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Abstract— This paper proposes lower bounds for the coupling
strengths of oscillators in directed networks to guarantee global
synchronization. The novel idea of graph comparison from
spectral graph theory is employed so that the topological features
of a given network can be fully utilized to simplify computations.
For large networks that can be decomposed into a set of smaller
strongly connected components, the comparison can be carried
out at the local level as well.

I. INTRODUCTION

How to achieve synchronization in various complex net-
works has been a central research topic for decades. A
systematic framework for the study of synchronization of
nonlinear dynamical systems with diffusive couplings has
been developed in [1]. One critical observation is that graph
combinatorial features that are associated with the network
topologies are essential for identifying synchronization con-
ditions [2]. In particular, the lengths of all the paths passing
through chosen edges in the graph have been used to allocate
coupling strengths to achieve global synchronization in the
network [3], [4].

We have designed in [5] a new coupling-strength allocation
method for undirected networks using recently reported tools
in spectral graph theory [6]. The idea of graph comparison
[7], [6] turns out to be especially useful. In this paper, we
further develop our methodologies by looking at general di-
rected networks. We prove that the synchronization conditions
given in [4] and [1] for allocating coupling strengths can
be explained by comparing the network coupling graph with
the corresponding complete graph. We construct an algorithm
that incorporates graph comparison to find candidate sets of
coupling strengths for synchronization. To keep the computa-
tion tractable, for large networks that can be decomposed into
smaller strongly connected subgraphs, we run the algorithms
locally for each component. The proposed algorithm is novel
in that no graph comparison results for directed networks have
been reported in the literature before and also that topological
conditions are usually much easier to check.

The rest of the paper is organized as follows. In Section
II, we formulate the system model. The graph comparison
technique and the synchronization results obtained accordingly
are presented in Section III. We deal with decomposable
networks in Section IV.

II. SYSTEM SETUP

We consider a network of n > 1 coupled identical oscilla-
tors whose dynamics are described by

ẋi = f(xi) +
∑n

j=1
εij P xj , i = 1, . . . , n , (1)

where xi ∈ IRd is the state of the ith oscillator, f(·) : IRd →
IRd denotes the identical self-dynamics of each oscillator and
is a C1 function, εij ≥ 0 describes the strength of the coupling
from oscillator j to i, and the diagonal (0, 1)-matrix P ∈
IRd×d determines through which components of the states that
the oscillators are coupled together. The couplings between the
oscillators can be conveniently described by a graph G with n
vertices in which there is an edge from vertex j to i if εij > 0.
Since the couplings between the oscillators are unidirectional,
the network is directed in general and thus G is directed as
well. The connectivity matrix C with entries εij is an n ×
n matrix with zero row sums and nonnegative off-diagonal
elements such that

∑n
j=1 εij = 0 and εii = −

∑n
j=1,j ̸=i εij

for i = 1, . . . , n.
System (1) has been used widely to study under what

conditions the coupled oscillators can achieve asymptotically
global and complete synchronization, where for any initial
condition, |xi(t) − xj(t)| → 0 as t → ∞ for all i, j [1]. It
is common to make one standard technical assumption about
system (1).

Assumption 1: [4] For the network (1) consisting of two os-
cillators with one directed coupling, there exists some thresh-
old a such that the global synchronization can be achieved if
the coupling strength exceeds a.

Assumption 1 implies that any two coupled oscillators
are always able to get synchronized when their coupling is
sufficiently strong. Here the constant a is determined by both
the function f and the projection matrix P .

In what follows, we look into how to apply spectral graph
theory in order to gain new insight into the synchronization
problem that we have just set up.

III. SYNCHRONIZATION CRITERIA USING SPECTRAL
GRAPH THEORY

There are existing results providing sufficient conditions for
the global synchronization of system (1). We list two of such

978-1-4673-5762-3/13/$31.00 ©2013 IEEE 2307



results below and they become useful later on as we develop
spectral graph theoretic conditions in the paper. Let Dc

i denote
the node unbalance [4] of node i, namely Dc

i =
∑n

k=1 εki =∑
k ̸=i εki+εii =

∑
k ̸=i εki−

∑
k ̸=i εik, which is the difference

between the out-degree and in-degree of node i.
Theorem 1: [4] Under Assumption 1, the synchronization

manifold of system (1) is globally asymptotically stable if

n−1∑
i=1

n∑
j>i

(
εij + εji

2

)
(xik − xjk)

2 >
a

n

n−1∑
i=1

n∑
j>i

×
(
1 +

1

2a
(Dc

i +Dc
j)

)
(xik − xjk)

2

(2)

for 1 ≤ k ≤ d.
We use Ws to denote the set of irreducible, symmetric ma-

trices that have zero row sums and non-positive off-diagonal
elements. For a matrix A ∈ IRn×n, we say A ≻ 0 if xT Ax
is positive for all nonzero x ∈ IRn.

Theorem 2: (Chapter 4, [1]) Let Y (t) be a d × d time-
varying matrix and V be a d× d symmetric positive definite
matrix such that (y−z)TV (f(y, t)+Y (t)y−f(z, t)−Y (t)z) ≤
−c||y − z||2 for some c > 0 and all y, z, t. Then network (1)
synchronizes globally if there exists an n×n matrix U ∈ Ws

such that

(U ⊗ V )(G(t)⊗D(t)− In ⊗ Y (t)) ≼ 0 , for all t. (3)
Here, the time-varying matrices D(t) and G(t) correspond to
−P and LG in our model (1). In our related work [5], we
have shown that Assumption 1 is equivalent to the condition
(y − z)T (f(y, t) + Y (t)y − f(z, t) − Y (t)z) ≤ −c||y − z||2
when we set Y (t) = −aP .

In this paper, we intend to introduce tools from spectral
graph theory to study the synchronization problem. To do so,
we need to define some notations. For a symmetric square
matrix A, by A ≻ 0 we mean that A is positive definite. And
we say A ≻ B if A − B ≻ 0. Similarly, we say A ≽ B if
A−B is positive semi-definite. We further apply this notation
to undirected graphs.

Definition 1: For two undirected graphs H1 and H2 with
the same vertex set V = {1, . . . , n}, we say H1 ≽ H2 if their
Laplacian matrices satisfy LH1 ≽ LH2 .

We use Kn to denote the un-weighted, undirected complete
graph with n vertices. To apply Theorem 2, we set Y (t) =
aD(t), V = Id, U = LKn , G(t) = LG. Then from (3) we have
(LKn⊗Id)(LG⊗D(t)−In⊗aD(t)) ≼ 0, i.e., LKn LG⊗D(t)−
aLKn⊗D(t) ≼ 0. Since D(t) ≼ 0, we have LKn LG−aLKn ≽
0. Therefore the complete synchronization of network (1) is
guaranteed if

LKn LG ≻ aLKn . (4)

Note that LKn = nIn−J where J is the n-by-n all-one matrix.
One has nG − JG ≻ aKn from (4). In the case where G is
undirected, (4) can be further reduced to G ≻ a

nKn. However,
in this paper we are looking at the more challenging scenario
where the networks are directed. We will use the following
property of directed graphs.

Lemma 1: For a directed graph G, the condition nG −
JG ≻ aKn is equivalent to n

2 (G+GT )− 1
2 (JG+GT J) ≻

aKn .
We omit the proof for this lemma due to page limit.
With Theorem 2 and Lemma 1 at hand, we have arrived at

a general graph theoretic synchronization criterion.
Theorem 3: Suppose that Assumption 1 holds, and that the

graph G contains a directed spanning tree [2]. The synchro-
nization manifold of system (1) is globally asymptotically
stable if n

2 (G+GT )− 1
2 (JG+GT J) ≻ aKn .

In the following, we will show that Theorem 1 is equivalent
to Theorem 3. It holds that

J G = 1⊗
[
−
∑n

k=1 εk1 −
∑n

k=1 εk2 . . . −
∑n

k=1 εkn
]

= −1⊗
[
Dc

1 Dc
2 . . . Dc

n

]
,

where 1 ∈ IRn is the vector of all ones. And one has

GT J = −1T ⊗
[
Dc

1 Dc
2 . . . Dc

n

]T
.

It follows that the matrix −(J G+GT J) is
2Dc

1 Dc
1 +Dc

2 . . . Dc
1 +Dc

n

Dc
2 +Dc

1 2Dc
2 . . . Dc

2 +Dc
n

. . . . . . . . . . . .
Dc

n +Dc
1 Dc

n +Dc
2 . . . 2Dc

n

 ,

where the (ij)th entry is Dc
i +Dc

j for i, j = 1, . . . , n.
Since the sum of the out-degrees of all the nodes in G is
equal to the sum of the in-degrees of all the nodes, we have∑n

i=1 Dc
i = 0. The ith row-sum of the matrix −(J G+GT J)

is then nDc
i +

∑n
i=1 Dc

i = nDc
i for i = 1, . . . , n. Let the

n × n matrix ∆ , diag{nDc
1, nD

c
2, . . . , nD

c
n}. Thus, the

matrix aKn + 1
2 (JG + GT J) + 1

2 ∆ is symmetric and has
zero row sums. Since the ith row-sum of the matrix G+GT

is −
∑n

k=1 εki = −Dc
i for i = 1, . . . , n, we know that the

matrix n
2 (G+GT )+ 1

2 ∆ is symmetric and has zero row sums
and non-positive off-diagonal entries. Now we are ready to
compare the two symmetric matrices aKn+

1
2 (JG+GT J)+

1
2 ∆ and n

2 (G+GT ) + 1
2 ∆. From Theorem 3, we have

1

2
(G+GT )+

1

2n
∆ ≻ a

n

(
Kn +

1

2a
(JG+GT J) +

1

2a
∆

)
.

(5)
Furthermore, one can easily check that the inequality (5) is
equivalent to the inequality (2) in Theorem 1. Therefore, we
have shown that Theorem 3 and Theorem 1 are one and the
same.

To apply more tools from spectral graph theory, we need to
introduce another equivalent definition of Laplacian matrices
of graphs. Following [7], we define the elementary Laplacian
L(u,v) to be the Laplacian of the graph with the vertex set
V and only one edge between vertices u and v. Then for an
arbitrary undirected graph H with the edge set E , its Laplacian
matrix can be defined to be L(H)

∆
=

∑
(u,v)∈E L(u,v).

The following inequality have been proved in [7] and we list
it below.

Lemma 2: [7] For the undirected graph H with edge set E ,
it holds that (n− 1)

(∑n−1
i=1 L(i,i+1)

)
≽ L(1,n).
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The spectral graph theory discussed in [7] mainly focuses
on undirected graphs. It has been demonstrated in [5] that
tools in spectral graph theory are powerful in utilizing flexibly
topological features of a given network. However, the results
developed in [5] can be applied only to undirected networks
and are thus not general enough. Motivated by [4], what we
propose to do in the next is to symmetrize graph G first,
and then construct synchronization criteria on the symmetrized
graph using spectral graph theory. To be more specific, for any
pair of unidirectionally coupled nodes i and j, we replace the
directed edge between them by an undirected edge with the
weight εij/2 that is half of the original coupling strength;
for any bi-directionally coupled pair of nodes i and j, we
replace the two edges between them by an undirected edge
with the coupling strength (εij + εji)/2. Let Gs denote the
obtained symmetrized graph from G. One can then check that
the Laplacian matrix of Gs is LGs = 1

2 (LG + LT
G) +

1
2n ∆.

For the symmetrized graph Gs, consider a set of paths P =
{Pij |i, j = 1, . . . , n, j > i}, one for each pair of distinct nodes
i and j. We denote the length of the path Pij by |Pij |, which
is the number of edges in Pij .

Now we use Theorem 3 and (5) to construct graph theoretic
conditions for the synchronization of network (1). We use
E(Gs) to denote the set of all the edges of Gs and assume
that there are altogether m edges that are labeled by 1, . . . ,m.
In the following theorem, we show that lower bounds on the
coupling strengths εk, k = 1, . . . ,m, can be constructed to
guarantee that the inequality (5) holds.

Theorem 4: Suppose that Assumption 1 holds, and the
graph G contains a directed spanning tree. The synchronization
manifold of network (1) is globally asymptotically stable if

εk >
a

n
bk, for k = 1, . . . ,m, (6)

where bk =
∑

j>i;k∈Pij
L(Pij) is the sum of the lengths

L(Pij) of all those paths Pij in P containing the edge k that
belongs to the symmetrized graph Gs and the weighted path
length L(Pij) is defined by

L(Pij) ,
{

|Pij |χ
(
1 +

Dc
i+Dc

j

2a

)
, edge(i, j) /∈ E(Gs) ;

1 +
Dc

i+Dc
j

2a , edge(i, j) ∈ E(Gs) ,
(7)

where the function χ(·) returns identity for positive arguments
and 0 otherwise.

Theorem 4 can be obtained through comparison of the
two matrices LGs and a

n

(
LKn + 1

2a (JLG + LT
G J) + 1

2a ∆
)
,

using Lemma 2. We omit the proof for Theorem 4 due to page
limit.

Remark 1: Using graph comparison, we have provided a
different proof compared with those in [8], [4]. Our approach
utilizes more the features of the graphs associated with the
networks.

Remark 2: If G is asymmetric but balanced, then Dc
i = 0

for i = 1, . . . , n. From Theorem 4, it follows that network
(1) can be asymptotically synchronized if εk > bk

n a for
k = 1, . . . ,m, where bk =

∑
j>i;k∈Pij

|Pij |. The result

then becomes the same as Theorem 1 in [8], in which the
connection graph stability method is discussed for directed
graphs with node balance.

Theorem 4 can be used to find a set of coupling strengths
to realize global synchronization in a network. We describe
below an algorithm to achieve this goal.
Step 1. Determine the node unbalance Dc

i for each node.
Step 2. Symmetrize G to obtain the undirected graph Gs.
Step 3. Compare Gs with the corresponding complete graph
Kn. For any pair of nodes i, j, choose a path Pij in Gs. Here,
we prefer to choose the shortest paths.
Step 4. For those paths Pij whose lengths are greater than 1,
assign the weight 1 +

Dc
i+Dc

j

2a if 1 +
Dc

i+Dc
j

2a > 0, and zero
otherwise. For those paths Pij whose lengths equal 1, assign
the weight 1 +

Dc
i+Dc

j

2a .
Step 5. For each edge k in Gs write down the inequality (6).
Step 6. Solve for the solutions to the obtained set of inequali-
ties, which give possible combinations of coupling strengths.

Remark 3: Similar ideas in this algorithm have been dis-
cussed in [4]. The main differences lie in Steps 4 and 5 where
we have used graph comparison techniques. Following [4], we
call this algorithm the generalized connection graph method
and use the abbreviation GCGM in the rest of the paper.

In the next section, we discuss in more detail a new sys-
tematic way to allocate coupling strengths for large networks
with local structures.

IV. NETWORKS WITH LOCAL STRUCTURES

Although GCGM uses the combinatorial features of graphs
and sometimes can greatly simplifies computation, it still has
two shortcomings:
1) The computational complexity of counting paths grows
exponentially as the size of the network inceases.
2) As the number of inequalities obtained in step 5 increases,
it becomes more difficult, sometimes impossible, to find a
solution in step 6.

To address these two shortcomings, we improve our results
by looking more carefully at the networks’ local structures and
thus apply graph comparison only locally. To do so, we need
to decompose graphs.

Definition 2: [1] The Frobenius normal form of the Lapla-
cian matrix of a directed graph G is:

LG = M


B1 B12 . . . B1k

B2 . . . B2k

. . .
...
Bk

 MT (8)

where M is a permutation matrix and Bi are square irreducible
matrices.

Lemma 3: [1] The matrices Bi are uniquely determined by
LG although their ordering can be arbitrary as long as they
follow a partial order induced by ▹ which is defined as Bi ▹
Bj ⇔ Bij ̸= 0.

The uniqueness of the matrices Bi can be seen from the
fact that these matrices correspond to the strongly connected
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components of graph G. The decomposition of a Laplacian
matrix into its Frobenius normal form is thus equivalent to the
decomposition of G into its strongly connected components.
The partial order in Lemma 3 leads to the definition of
condensation directed graphs as follows.

Definition 3: [1] The condensation directed graph of a
directed graph G is constructed by assigning a vertex to each
strongly connected component of G and an edge between two
vertices if and only if there exists an edge of the same orien-
tation between corresponding strongly connected components
of G.

We give an example of a directed graph and its corre-
sponding condensation graph in Fig. 1. We will also need
the following definition for the generalized Fielder’s algebraic
connectivity and its property.

Definition 4: [1] For a directed graph with the associated
Laplacian matrix L expressed in its Frobenius normal form,
define a4(L) = min1≤i≤k ηi where ηi = minx̸=0

xT WiBix
xT Wi x

for 1 ≤ i ≤ k − 1 and ηk = minx̸=0,x⊥1
xT WkBkx

xT

(
Wk−

wkwT
k

||wk||1

)
x

.

The following synchronization criteria can be derived di-
rectly from Theorem 4.20 and Corollary 4.21 in [1].

Theorem 5: Under the assumptions of Theorem 2, if G
contains a directed spanning tree, then the network (1) syn-
chronizes for sufficiently large coupling strength ε a4(LG) >
a.

Theorem 5 enables us to design the following algorithm
to obtain the sets of coupling strengths for global synchro-
nization using only local topological structure information. To
avoid notational confusion and distinguish from the coupling
strengths obtained by GCGM, we use d to denote the coupling
strength to be found using graph decomposition.
Step 1. Decompose G into its k, k ≤ n, strongly connected
components C1,C2, . . . ,Ck and the partial ordering is given
by Lemma 3.
Step 2. For Ck, use the GCGM algorithm in Section III
to obtain a lower bound of the coupling strength dk to

synchronize the nodes in Ck.
Step 3. In descending order for i = k− 1, . . . , 1, treat Ci one
by one. Replace all those nodes in Ci+1, . . . ,Ck, by a single
node 0. And keep the edges between Ci and Ci+1, . . . ,Ck.
Thus we arrive at an condensed component C̃i. Use the GCGM
algorithm to obtain a lower bound of the coupling strength di
for synchronization in C̃i.
Step 4. Combine di to get d.

We use an example to show the effectiveness of the algorith-
m. We consider the directed network on the left of Fig. 1. For
simplicity, we choose to use an identical coupling strength in
the network. We follow all the four steps. First, we decompose
G into C1,C2,C3,C4 as shown in Fig. 1. And thus we have
the partial orderings B2 ▹ B3 ▹ B4 and B1 ▹ B3 ▹ B4.
The condensation graph is shown on the right of Fig. 1. For
C4, using the GCGM algorithm, we calculate that d4 > 3

2 a.
For C3, we obtain C̃3 shown in Fig. 2 and use the GCGM
algorithm to obtain d3 > 3a. Similarly, we get d2 > 3a for
C̃2 and d1 > 3a for C̃1. Finally, taking the maximum over
d1 to d4 together, we conclude that the global synchronization
of the network G can be realized under the coupling strength
d > 3a.

V. CONCLUSION

In this paper we have presented new ways to allocate
coupling strengths using spectral graph theory in order to
achieve synchronization in directed complex networks. The
main idea is to use graph comparison. The obtained results
can be applied to large but decomposable networks as well.

For future study, we are interested in using the constructed
synchronization criteria to develop optimal or sub-optimal
solutions to add or delete edges in a network to achieve better
synchronizability.
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