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a b s t r a c t

In this paper we propose an approach to the implementation of controllers with decentralized strategies
triggering controller updates. We consider set-ups with a central node in charge of the computation of
the control commands, and a set of not co-located sensors providing measurements to the controller
node. The solution we propose does not require measurements from the sensors to be synchronized in
time. The sensors in our proposal providemeasurements in an aperiodicway triggered by local conditions.
Furthermore, in the proposed implementation (most of) the communication between nodes requires only
the exchange of one bit of information (per controller update), which could aid in reducing transmission
delays and as a secondary effect result in fewer transmissions being triggered.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Aperiodic control techniques have recently gained much at-
tention due to the opportunities they open to reduce bandwidth
and computation requirements in cyber–physical system’s im-
plementations (Anta & Tabuada, 2010; Åström & Bernhardsson,
2002; Tabuada, 2007). These savings are especially relevant in the
implementation of control loops over wireless channels (Araujo
et al., 2011; Rabi & Johansson, 2008). In those set-ups there is not
only a limited bandwidth available, but also sensor nodes may
have limited energy provided by batteries. It is therefore inter-
esting to explore approaches which may save energy expendi-
tures at the sensors by e.g. reducing the number of transmissions
from those sensors, or reducing the amount of time the sensor
nodes need to keep their radios listening for possible communi-
cations from other nodes. While there is an extensive recent liter-
ature on event-triggered control aimed at reducing the amount of
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transmissions necessary to close the control loop while maintain-
ing stability (Cervin & Henningsson, 2008; Heemels, Sandee, & van
den Bosch, 2008; Lunze & Lehmann, 2010; Molin & Hirche, 2010;
Stöcker, Vey, & Lunze, 2013; Wang & Lemmon, 2011), the prob-
lem of reducing listening time has received less attention (Donkers
& Heemels, 2012; Mazo & Cao, 2011, 2012; Weimer, Araújo, & Jo-
hansson, 2012). Nevertheless, it is awell-known phenomena in the
sensor networks community that reducing listening times has a
bigger impact on the power burden than reducing transmissions
(Ye, Heidemann, & Estrin, 2002). In the present paper we try to
bridge this gap by proposing controller implementations focused
on reducing listening times. In order to attain this goal, we pro-
pose a technique in which the sensors do not need to coordinate
with each other, and therefore do not need to listen to each other.
Instead, in the proposed implementation the sensors send mea-
surements triggered by local conditions, irrespective of what the
other sensors are doing, in contrast with previous work on decen-
tralized triggering (Mazo & Tabuada, 2011). With respect to other
work on decentralized or distributed event-triggered control, we
do not impose any weak coupling assumptions or very restrictive
dynamics, as is often the case in work on multi-agent systems (Di-
marogonas, Frazzoli, & Johansson, 2012;Heemels &Donkers, 2013;
Li & Lemmon, 2011; Tallapragada & Chopra, 2012; Wang & Lem-
mon, 2011). Note that also Wang and Lemmon (2011), Dimarogo-
nas et al. (2012) suffer from the drawback of continuous listening.
Arguably, thework closest to ours is that presented in Donkers and
Heemels (2012), however restricted to the study of linear systems.

The implementation that we propose also enables the stabiliza-
tion of systems employing communication packetswith very small

http://dx.doi.org/10.1016/j.automatica.2014.10.029
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2014.10.029&domain=pdf
mailto:m.mazo@tudelft.nl
mailto:m.cao@rug.nl
http://dx.doi.org/10.1016/j.automatica.2014.10.029


3198 M. Mazo Jr., M. Cao / Automatica 50 (2014) 3197–3203
payload. In particular, our technique reduces the amount of pay-
load needed to essentially one bit. To appreciate the relevance of
reducing the packets payload, besides reducing power consump-
tion (Ye et al., 2002), one must notice that a large portion of delays
in communications are due to transmission delay. These transmis-
sion delays are dependent on the size of the packages transmitted,
and thus reducing the payload will indirectly reduce the commu-
nication delays present in the system. Event-triggered implemen-
tations of control systems accommodate delays by making more
conservative the conditions that trigger communications than
those in the delay free case. Employing more conservative condi-
tions results, in general, in more frequent transmissions of mea-
surements. Thus, a reduction on the payload is also expected to
result in a reduction on the amount of transmissions from the sen-
sors to the controller.

The ideas in the present paper will remind the reader of dy-
namic quantizers for control (Liberzon, 2003) and of dead-band
control (Otanez, Moyne, & Tilbury, 2002). We have, in a way, com-
bined those ideas with recent approaches to event-triggered con-
trol stemming from Tabuada (2007) to provide a formal analysis of
implementations benefiting fromall those ideas. The current paper
is the result of merging previous conference contributions by the
authors, providing a unified analysis and removing early mistakes
and imprecise statements. As such it should be seen as a more ac-
curate and easier to follow analysis of the proposals by Mazo and
Cao (2011, 2012).

2. Preliminaries

We denote the positive real numbers by R+ and by R+

0 = R+
∪

{0}. We use N0 to denote the natural numbers including zero and
N+

= N0 \{0}. The usual Euclidean (l2) vector norm is represented
by | · |. When applied to a matrix | · | denotes the l2 induced matrix
norm. A symmetric matrix P ∈ Rn×n is said to be positive definite,
denoted by P > 0, whenever xTPx > 0 for all x ≠ 0, x ∈ Rn. By
λm(P), λM(P)we denote theminimum andmaximum eigenvalues
of P respectively. A function f : Rn

→ Rm is said to be locally
Lipschitz if for every compact set S ⊂ Rn there exists a constant
L ∈ R+

0 such that: |f (x)− f (y)| ≤ L|x−y|, ∀x, y ∈ S. For a function
f : Rn

→ Rn we denote by fi : Rn
→ R the function whose image

is the projection of f on its ith coordinate, i.e. fi(x) = Πi(f (x)).
Consequently, given a Lipschitz continuous function f , we also
denote by Lfi the Lipschitz constant of fi. A function γ : [0, a[→ R+

0 ,
is of class K if it is continuous, strictly increasing and γ (0) = 0; if
furthermore a = ∞ and γ (s) → ∞ as s → ∞, then γ is said to be
of class K∞. A continuous function β : R+

0 × R+

0 → R+

0 is of class
KL if β(·, τ ) is of class K for each fixed τ ≥ 0 and for each fixed
s ≥ 0, β(s, τ ) is decreasing with respect to τ and β(s, τ ) → 0 for
τ → ∞. Given an essentially bounded function δ : R+

0 → Rm we
denote by ∥δ∥∞ the L∞ norm, i.e. ∥δ∥∞ = ess supt∈R+

0
{|δ(t)|}.

The notion of Input-to-State stability (ISS) (Agrachev, Morse,
Sontag, Sussmann, & Utkin, 2008) will be central to our discussion:

Definition 1 (Input-to-State Stability). A control system ξ̇ =

f (ξ , υ) is said to be (uniformly globally) input-to-state stable (ISS)
with respect to υ if there exist β ∈ KL, γ ∈ K∞ such that for
any t0 ∈ R+

0 the following holds:

∀ξ(t0) ∈ Rn, ∥υ∥∞ < ∞,

|ξ(t)| ≤ β(|ξ(t0)|, t − t0) + γ (∥υ∥∞), ∀t ≥ t0.

Rather than using its definition, in our arguments we rely on the
following characterization: a system is ISS if and only if there exists
an ISS Lyapunov function (Agrachev et al., 2008).
Definition 2 (ISS Lyapunov Function). A continuously differen-
tiable function V : Rn

→ R+

0 is said to be an ISS Lyapunov func-
tion for the closed-loop system ξ̇ = f (ξ , υ) if there exist class K∞

functions α, α, αv and αe such that for all x ∈ Rn and u ∈ Rm the
following is satisfied:

α(|x|) ≤ V (x) ≤ α(|x|)

∇V · f (x, u) ≤ −αv ◦ V (x) + αe(|u|). (1)

Often we use the shorthand V̇ (x, u) to denote the Lie derivative
∇V · f (x, u), and ◦ to denote function composition, i.e. f ◦ g(t) =

f (g(t)).
Finally, we employ the following, rather trivial, result in some

of our arguments:

Lemma 3. Given two K∞ functions α1 and α2, there exists some
constant L < ∞ such that:

lim sup
s→0

α1(s)
α2(s)

≤ L

if and only if for all S < ∞ there exists a positive κ < ∞ such that:

∀s ∈ ]0, S], α1(s) ≤ κα2(s).

Proof. The necessity side of the equivalence is trivial, thus we
concentrate on the sufficiency part. By assumption, we know that
the limit superior of the ratio of the functions tends to L as s → 0,
and therefore, ∀ϵ > 0, ∃δ > 0 such that α1(s)/α2(s) < L + ϵ
for all s ∈ ]0, δ[. As α1, α2 ∈ K∞ we know that in any compact
set excluding the origin the function α1(s)/α2(s) is continuous and
therefore attains a maximum, implying that there exists a positive
M ∈ R+ such that α1(s)/α2(s) < M, ∀s ∈ [δ, S], 0 < δ < S.
Putting these two results together we have that ∀s ∈ ]0, S], S <
∞, α1(s) ≤ κα2(s), where κ = max{L + ϵ,M}. �

3. Problem definition

The problem we aim at solving is that of controlling systems of
the form:
ξ̇ (t) = f (ξ(t), υ(t)), ∀t ∈ R+

0 , (2)

where ξ : R+

0 → Rn and υ : R+

0 → Rm and the full state is
assumed to be measured. In particular, we are interested in find-
ing stabilizing sample-and-hold implementations of a controller
υ(t) = k(ξ(t)) such that updates can be performed transmitting
asynchronous and aperiodic measurements of each entry of the
state vector. Furthermore, if possible we would like to do so while
reducing the amount of transmissions. This problem can be formal-
ized as follows:

Problem 4. Given system (2) and a controller k : Rn
→ Rm

find sequences of update times {t iri}, ri ∈ N0 for each sensor i =

1, . . . , n such that an asynchronous sample-and-hold controller
implementation:

υj(t) = kj(ξ̂ (t)), (3)

ξ̂i(t) = ξi(t iri), t ∈ [t iri , t
i
ri+1[, ∀ i = 1, . . . , n. (4)

renders the closed-loop system:
• uniformly globally practically asymptotically stable (UGPS),

i.e. satisfying that for all δ > 0, there exist a controller
implementation parameter η(δ)2 and βδ ∈ KL such that for
any t0 ≥ 0:

∀ξ(t0) ∈ Rn, |ξ(t)| ≤ βδ(|ξ(t0)|, t − t0) + δ, ∀t ≥ t0;

2 The update times t iri will depend on the selection of η.
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• or, uniformly globally asymptotically stable (UGAS), i.e. satisfy-
ing that there exists β ∈ KL such that for any t0 ≥ 0:

∀ξ(t0) ∈ Rn, |ξ(t)| ≤ β(|ξ(t0)|, t − t0), ∀t ≥ t0.

We address these two problems in what follows under the
following two main technical assumptions:

Assumption 5 (ISS w.r.t. Measurement Errors). Given system (2)
there exists a controller k : Rn

→ Rm such that the closed-loop
system

ξ̇ (t) = f (ξ(t), k(ξ(t) + ε(t))), ∀t ∈ R+

0 (5)

is ISS with respect to measurement errors ε. Furthermore, we
assume the knowledge of an ISS-Lyapunov function V certifying
that the system is ISS, i.e. satisfying (1).

Assumption 6 (Lipschitz Continuity). The functions f and k, defin-
ing the dynamics and controller of the system, are locally Lipschitz.

Note that this last assumption guarantees the (not necessarily
global) existence and uniqueness of solutions of the closed-loop
system.

4. Uniform global practical stabilization

Representing the effect of the sample-and-hold as a measure-
ment error at each sensor for all i = 1, . . . , n as:

εi(t) = ξi(t iri) − ξi(t), t ∈ [t iri , t
i
ri+1[, ri ∈ N0

we propose rules defining implicitly the sequences of update times
{t iri} for each sensor i:

t iri := min{t > t iri−1 | ε2
i (t) = ηi}, (6)

where ηi > 0 are design parameters.
For convenience and compactness of the presentation we

introduce the new variable:

η =

 n
i=1

ηi, (7)

and consider it as a design parameter that once specified restricts
the choices of ηi to be used at each sensor. We remark now that
with this definition the update rule (6) implies that |ε(t)| ≤ η
(with equality attained only when all sensors trigger simultane-
ously). Furthermore, we assume that the local parameters ηi are
defined through an appropriate scaling:

ηi := θ2
i η2, |θ | = 1, (8)

with θi as design constants introduced for analysis purposes only.
Now, we can state the following lemmawhich will be central in

the rest of the discussion:

Lemma 7 (Inter-Transmission Times Bound). If Assumptions 5 and
6 hold, for any η > 0, a lower bound for the minimum time between
transmissions of the sensor i, for i ∈ {1, . . . , n}, for all time t ≥ t0, is
given by:

τ ∗

i := L−1
fi

θi
η

η + α−1(max{V (ξ(t0)), α−1
v ◦ αe(η)})

, (9)

where Lfi denotes the Lipschitz constant of the function fi(x, k(x+ e))
for |x| ≤ α−1(max{V (ξ(t0)), α−1

v ◦ αe(η)}) and |e| ≤ η.
Proof. Let us denote in what follows by:
S(y, z) = {(x, e) ∈ Rn×n

| V (x) ≤ y, |e| ≤ z} and by
f i(y, z) = max(x,e)∈S(y,z) |fi(x, k(x + e))|. From Assumption 5 we
have that: |e| ≤ η, V (x) ≥ α−1

v ◦ αe(η) ⇒ V̇ (x, e) ≤ 0 and
thus S̃ := S(max{V (ξ(t0)), α−1

v ◦ αe(η)}, η) is forward invariant.
Recall that the minimum time between events at a sensor is given
by the time it takes for |εi| to evolve from the value |εi(t iki)| = 0
to |εi(t i−ki+1)| =

√
ηi, and thus3 τi ≥

√
ηi(maxS̃

d
dt |εi|)

−1. Therefore
all that needs to be proved is the existence of an upper bound on
the rate of change of |εi|. One can trivially bound the evolution
of |εi| as: d

dt |εi| ≤ |ε̇i| = |fi(ξ , k(ξ + ε))|, and the maximum
rate of change of |εi| in S̃ by f i(max{V (ξ(t0)), α−1

v ◦ αe(η)}, η).
Note that the existence of such a maximum is guaranteed by the
continuity of the maps f and k and the compactness of the set S̃.
Assumption 6 implies that fi(x, k(x+e)) is also locally Lipschitz, and
thus one can further bound f i(max{V (ξ(t0)), α−1

v ◦ αe(η)}, η) ≤

Lfi

α−1(max{V (ξ(t0)), α−1

v ◦ αe(η)}) + η

. Finally, recalling that

ηi = θ2
i η2, a lower bound for the inter-transmission times is given

by (9) which proves the statement. �

With this result one can state the following theorem:

Theorem 8 (UGPS). If Assumptions 5 and 6 hold, then the closed-
loop system (2), (3), (6) is UGPSwith respect to the parameter η in (7).
Moreover, the time between transmissions of measurements at each
sensor i is bounded from below by some τ ∗

i > 0.

Proof. From Lemma 7 we know that there exists some minimum
time between the triggering of events at the different sensors.
This, together with that the number of sensors is finite, guarantees
that there are no Zeno executions of the closed-loop system.
Assumption 5 provides the bound: |ξ(t)| ≤ β(|ξ(t0)|, t − t0) +

γ (∥ε∥∞), and the proposed implementation forces ∥ε∥∞ ≤ η.
Thus, using these two bounds, and ruling out any possible Zeno
solution, we know that |ξ(t)| ≤ β(|ξ(t0)|, t − t0) + δ, where
δ := γ (η), which finalizes the proof. �

5. Uniform global asymptotic stabilization

In general, employing a constant threshold value η establishes a
trade-off between the size of the inter-transmission times and the
size of the set to which the system converges. In order to achieve
asymptotic stabilitywe propose to let the parameter η change over
time as:

η(t) = η(tcrc ), ∀t ∈ [tcrc , t
c
rc+1[, (10)

with {tcrc } being a divergent sequence of times (to be defined later)
with tc0 = t0; and to use the local update rules:

t iri := min{t > t iri−1 | ε2
i (t) = ηi(t)},

ηi(t) := θ2
i η(t)2, |θ | = 1. (11)

The following lemma establishes some requirements to construct
asymptotic stabilizing asynchronous implementations.

Lemma 9. The closed-loop system (2), (3), (10), (11) is UGAS
if Assumptions 5 and 6 are satisfied and the following two conditions
hold:

• {η(tcrc )} is a monotonically decreasing sequence with
limrc→∞ η(tcrc ) → 0;

3 The timederivative of |εi| is defined for almost all t (excluding the instants {tki }),
which is sufficient to bound the time between events.



3200 M. Mazo Jr., M. Cao / Automatica 50 (2014) 3197–3203
• There exists κ > 0 such that for all tcrc
α−1(max{V (ξ(tcrc )),α−1

v ◦αe(η(tcrc ))})

η(tcrc )
≤ κ < ∞.

Proof. In view of Lemma 7 the second condition of this lemma
guarantees that there exists a minimum time between events
at each sensor when both events fall in an open time inter-
val ]tcrc , t

c
rc+1[, i.e. t iri+1 − t iri > τ ∗

i for all i = 1, . . . , n and
t iri , t

i
ri+1 ∈ ]tcrc , t

c
rc+1[. It could happen however that some sensor

update coincideswith anupdate of the thresholds, i.e. t iri+1 = tcrc+1,
which could lead to two arbitrarily close events of sensor i. Simi-
larly, events from two different sensors could be generated arbi-
trarily close to each other. Nonetheless, as the sequence {tcrc } is
divergent (by assumption), and there is a finite number of sensors,
none of these two effects can lead to Zeno executions.

The second condition of this lemmaalso implies that at tcrc either
V (ξ(tcrc )) ≤ α−1

v ◦ αe(η(tcrc )) or V (ξ(tcrc )) ≤ α(κη(tcrc )). From As-
sumption 5 we have that for all t ∈ [tcrc , t

c
rc+1[ the following bound

holds:

V (ξ(t)) ≤ max{V (ξ(tcrc )), α
−1
v ◦ αe(η(tcrc ))}

≤ max{α(κη(tcrc )), α
−1
v ◦ αe(η(tcrc ))}.

Thus, using definition (10) results in: V (ξ(t)) ≤ γV (η(t)), ∀t ≥ t0,
where γV ∈ K∞ is the function: γV (s) = max{α−1

v ◦αe(s), α(κs)}.
Next, we notice that the first condition of this Lemma implies

that ∃βη ∈ KL such that η(t) ≤ βη(η(tc0), t − tc0) for all t ≥ tc0 .
Putting together these last two bounds, and assuming that the ini-
tial threshold is selected as η(tc0) = κ0V (ξ(tc0)), for some constant
κ0 ∈ ]0, ∞[, one can conclude that:

V (ξ(t)) ≤ γV (βη(κ0V (tc0), t − tc0)), ∀t ≥ tc0 .

Finally, this last bound guarantees that:

|ξ(t)| ≤ α−1(γV (βη(κ0α(|ξ(tc0)|), t − tc0))) (12)

:= β(|ξ(tc0)|, t − tc0), ∀t ≥ tc0 (13)

with β ∈ KL which finalizes the proof. �

Remark 10. Note that this lemma, while ruling out Zeno behavior,
does not establish a minimum time between transmissions of
the same sensor. Such bounds are provided in Proposition 15.
Furthermore, neither this lemma nor the results from Section 4
address the occurrence of arbitrarily close transmissions from
different sensors. A solution to this last problem is discussed in
Section 6.1.

In the remaining part of this section we propose and analyze an
update policy for the time-varying threshold η(tcrc ) resulting in
asymptotic stability employing only asynchronous measurements
from all sensors. The proposed update policy for η(tcrc ) is given by:

η(t) = η(tcrc ), t ∈ [tcrc , t
c
rc+1[

η(tcrc+1) = µη(tcrc ), (14)

for some µ ∈ ]0.5, 1[. Given this update policy one can design an
event-triggered policy to decide the sequence of times {tcrc } such
that the system is rendered asymptotically stable. Furthermore,
as we show later in this section, such a fully event-triggered im-
plementation enables asymptotic implementations only requiring
the exchange of one bit of information whenever communication
between a sensor and controller, and vice-versa, is necessary. The
only exception to this being the transmission of the initial state of
the system at t0. This new strategy uses two independent trigger-
ing mechanisms:
• Sensor to controller: Sensors send measurements to the con-
troller whenever the local threshold is violated. As explained
in the previous section, the update of the control commands is
done with themeasurements as they arrive in an asynchronous
fashion.

• Controller-to-sensor: The controller commands the sensors to
reduce the threshold used in their triggering condition when
the system has ‘‘slowed down’’ enough to guarantee that the
inter-sample times remain bounded from below. The controller
checks this condition only in a periodic fashion, with period
τ c , and therefore the sensors only need to listen at those time
instants.

The mechanism to trigger sensor to controller communication has
already been analyzed in Section 3. Inwhat followswe concentrate
on describing and analyzing the triggering mechanism for the
communication from controller to sensors.

We introduce first the following assumption restricting the type
of ISS controllers amenable to the strategy we propose in what
follows:

Assumption 11. For some ϵ > 1 the ISS closed-loop system (5)
satisfies the following property:

lim sup
s→0

α−1
◦ α(α−1

◦ ϵα−1
v ◦ αe(s) + 2s)s−1 < ∞. (15)

Remark 12. Note that this assumption, as well as Assumptions 5
and 6, are automatically satisfied by linear systems with a
stabilizing linear state feedback controller and the usual (ISS)
quadratic Lyapunov function.

We remind the reader that ξ̂ , defined in (4), is the vector formed
by asynchronous measurements of the state entries that the
controller is using to compute the input to the system. Thus, the
controller can compute the following upper bound:

|ξ |(t) := |ξ̂ (t)| + η(tcrc ) ≥ |ξ̂ (t) − ε(t)|

= |ξ(t)|, ∀ t ∈ [tcrc , t
c
rc+1[, (16)

which also satisfies the bound |ξ |(t) ≤ |ξ(t)| + 2η(tcrc ).
The following theorem proposes a condition to trigger the

update of sensor thresholds guaranteeing UGAS of the closed-loop
system:

Theorem 13 (UGAS). Consider the closed-loop system (2), (3), (10),
(11)with the threshold update rule (14) and satisfying Assumptions 5,
6 and 11. Let τc > 0 be a design parameter. The sequence of threshold
update times {tcrc } implicitly defined by:

tcrc+1 := min{t = tcrc + rτ c
| r ∈ N+, |ξ |(t)

≤ α−1
◦ α(ρη(tcrc ))}, (17)

with any ρ < ∞ satisfying:

α−1
◦ α(α−1

◦ ϵα−1
v ◦ αe(s) + 2s) ≤ ρs (18)

for all s ∈ ]0, η(t0)] and some ϵ > 1, renders the closed-loop system
UGAS.

Proof. We use Lemma 9 to show the desired result. The first
itemized condition of the lemma is satisfied by the employment
of the update rule (14) with a constant µ ∈ ]0, 1[ if we can show
that the sequence {tcrc } is divergent. Thus, we must show that this
sequence is divergent and that the second itemized condition in
the lemma also holds.

First we show that starting from some time tcrc there always
exists some time T ≥ tcrc such that for all t ≥ T |ξ |(t) ≤ α−1
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◦ α(ρη(tcrc )). Showing this guarantees that {tcrc } is a divergent se-
quence. From Assumption 5 we know that for every ϵ̄ > 0 there
exists some T ≥ tcrc such that α(|ξ(t)|) ≤ V (ξ(t)) ≤ α−1

v ◦

αe(η(tcrc )) + ϵ̄ for every t ≥ T . Let ϵ̄ = (ϵ − 1)α−1
v ◦ αe(η(tcrc )),

for some ϵ > 1, then:

|ξ(t)| ≤ α−1(ϵα−1
v ◦ αe(η(tcrc ))), ∀t > T

and thus we have that the proposed norm estimator (16) satisfies
the bound:

|ξ |(t) ≤ α−1(ϵα−1
v ◦ αe(η(tcrc ))) + 2η(tcrc ), ∀t > T .

Therefore, if there exists a ρ > 0 satisfying (18) for some ϵ > 1
and for all s ∈ ]0, η(t0)], a triggering eventwill eventually happen.
Finally, from Assumption 11 and Lemma 3 one can conclude that
such a ρ < ∞ exists.

The second condition of Lemma 9 is easier to prove. We start
remarking that with ρ so that (18) holds, as µ < 1, ϵ > 1 and
α−1

◦ α(s) ≥ s for all s, we also have:

ρ

µ
s ≥ α−1

◦ α−1
v ◦ αe(s) (19)

for all s ∈ ]0, η(t0)]. Thus, (19) and the triggering condition (17),
as V (ξ(tcrc )) ≤ α(|ξ |(tcrc )), guarantee that the following holds:

α−1(max{V (ξ(tcrc )), α
−1
v ◦ αe(η(tcrc ))}) ≤

ρ

µ
η(tcrc )

at all times tcrc > tc0 . Therefore

κ := max


ρ

µ
,
α−1

◦ V (ξ(tc0))
η(tc0)


≥

α−1(max{V (ξ(tcrc )), α
−1
v ◦ αe(η(tcrc ))})

η(tcrc )
(20)

for all tcrc , which concludes the proof. �

Remark 14. Finding controllers to satisfy Assumption 11might be,
in general, an arduous task. However, in practice one is generally
only concerned with attaining practical stability and can thus
disregard this assumption. In this case, it is enough to guarantee
(15) for s ∈ [ηm, η(tc0)], ηm > 0, which can always be satisfied
given that: for every α ∈ K∞ there always exists κ < ∞ such that
α(s) ≤ κs for all s ∈ [ηm, η(tc0)]. Then, one would stop any further
updates of the thresholds whenever the threshold reaches ηm. The
benefit of this approach is that one would obtain longer inter-
transmission times when compared to employing a fixed constant
threshold ηm from the beginning (as in Section 3).

The presented implementations of asynchronous event-triggered
controllers require only one bit communications: to recover the
value of a sensor after a threshold crossing, it is only necessary to
know the previous value of the sensor and the sign of the error εi
when it crossed the threshold:

ξ̂i(t iri) = ξ̂i(t iri−1) + sign(εi(t iri))


ηi(tcrc ). (21)

Similarly, messages from the controller to the sensors, command-
ing a reduction of the thresholds, can be indicatedwith a single bit.

Using this one-bit implementation we can now obtain bounds
for the time between updates of a sensor valid globally (not only
between threshold updates, but also across such updates):

Proposition 15 (Inter-Transmission Time Bounds). The controller
implementation from Theorem 13 with controller updates (21), τ c

≥

maxi∈[1,n]{
µL−1

fi
θi

µ+ρ
} and

η(tc0) ≥
µ

ρ
α−1

◦ V (ξ(tc0)), (22)
guarantees that a minimum time between events at each sensor is
given, for all t ≥ tc0 , by:

t iri − t iri−1 ≥ τ ∗

i ≥ (2µ − 1)
L−1
fi

θi

µ + ρ
> 0, (23)

where Lfi is the Lipschitz constant of the function fi(x, k(x + e)) for
|x| ≤ α−1(max{V (ξ(tc0)), α

−1
v ◦ αe(η(tc0))}) and |e| ≤ η(tc0).

Proof. Theorem 13, by means of Lemma 9, guarantees that:

t iri − t iri−1 ≥ τ b
i ≥

L−1
fi

θi

1 + κ
, ∀ t iri , t

i
ri−1 ∈ ]tcrc , t

c
rc+1[,

with (see proof of Theorem 13) κ :=
ρ

µ
when (22) holds. However,

it can happen that some sensors automatically violate their trig-
gering condition when their local threshold is reduced, i.e. some
t iri = tcrc . This can lead to two possible problematic situations: that
t iri −t iri−1 < τ b

i ; and/or that t
i
ri+1−t iri < τ b

i . In the first case, one can
always bound t iri − t iri−1 ≥ µτ i

b following the reasoning in the
proof of Lemma 7 with the same bound for the system speed but
to reach a threshold |εi(t i−ri )| = µ


ηi(tcrc−1), as (17) guarantees

that nomore than one threshold update can occur simultaneously.
Note that by employing τ c > maxi{τ b

i } one also guarantees that
threshold updates do not trigger sensor updates closer than τ b

i . In
the second case, the source of the problem is the update of ξ̂ fol-
lowing (21). When |εi(t i−ri )| >


ηi(tcrc ) the controller is updated

with a value:

ξ̂i(t iri) = ξ̂i(t iri−1) + sign(εi(t iri))


ηi(tcrc ). (24)

Thus, updating the local error accordingly as εi(t iri) := ξ̂i(t iri) −

ξi(t iri) results in an error satisfying |εi(t iri)| ≤ ( 1
µ

− 1)


ηi(tcrc ), and
not necessarily equal to zero. Reasoning again as in the proof of
Lemma 7, but now computing the time it takes |εi| to go from a
value of ( 1

µ
−1)


ηi(tcrc ) to


ηi(tcrc ), one can show that t iri+1 − t iri ≥

2 −
1
µ


τ b
i , whenever t iri = tcrc . Finally, realizing thatµ > 2−

1
µ

≥

0 for all µ ∈ ]0.5, 1[ concludes the proof. �

6. Practical considerations

6.1. Delays

Many effects of a real practical implementation can be ab-
stracted in the form of a delay in the proposed event-triggered
implementation. We illustrate this with a specific example: In our
implementations controller updates can take place arbitrarily close
to each other. This is so because while one sensor cannot trigger
updates arbitrarily close to each other, the combination of all sen-
sors can potentially force that to happen. This makes the proposed
techniques more suitable for systems with controller(s) and actu-
ators co-located. As in Mazo and Cao (2011), we suggest the use of
a periodic subjacent scheme for the update of the controller. The
effect of such a scheme is the introduction of an artificial delay in
the closed-loop system.

The kind of delays we consider are those between the event-
generation at the sensor side and its effect taking place in the
control inputs applied to the system. Essentially, whatmost event-
triggered techniques do is control the magnitude of the virtual
error introduced by sampling in a digital implementation. If the
magnitude of this error signal is successfully kept within certain
margins, the controller implementation is stable. This error signal
that one must control is defined at the plant side. Therefore, when
delays are present, while the sensors send new measurements
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Fig. 1. State trajectory, evolution of the thresholds, and events generated at the sensors.
trying to keep |εi(t)| = |ξi(t iri) − ξi(t)| ≤ ηi, what actually matters
is the value of the error at the plant-side ε̂i(t), defined as:

ε̂i(t) = ξ(t iri−1) − ξ(t) t ∈ [t iri , t
i
ri + ∆τ i

ri [ (25)

ε̂i(t) = εi(t) t ∈ [t iri + ∆τ i
ri , t

i
ri+1[, (26)

where ∆τ i
ri denotes the delay between the time t iri , at which a

measurement is transmitted, and the time t iri + ∆τ i
ri , at which

the controller is updated with that new measurement. Thus the
actual objective to attain UGAS or UGPS is to keep |ε̂(t)| below the
threshold η. From the analysis in the proof of Lemma 7 we know
that the maximum speed of the error signal is always kept below
Lfi(κ + 1)η, with Lfi as in Proposition 15. Thus, given a maximum
delay of ∆τ i

ri ≤ ∆τ < (κ + 1)−1L−1
fi

for all i and ri, reducing the
local thresholds as:

θiη̄ = θiη

1 − Lfi(κ + 1)∆τ


and keeping |ε(t)| ≤ η̄, guarantees that the error at the plant side
stays below the desired value |ε̂i(t)| ≤ η. The more conservative
our estimates of κ and Lfi are, the smaller the tolerable delays will
be.

6.2. Performance guarantees

Performance guarantees are provided by (13) determined by κ
in (20), which in general are very hard to interpret. We provide in
the following some intuition on the performance effect of the three
design parameters: ρ, µ and τ c . Reducing ρ, µ or τ c in general
should yield a faster convergence of the system. However, while
reducing µ leads to more frequent inter-transmission times from
the sensors, reducing ρ may increase the frequency of threshold
update requests sent from the controller to the sensors.

7. Example

Consider a nonlinear system of the form:

ξ̇ (t) = Aξ + B(g(ξ(t)) + υ(t))
where g is a nonlinear locally Lipschitz function. Consider the
controller affected by measurement errors:

υ(t) = −g(ξ(t) + ε(t)) − K(ξ(t) + ε(t)),

with K such that Ac = A − BK is Hurwitz.
Let V (x) = xTPx, where PAc + AT

c P = −I , be the candidate ISS-
Lyapunov function for the system. It is easy to show that one can
set: α(s) = λM(P)s2, α(s) = λm(P)s2, αx(s) = axs2 and αv(s) =

αx ◦ α−1(s) with αe(s) = aes2. Noting that ϵα(s) ≤ α(ϵs), ∀ϵ > 1
and a simple manipulation one can show that Assumption 11 is
satisfied and obtain the condition:

ρ >
λM(P)

λm(P)


ae
ax

+ 2


λM(P)

λm(P)
,

where ax =
1
2 and ae = 2(|PBK | + Lg |PB|)2 with Lg the Lip-

schitz constant of g in the compact determined by |x| ≤ α−1

(max{V (ξ(t0)), α−1
v ◦ αe(η(t0))}) + η(t0). Furthermore, Lfi (as de-

fined in Section 3) can be taken as: Lfi = max{|Ac |, |BK | + |B|Lg}.
We use in the following simulation the system defined by:

A =

 1.5 0 7 −5
−0.5 −4 0 0.5
1 4 −6 6
0 4 1 −2

 , B =

0 0
5 0
1 −3
1 0

 ,

g(x) =


x22

sin(x3)


, K =


0.1 −0.2 0 −0.2
1.5 −0.2 0 0


.

Fig. 1 shows the result of a simulation when: µ = 0.85, ρ =

2140, τ c
= 0.25 s, θi = [0.58 0.33 0.67 0.30]T and initialized with

ξ(0) = [1 1.18 0.16 1.19]T , ε(0) = 0 and η(0) = 2.9·10−3. Taking
initial conditions in |ξ(t0)| ≤ 2 imposed aρ > 2120. Assuming the
maximum delay introduced is ∆τ = 6 µs, results in a minimum
time between transmissions τ ∗

i ≥ 8 µs. The simulation shows the
conservativeness of these bounds, presenting aminimumobserved
inter transmission time of 145 µs. Furthermore, the average inter
transmission time in the simulated time was one order of magni-
tude larger.
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8. Discussion

We have shown how asymptotic stability can be attained with
fully decentralized event-triggered conditions. It would also be in-
teresting to combine our approach with decentralized/distributed
event-triggered controllers (Wang & Lemmon, 2011). Themain as-
sumption adopted was Assumption 5. In fact, this can be replaced
by a local version only to be satisfied in the compact of interest for
the system operation, which relaxes drastically the requirement
(Freeman, 1995). Furthermore, as stated in Remark 14 in practice
one can often ignore Assumption 11. Nonetheless, the study of con-
troller designs for non-linear systems to satisfy Assumption 11 is
interesting to be followed.

The guarantees that our analysis provide are highly conserva-
tive, due to the use of Lipschitz constants in bounding the speed of
the system. It would be desirable to study computational meth-
ods capable of reducing this conservatism, similarly to those in
Donkers and Heemels (2012), Donkers, Heemels, van de Wouw,
and Hetel (2011) and Hetel, Kruszewski, Perruquetti, and Richard
(2011), and to provide performance guarantees. We also leave as
follow-up work the design of numerical methods to select ade-
quate ρ and µ optimizing the controller implementation for given
communication bandwidth limitations.

Finally, we suggest studying also the design of protocols for
wireless communications exploiting the benefits of the proposed
techniques.
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