinα
∗
342

l∗24

− sinα∗234

l∗23

|+ |N∗423b
∗
31|+ |N∗423b

∗
21|

+ |N∗324b
∗
41|+ |N∗324b

∗
21|+ |N∗324b

∗
23| (6.63)

which is one case of condition (6.61). For the other 5 angles, using the same
analysis steps, one obtains the similar condition as described in (6.61). Therefore,
if the condition (6.61) holds for all the six angles defined in A1, one has that A∗s is
Hurwitz. Following similar analysis steps in Section 6.2, one has the local stability
of (6.60).

For an N -agent convex polyhedral formation, the control law for agent i 6 N
can be designed as

ui = −
∑

(j,i,k)∈A
ejikbik (6.64)

where A is the angle set containing all the angles from the triangular faces of
the convex polyhedral formation. Using similar steps as (6.58)-(6.63), a stability
condition can be obtained to guarantee the local stability of the convex polyhedral
formation with triangular faces.

6.4 Simulation

In this section, we use numerical examples with 4 agents to validate the effec-
tiveness of the proposed formation control algorithms. The desired angles among
agents are calculated using the embedding [p1, p2, p3, p4] given in Theorem 5.2. We
initialize all agents’ positions around the embedding:

p1(0) = [0.2,−0.3,−0.1]T , p2(0) = [0.3, 2.7, 0.1]T ,

p3(0) = [4.2, 4.9,−0.2]T , p4(0) = [2.3, 4.1, 2.2]T .

When agent 4 is governed by (6.25), i.e., Type-I vertex addition, Fig. 6.2 gives the
formation trajectories and the evolution of angle errors. When agent 4 is governed
by (6.44), i.e., Type-II vertex addition, Fig. 6.3 gives the formation trajectories and
the evolution of angle errors.



6.4. Simulation 133

-0.5

0

6

0.5

1

54

z/
m 1.5

4

2

y/m

2.5

2 3

x/m

2
0 1

0

Agent 1
Agent 2
Agent 3
Agent 4
Initial
Final

0 20 40 60 80 100

t/s

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

 ij
k -

 
 ij

k
*

 ijk=312
 ijk=123
 ijk=231
 ijk=412
 ijk=423
 ijk=421

Figure 6.2: Formation trajectories and angle errors under (6.25)
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Figure 6.3: Formation trajectories and angle errors under (6.44)

According to Figs. 6.2 and 6.3, agent 4 under the control of (6.25) moves
more directly to the desired position than the control of (6.44). The convergence
speed of angle errors under (6.25) is faster than (6.44). This illustrates the better
performance of (6.25) which owes to the availability of communication from agents
1, 2 to agent 4. Next, we simulate the case when agent 4 is controlled by (6.44) but
its initial position is close to the ambiguity position, i.e., p4(0) = [0.08, 4.07, 1.47]T .
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Figure 6.4: Formation trajectories and angle errors under (6.44) when initial states are
closed to the ambiguity formation
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According to Fig. 6.4, agent 4 finally converges to an undesired position in the
plane formed by p1(0), p2(0), p3(0), and the angle errors do not converge to zero
but nonzero constants finally. This illustrates that the formation under the control
of (6.44) is unstable when its initial formation is close to the ambiguity formation.

When the four agents are governed by (6.57), Figure 6.5 shows the formation
trajectories of the four agents and the evolution of angle errors which imply that
the desired polyhedral formation is achieved. Note that in this case, the agents 1, 2
and 3 are no longer coplanar at all the time.
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Figure 6.5: Formation trajectories and angle errors under control law (6.57)

6.5 Concluding remarks

In this chapter, using the developed angle rigidity theory in 3D, we have investi-
gated how to stabilize a multi-agent formation in 3D. First, using the two types
of construction approaches, multi-agent formations from sequential operations
have been achieved. Then, using angle constraints only in the faces of a convex
polyhedron, multi-agent polyhedral formations can also be stabilized.



Chapter 7

Conclusions and future work

This chapter summarizes the main results of this thesis and indicates the possible
future research directions.

7.1 Conclusions

This thesis has proposed angle rigidity graph theory in both 2D and 3D which
has been used to achieve multi-agent formations using only angle measurements.
We have defined a new multi-point framework, i.e., angularity, to describe the
angle constraints. We have shown the non-equivalence between global angle
rigidity and angle rigidity. Then we have developed the construction methods to
obtain a globally angle rigid angularity and angle rigid angularity, respectively. To
check whether a given angularity is angle rigid, we have also defined infinitesimal
angle rigidity. Using the developed angle rigidity theory, we have proposed angle-
only formation control algorithms to stabilize and maneuver a group of vehicles
with desired shape in collective motion, respectively. Now, we provide specific
conclusions for each technical chapter.

Chapter 2 has developed the notion of angle rigidity for a multi-point framework,
named angularity, consisting of a set of nodes embedded in a Euclidean space and a
set of angle constraints among them. Different from bearings or angles defined in a
global coordinate frame, the angles we use do not rely on the knowledge of a global
coordinate frame and are with the positive sign in the counterclockwise direction.
We have demonstrated that this angle rigidity property, in sharp comparison to
bearing rigidity or other reported rigidity related to angles of frameworks in the
literature, is not a global property since an angle rigid angularity may allow
flex ambiguity. We then have defined two types of vertex addition operations to
construct an angle rigid or globally angle rigid angularities. Further, we have
provided necessary and sufficient conditions for infinitesimal angle rigidity by
checking the rank of an angularity’s rigidity matrix. A combinatorial necessary
condition has also been developed for infinitesimal minimal angle rigidity.

Using the developed angle rigidity theory in Chapter 2, Chapter 3 has demon-
strated how to stabilize a multi-agent planar formation using only angle measure-
ments, which can be realized in each agent’s local coordinate frame. The desired
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angle rigid formation is constructed through the Type-I vertex addition operation
developed in Chapter 2. By following this vertex addition operation, we have first
designed the triangular formation control algorithm for the first three agents. Then,
we have proposed the formation control algorithm for the remaining agents to add
them into the existing formation step by step. The exponential convergence rate of
angle errors and collision-free property between specified agents have also been
proved. We have investigated the multi-agent formations with the single-integrator
and double-integrator dynamics, respectively.

Chapter 4 has realized how to maneuver a planar formation of mobile agents
using designed mismatched angles. The desired formation shape is still constructed
through the Type-I vertex addition operation and is specified by a set of interior
angle constraints. To realize the maneuver of translation, rotation and scaling of
the formation with single-integrator dynamics, we have intentionally forced the
agents to maintain mismatched desired angles by introducing a pair of mismatch
parameters for each angle constraint. To allow different information requirements
in the design and implementation stages, we have considered both measurement-
dependent and measurement-independent mismatches. Starting from a triangular
formation, we have considered generically angle rigid formations that can be
constructed from the triangular formation by adding new agents in sequence, each
having two angle constraints associated with some existing three agents. The
control law for each newly added agent arises naturally from the angle constraints
and makes full use of the angle mismatch parameters. We have also shown that
the control can effectively stabilize the formations while simultaneously realizing
maneuvering. When the formation is governed by double-integrator dynamics, we
have also achieved the formation maneuvering. Simulations have been conducted
to validate the theoretical results.

Chapter 5 has discussed angle rigidity for an angularity in 3D. The angles
have been defined using interior angles of triangles, which are independent from
coordinate frames and can be measured by using monocular cameras. We have
shown that the resulting angle rigidity is not a global property in comparison to the
case of 3D bearing rigidity. We have demonstrated that such angle rigid frameworks
can be constructed through adding repeatedly new points to the original small
angle rigid framework if one chooses angle constraints carefully. Based on the
classic distance rigidity results on convex polyhedra, we have also studied the angle
rigidity of convex polyhedral angularity. Finally, we have defined the angle rigidity
matrix of an angularity in 3D.

In Chapter 6, by using the developed 3D angle rigidity theory in Chapter 5,
formation stabilization algorithms have been designed for a team of vehicles in
3D to achieve an angle rigid formation, in which only local angle measurements
are needed. Different from the formation stabilization in 2D, we have proposed
a formation controller with a simpler structure, in which both Type-I and Type-II
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vertex addition operations have been employed to add the new agents, respectively.
Also, convex polyhedral formations have been achieved using the proposed control
law.

7.2 Future work

In this thesis we have proposed the angle rigidity graph theory and applied it to
achieve multi-agent formations. Several directions are of interest to be considered
in future research. In this section, we identify some future topics.
• Global angle rigidity: This thesis has proposed the sufficient conditions for

global angle rigidity, but they are not necessary. The necessary and sufficient
conditions for global distance rigidity have been studied for decades, and the
conditions for global distance rigidity in 3D or higher dimensions are still unknown.
A first future step in this direction can be to study the necessary and sufficient
conditions for 2D global angle rigidity.
• Infinitesimal rigidity: This thesis has proposed the necessary condition for

minimal and infinitesimal angle rigidity, but it is not sufficient. A well-known
necessary and sufficient condition was developed by Laman for minimal and
infinitesimal distance rigidity. Therefore, future study can concentrate on the
necessary and sufficient conditions for minimal and infinitesimal angle rigidity.
• Formation maneuvering in 3D: The formation stabilization task has been

achieved in 3D by using only angle measurements. However, the formation maneu-
vering has not been investigated yet, which will be useful to maneuver a team of
drones or satellites.
• Angle-only formation control with more complicated dynamics and noisy

measurements: Only single-integrator and double-integrator dynamics have been
considered in this thesis, and the more complicated dynamics have not been
considered. One may want to consider as a starter in this line of research the
unicycle model and nonlinear Euler-Lagrange dynamics. Also, the measurements
of angles are assumed to be noiseless in this thesis, and future work may take the
measurement noise into consideration.
• The other related applications: Besides multi-agent formations, there are also

other application scenarios which can benefit from the developed angle rigidity
theory in this thesis, e.g., flocking, circumnavigation and vehicle platooning.
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Summary

Rigidity theory has been studied for centuries, dating back to the works of Euler
and Cauchy. Motivated by the challenging formation problem where a vehicle
cannot measure positions or relative positions but some angles, this thesis proposes
angle rigidity graph theory in 2D and 3D and uses them to develop angle-only
formation control algorithms. We first develop the notion of 2D angle rigidity for a
multi-point framework, named “angularity”, consisting of a set of nodes embedded
in a Euclidean space and a set of angle constraints among them. Different from
bearings or angles defined in a global frame, the angles we use do not rely on the
knowledge of a global frame and are with a positive sign in the counter-clockwise
direction. Angle rigidity refers to the property specifying that under appropriate
angle constraints, the angularity can only translate, rotate or scale as a whole when
one or more of its nodes are perturbed locally. We demonstrate that this angle
rigidity property, in sharp contrast to bearing rigidity or other reported rigidity
related to angles of frameworks in the literature, is not a global property since
an angle rigid angularity may allow flex ambiguity. We then construct necessary
and sufficient conditions for infinitesimal angle rigidity by checking the rank of an
angularity’s rigidity matrix. We also develop a combinatorial necessary condition
for infinitesimal minimal angle rigidity.

Using the developed 2D angle rigidity theory, we demonstrate how to stabilize
a multi-agent planar formation using only angle measurements, which can be
realized in each agent’s local coordinate frame. The desired angle rigid formation
is constructed by the Type-I vertex addition operation defined in 2D angle rigidity
theory. By following this vertex addition operation, we first design the triangular
formation control algorithm for the first three agents. Then, we propose the
formation control algorithm for the remaining agents to add the remaining agents
into the existing formation step by step. We have also proved the exponential
convergence rate of angle errors and the collision-free property between specified
agents.



150 Summary

Besides the stabilization of angle rigid formations, we also study how to ma-
neuver a planar formation of mobile agents with collective motions using designed
mismatched angles. To realize the maneuver of translation, rotation and scal-
ing of the formation as a whole, we intentionally force the agents to maintain
mismatched desired angles by introducing a pair of mismatch parameters for
each angle constraint. To allow different information requirements in the de-
sign and implementation stages, we consider both measurement-dependent and
measurement-independent mismatches. The control law for each newly added
agent arises naturally from the angle constraints and makes full use of the angle
mismatch parameters. We show that the control law can effectively stabilize the
formations while simultaneously realizing maneuvering. Simulations are conducted
to validate the theoretical results.

Then, we develop 3D angle rigidity theory. We show that the resulting angle
rigidity is not a global property in comparison to the case of 3D bearing rigidity. We
demonstrate that such angle rigid frameworks can be constructed through adding
repeatedly new points to the original small angle rigid framework if one chooses
angle constraints carefully. Based on the classic distance rigidity results on convex
polyhedra, we investigate the angle rigidity of convex polyhedral angularities. The
angle rigidity matrix of an angularity in 3D is also defined. By using the developed
3D angle rigidity theory, the formation stabilization algorithms are designed for a
3D team of vehicles to achieve angle rigid formations, in which only local angle
measurements are needed.



Samenvatting

Stijfheidstheorie wordt al eeuwenlang bestudeerd en dateert uit de werken van
Euler en Cauchy. Gemotiveerd door het uitdagende formatieprobleem waarbij
enkel en alleen hoekmetingen gemeten wordt en niet de gebruikelijke posities of
relatieve posities, stelt dit proefschrift de theorie van hoekstijfheidsgrafen voor in
twee- en driedimensionale ruimten om algoritmen voor formatieregeling te ont-
wikkelen met alleen hoeken. We ontwikkelen eerst het idee van 2D hoekstijfheid
voor een meerpuntsraamwerk, genaamd “angulariteit”; bestaande uit een reeks
knooppunten ingebed in een Euclidische ruimte en een reeks hoekbeperkingen
daartussen. Verschillend van normaal-vectoren of hoeken gedefinieerd in een glo-
baal coördinatenstelsel, gebruiken we hoeken die niet afhankelijk zijn van de kennis
van een globaal coördinatenstelsel, maar waarbij de positieve richting tegen de klok
in is gedefineerd. Hoekstijfheid verwijst naar de eigenschap die specificeert dat
onder de juiste hoekbeperkingen, de angulariteit alleen als geheel kan transleren,
roteren, of op- en afschalen wanneer een of meerdere knooppunten lokaal worden
verstoord. We demonstreren dat deze hoekstijfheidseigenschap gebaseerd is op
normale vectoren of andere bestaande hoekstijfheidstheorieën en niet een globale
eigenschap aangezien een starre hoekstijfheid buigambigüıteit mogelijk maakt.
Vervolgens construeren we noodzakelijke en voldoende voorwaarden voor oneindig
kleine hoekstijfheid door de rang van de stijfheidsmatrix van een angulariteit te
controleren. We ontwikkelen ook een combinatorische noodzakelijke voorwaarde
voor oneindig kleine minimale hoekstijfheid.

Met behulp van de ontwikkelde 2D-hoekstijfheidstheorie laten we zien hoe
een multi-agent planaire formatie in het vlakke plaat kan worden gestabiliseerd
met behulp van alleen hoekmetingen, die kunnen worden gerealiseerd in het
lokale coördinatenstelsel van elke agent. De gewenste starre hoekformatie wordt
geconstrueerd door de Type-I knooppunt-optelbewerking gedefinieerd in de 2D-
hoekstijfheidstheorie. Door deze knooppunt-optelbewerking te volgen, ontwerpen
we eerst het algoritme voor het regelen van de driehoekige formatie voor de
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eerste drie agenten. Vervolgens stellen we het formatieregeling-algoritme voor
de resterende agenten om deze stap-voor-stap aan de bestaande formatie toe te
voegen. We hebben ook de exponentiële convergentiesnelheid van hoekfouten en
botsingsvrije eigenschap tussen gespecificeerde agenten bewezen.

Naast de stabilisatie van starre hoekformaties, bestuderen we ook hoe een forma-
tie van mobiele agenten met collectieve bewegingen kan worden gemanoeuvreerd
met behulp van ontworpen niet-overeenkomende hoeken. Om de manoeuvre van
translatie, rotatie en op- of afschaling van de formatie als geheel te realiseren,
dwingen we de agenten opzettelijk om niet-overeenkomende gewenste hoeken te
handhaven door een paar niet-overeenkomende parameters in te voeren voor elke
hoekbeperking. Om verschillende informatie-eisen in de ontwerp-en implementa-
tiefase mogelijk te maken, houden we rekening met zowel meetafhankelijke als
meetonafhankelijke verschillen. De regelaar voor elk nieuw toegevoegde agent
komt op natuurlijke wijze voort uit de hoekbeperkingen en maakt volledig gebruik
van de parameters voor niet-overeenkomende hoeken. We laten zien dat de rege-
laar de formaties effectief kan stabiliseren en tegelijkertijd ook manoeuvreren. Er
zijn simulaties uitgevoerd om de theoretische resultaten te valideren.

Vervolgens ontwikkelen we de 3D-hoekstijfheidstheorie. We laten zien dat
de resulterende hoekstijfheid geen globale eigenschap is in vergelijking met stijf-
heid gebaseerd op normale vectoren. We demonstreren dat een dergelijke starre
hoekformaties kunnen worden geconstrueerd door herhaaldelijk nieuwe knoop-
punten aan de bestaande starre hoekformatie toe te voegen met de bijbehorende
hoekbeperkingen. Gebaseerd op de klassieke resultaten van afstandsstijfheid op
convexe veelvlakken, onderzoeken we de hoekstijfheid van convexe veelvlakken.
De stijfheidsmatrix van een angulariteit in 3D wordt ook gedefinieerd. Door gebruik
te maken van de ontwikkelde 3D-hoekstijfheidstheorie, zijn de formatiestabilisatie-
algoritmen ontworpen voor een 3D-team van voertuigen om starre hoekformaties
te bereiken, waarbij alleen lokale hoekmetingen nodig zijn.
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