
 1 

Spatial panel models and common factors 

J. Paul Elhorst 

University of Groningen, Department of Economics, Econometrics and Finance 

Groningen, the Netherlands 

E-mail: j.p.elhorst@rug.nl 

 

Elhorst J.P. (2019) Spatial Panel Models and Common Factors. In: Fischer M., Nijkamp P. (eds) Handbook 

of Regional Science. Springer, Berlin, Heidelberg. Improved version of submitted manuscript. 

 

Abstract  This chapter provides a survey of the existing literature on spatial panel data models. 

Both static, dynamic, and dynamic models with common factors will be considered. Common 

factors are modeled by time-period fixed effects, cross-sectional averages, or principal 

components. It is demonstrated that spatial econometric models that include lags of the 

dependent variable and of the independent variables in both space and time provide a useful 

tool to quantify the magnitude of direct and indirect effects, both in the short term and long 

term. Direct effects can be used to test the hypothesis as to whether a particular variable has a 

significant effect on the own dependent variable, and indirect effects to test the hypothesis 

whether spatial spillovers affect the dependent variable of other units. To illustrate these models, 

their effects estimates, and the impact of the type of common factors, a demand model for 

cigarettes is estimated based on panel data from 46 U.S. states over the period 1963 to 1992. 
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1  Introduction 

 

Spatial econometrics deals with interaction effects among geographical units, such as zip codes, 

neighborhoods, municipalities, counties, regions, states, or countries. Examples are economic 

growth rates of OECD countries over T years, monthly unemployment rates of EU regions in 

the last decade, and annual tax rate changes of all jurisdictions in a country since the last 

election. Spatial econometric models are also used to explain the behavior of economic agents 

other than geographical units, such as individuals, firms, or governments. The best example is 

a hedonic price equation in which the price of each house is explained by the price and 

characteristics of other houses that have sold prior and in the neighborhood of that house 

(Kelejian and Piras 2017, p.13). 

In modeling terms, three different types of interaction effects can be distinguished: 

endogenous interaction effects among the dependent variable (Y), exogenous interaction effects 

among the independent variables (X), and interaction effects among the error terms (ε). 

Originally, the central focus of spatial econometrics has been on one type of interaction effect 

in a single equation cross-section setting (Handbook Chapter 76 Cross-section spatial 

regression models). Usually, the point estimate of the coefficient of this interaction effect was 

used to test the hypothesis as to whether spatial spillover effects exist. Most of the work was 

inspired by research questions arising in regional science and economic geography, where the 

units of observations are geographically determined and the structure of the dependence among 

these units can somehow be related to location and distance. However, more recently, the focus 

has shifted to models with more than one type of interaction effects, to panel data, to dynamic 

specifications, and to the marginal effects of the explanatory variables in the model rather than 

the point estimates of the interaction effects.  

 In this chapter, we review and organize this recent literature. In section 2, we present 

the linear regression model with spatial interaction effects for cross-section data and, in section 

3, its extension to panel data. In section 4, the latter model is further extended to include 

dynamic effects in both space and time, as well as common factors. In section 5, we provide 

so-called “effects estimates” (Handbook Chapter 77 Interpreting spatial econometric models), 

which are required for making correct inferences regarding the effect of independent variables 

on the dependent variable. In section 6, we estimate a demand model for cigarettes based on 

panel data from 46 U.S. states over the period 1963 to 1992 to empirically illustrate the different 

models. This data set is taken from Baltagi (2005) and has been used for illustration purposes 
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in other studies too. Finally, we conclude this chapter with a number of important implications 

for econometric modeling of relationships based on spatial panel data. 

 

2 Linear spatial dependence models for cross-section data  

 

The standard approach in most empirical work is to start with a non-spatial linear regression 

model and then to test whether or not the model needs to be extended with spatial interaction 

effects. This approach is known as the specific-to-general approach. The non-spatial linear 

regression model takes the form 

 

𝑌 = 𝛼𝜄𝑁 + 𝑋𝛽 + 𝜀, (1) 

 

where Y denotes an N×1 vector consisting of one observation on the dependent variable for 

every unit in the sample (i=1,…,N), 𝜄𝑁 is an N1 vector of ones associated with the constant 

term parameter α, X denotes an N×K matrix of exogenous explanatory variables, with the 

associated parameters β contained in a K×1 vector, and 𝜀 = (𝜀1, … , 𝜀𝑁)𝑇 is a vector of 

disturbance terms, where 𝜀𝑖 are independently and identically distributed error terms for all i 

with zero mean and variance 𝜎2. Since the linear regression model is commonly estimated by 

Ordinary Least Squares (OLS), it is often labeled the OLS model. Furthermore, even though 

the OLS model in most studies focusing on spatial interaction effects is rejected in favor of a 

more general model, its results often serve as a benchmark. 

 The opposite approach is to start with a more general model that nests a series of simpler 

models, which would ideally represent all alternative economic hypotheses requiring 

consideration. Generally, three different types of interaction effects may explain why an 

observation associated with a specific location may be dependent on observations at other 

locations: 

i. Endogenous interaction effects, where the decision of a particular unit A (or its 

economic decision makers) to behave in some way depends on the decision taken by 

other units, among which, say, unit B,  

 

Dependent variable y of unit A ↔ Dependent variable y of unit B (2) 
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Endogenous interaction effects are typically considered as the formal specification for 

the equilibrium outcome of a spatial or social interaction process, in which the value of 

the dependent variable for one agent is jointly determined with that of the neighboring 

agents. In the empirical literature on strategic interaction among local governments, for 

example, endogenous interaction effects are theoretically consistent with the situation 

where taxation and expenditures on public services interact with taxation and 

expenditures on public services in nearby jurisdictions.  

ii. Exogenous interaction effects, where the decision of a particular unit to behave in some 

way depends on independent explanatory variables of the decision taken by other units  

 

Independent variable x of unit B → Dependent variable y of unit A (3) 

 

Consider, for example, the savings rate. According to standard economic theory, saving 

and investment are always equal. People cannot save without investing their money 

somewhere, and they cannot invest without using somebody's savings. This is true for 

the world as a whole, but it is not true for individual economies. Capital can flow across 

borders; hence the amount an individual economy saves does not have to be the same 

as the amount it invests. In other words, per capita income in one economy also depends 

on the savings rates of neighboring economies.  

It should be stressed that, if the number of independent explanatory variables in a linear 

regression model is K, the number of exogenous interaction effects might also be K, 

provided that the intercept is considered as a separate variable. In other words, not only 

the savings rate but also other explanatory variables may affect per capita income in 

neighboring economies. It is for this reason that economic growth in both the theoretical 

and the empirical literature on economic growth and convergence among countries or 

regions is not only taken to depend on the initial income level and the rates of saving, 

population growth, technological change and depreciation in the own economy, but also 

on those of neighboring economies (Ertur and Koch 2007).  

iii. Interaction effects among the error terms 

 

Error term u of unit A ↔ Error term u of unit B (4) 

 

Interaction effects among the error terms do not require a theoretical model for a spatial 

or social interaction process, but instead, are consistent with a situation where 
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determinants of the dependent variable omitted from the model are spatially 

autocorrelated, and with a situation where unobserved shocks follow a spatial pattern. 

Interaction effects among the error terms may also be interpreted to reflect a mechanism 

to correct rent-seeking politicians for unanticipated fiscal policy changes (Allers and 

Elhorst 2005). 

 

A full model with all types of interaction effects, known as the general nesting spatial (GNS) 

model, takes the form 

 

𝑌 = 𝜌𝑊𝑌 + 𝛼𝜄𝑁 + 𝑋𝛽 + 𝑊𝑋𝜃 + 𝑢, (5a) 

𝑢 = 𝜆𝑊𝑢 + 𝜀, (5b) 

 

where the variable WY denotes the endogenous interaction effects among the dependent 

variables, WX the exogenous interaction effects among the independent variables, and Wu the 

interaction effects among the disturbance terms of the different units. ρ is called the spatial 

autoregressive coefficient, λ the spatial autocorrelation coefficient, while θ, just as β, represents 

a K×1 vector of fixed but unknown parameters. W is a nonnegative N×N matrix of known 

constants describing the arrangement of the units in the sample. Its diagonal elements are set to 

zero by assumption, since no unit can be viewed as its own neighbor. 

Three methods have been developed to estimate models that include interaction effects. 

One is based on maximum likelihood (ML) or quasi maximum likelihood (QML), one on 

instrumental variables or generalized method of moments (IV/GMM), and one on the Bayesian 

Markov Chain Monte Carlo (MCMC) approach. QML and IV/GMM estimators are different in 

that they do not rely on the assumption of normality of the disturbances. Detailed descriptions 

of these estimation techniques can be found in Anselin (1988), LeSage and Pace (2009), 

Kelejian and Piras (2017), Handbook Chapter 78 Maximum likelihood estimation, Handbook 

Chapter 79 Bayesian MCMC estimation, and Handbook Chapter 80 Instrumental 

variables/methods of moments estimation. 

Technically, there are no obstacles to estimating the GNS model with interaction effects 

among the dependent variable, the independent variables and the disturbance terms. Often, 

however, the parameters cannot be interpreted in a meaningful way since the different types of 

interaction effects cannot be distinguished from each other due to overparameterization 

(Burridge et al. 2016). This is one of the reasons why the spatial econometrics literature 
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distinguishes six simpler types of spatial econometric models. The differences between these 

models depend on the type and number of spatial interaction effects that are included. The first 

two columns of Table 1 provide an overview, including their designations and abbreviations. 

The last column will be further discussed in section 5. 

 

Table 1 Spatial econometric models with different combinations of spatial interaction effects and their 

 flexibility regarding spatial spillovers 

Type of model Interaction(s) Flexibility spatial spillovers 

SAR, Spatial autoregressive model*  WY Constant ratios 

SEM, Spatial error model Wu Zero by construction 

SLX, Spatial lag of X model WX Fully flexible 

SAC, Spatial autoregressive 

combined model** 

WY, Wu Constant ratios 

SDM, Spatial Durbin model WY, WX Fully flexible 

SDEM, Spatial Durbin error model WX, Wu Fully flexible 

GNS, General nesting spatial model WY, WX, Wu Fully flexible 

* Also known as the spatial lag model, ** Also known as the SARAR model 

 

3 Linear spatial dependence models for panel data 

 

In recent years, the spatial econometrics literature has exhibited a growing interest in the 

specification and estimation of econometric relationships based on spatial panels. This interest 

can be partly explained by the increased availability of more data sets in which a number of 

spatial units are followed over time, and partly by the fact that panel data offer researchers 

extended modeling possibilities as compared to the single equation cross-sectional setting. 

Panel data are generally more informative, and they contain more variation and less collinearity 

among the variables. The use of panel data results in a greater availability of degrees of freedom, 

and hence increases efficiency in the estimation. Panel data also allow for the specification of 

more complicated behavioral hypotheses, including effects that cannot be addressed using pure 

cross-sectional data (see Baltagi 2005 and the references therein). 

 The extension of the spatial econometric model, presented in Eq. (5), for a cross-section 

of N observations to a space-time model for a panel of N observations over T time periods is 

obtained by adding a subscript t, which runs from 1 to T, to the variables and the error terms of 

that model 
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𝑌𝑡 = 𝜌𝑊𝑌𝑡 + 𝛼𝜄𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝑢𝑡, (6a) 

𝑢𝑡 = 𝜆𝑊𝑢𝑡 + 𝜀𝑡. (6b) 

 

This model can be estimated along the same lines as the cross-sectional model, provided that 

all notations are adjusted from one cross-section to T cross-sections of N observations.  

However, the main objection to pooling the data like this is that the resulting model does 

not account for spatial and temporal heterogeneity. Spatial units are likely to differ in their 

background variables, which are usually space-specific time-invariant variables that do affect the 

dependent variable, but which are difficult to measure or hard to obtain. Examples of such 

variables abound: one spatial unit is located at the seaside, the other just at the border; one 

spatial unit is a rural area located in the periphery of a country, the other an urban area located 

in the center; norms and values regarding labor, crime and religion in one spatial unit might 

differ substantially from those in another unit, etc. Failing to account for these variables increases 

the risk of obtaining biased estimation results. One remedy is to introduce a variable intercept 𝜇𝑖 

representing the effect of the omitted variables that are peculiar to each spatial unit considered. In 

sum, spatial specific effects control for all time-invariant variables whose omission could bias 

the estimates in a typical cross-sectional study. Similarly, the justification for adding time-

period specific effects is that they control for all spatial-invariant variables whose omission 

could bias the estimates in a typical time-series study (Baltagi 2005). Examples of such 

variables also exist: one year is marked by economic recession, the other by a boom; changes 

in legislation or government policy can significantly affect the functioning of an economy as 

from the date of implementation, as a result of which data points observed prior or after that 

date might be significantly different from one another. 

 The space-time model in Eq. (6) extended with spatial specific and time-period specific 

effects reads as 

 

𝑌𝑡 = 𝜌𝑊𝑌𝑡 + 𝛼𝜄𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝜇 + 𝜉𝑡𝜄𝑁 + 𝑢𝑡, (7a) 

𝑢𝑡 = 𝜆𝑊𝑢𝑡 + 𝜀𝑡. (7b) 

where 𝜇 = (𝜇1, … , 𝜇𝑁)𝑇. The spatial and time-period specific effects may be treated as fixed 

effects or as random effects. In the fixed effects model, a dummy variable is introduced for each 

spatial unit and for each time period (except one to avoid perfect multicollinearity), while in 



 8 

the random effects model, 𝜇𝑖 and 𝜉𝑡 are treated as random variables that are independently and 

identically distributed with zero mean and variance 𝜎𝜇
2 and 𝜎𝜉

2, respectively. Furthermore, it is 

assumed that the random variables 𝜇𝑖, 𝜉𝑡, and 𝜀𝑡 are independent of each other.  

The estimation of static spatial panel data models is extensively discussed in Elhorst 

(2014), and Lee and Yu (2015). Elhorst (2014) presents the ML estimator of the spatial lag model 

and of the spatial error model extended to include fixed effect or random effects. Halleck Vega 

and Elhorst (2015) further note that the spatial Durbin model can be estimated as a spatial lag 

model and the spatial Durbin error model as a spatial error model with explanatory variables [X 

WX] instead of X. The response parameters of the fixed effects models can be estimated by 

concentrating out the fixed effects first, called demeaning (see Baltagi 2005 and Elhorst 2014 for 

mathematical details). The resulting equation can then be estimated by the ML estimation 

procedure developed by Anselin (1988) for the spatial lag model, provided that this procedure is 

generalized from one single cross-section of N observations to T cross-sections of N observations. 

The estimation of the random effects model is somewhat more complicated (see Elhorst 2014 for 

details).  

 Lee and Yu (2015) show that the ML estimator of the spatial lag and of the spatial error 

model with spatial and time-period fixed effects effects, as set out in Elhorst (2014), will yield 

inconsistent parameter estimates if both N and T are large. To correct for this, they propose a 

simple bias correction procedure based on the parameter estimates of the uncorrected approach. 

If time-period fixed effects are not included or if time period fixed effects are included and T is 

fixed, only the variance of the error term, σ2, needs to be bias-corrected. Elhorst (2014) provides 

Matlab routines at his website www.spatial-panels.com for both the fixed effects and the 

random effects spatial lag model, as well as the fixed effects and the random effects spatial 

error model, accounting for this bias correction procedure. 

 

4 Dynamic linear spatial dependence models for panel data 

 

To make the spatial panel data model, presented in Eq. (7), dynamic, one might add time lags 

of the variables 𝑌𝑡 and 𝑊𝑌𝑡, to get 

 

𝑌𝑡 = 𝜏𝑌𝑡−1 + 𝜌𝑊𝑌𝑡 + 𝜂𝑊𝑌𝑡−1 + 𝛼𝜄𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + 𝜇 + 𝜉𝑡𝜄𝑁 + 𝑢𝑡.   (8) 

 

This model is known as the dynamic spatial Durbin model (Debarsy et al. 2012). In addition, 

one might consider time lags of the variables 𝑋𝑡 and 𝑊𝑋𝑡, and of the error terms 𝑢𝑡 and 𝑊𝑢𝑡. 
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According to Anselin et al. (2008), the parameters of the model in Eq. (8) and of models with 

these extensions are not identified, but Lee and Yu (2016) provide an econometric-theoretical 

proof showing the opposite. 

Three methods have been developed in the literature to estimate models that have mixed 

dynamics in both space and time. One method is to bias-correct the maximum likelihood (ML) 

or quasi-maximum likelihood (QML) estimator, one method is based on instrumental variables 

or generalized method of moments (IV/GMM), and one method utilizes the Bayesian Markov 

Chain Monte Carlo (MCMC) approach. Detailed descriptions of these estimation techniques 

can be found in Lee and Yu (2015), and Parent and LeSage (2010). In addition, Elhorst (2010) 

and Parent and LeSage (2010) treat the first period cross-section as endogenous, and find that 

when applying respectively the ML and the Bayesian MCMC estimators, the correct treatment 

of the initial observations (endogenous instead of exogenous) is important, especially in cases 

when T is small.  

 One objection to the model in Eq. (8) is that each time dummy 𝜉𝑡 has the same 

homogenous impact on all observations in period t, while it is likely that, for example, business 

cycle effects may hit one unit harder than others. Similarly, each spatial fixed effect 𝜇𝑖 has the 

same homogenous impact on all observations in unit i. An alternative is to replace the spatial 

and time-period fixed effects by common factors that have a different heterogenous impact on 

the observations  

 

𝑌𝑡 = 𝜏𝑌𝑡−1 + 𝜌𝑊𝑌𝑡 + 𝜂𝑊𝑌𝑡−1 + 𝛼𝜄𝑁 + 𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃 + ∑ 𝛤𝑟
𝑇𝑓𝑟𝑡𝑟 + 𝑢𝑡,   (9) 

 

where 𝑓𝑟𝑡 denotes the rth N×1 common factor observed at time t and Γr is the corresponding 

N×1 vector of coefficient estimates. If two factors are considered, 𝑓1𝑡 = (1, … ,1)𝑇 and 𝑓2𝑡 =

(𝜉1, … , 𝜉𝑇)𝑇, and the parameter restrictions 𝛤1
𝑇 = (𝜇1, … , 𝜇𝑁) and 𝛤2

𝑇 = (1, … ,1) are imposed, 

the model in Eq. (8) is obtained. This implies that controls for spatial and time-period fixed 

effects can be considered as two common factors. Formally, the spatial fixed effects represent 

one common factor (𝑓1𝑡) which is constant over time but with heterogenous coefficients (𝛤1). 

The time-period fixed effects represent another common factor of length T (𝑓2𝑡) which changes 

over time but which has homogenous coefficients (𝛤2). The total number of common factor 

parameters to be estimated in this setting amounts to N+T.  

 Instead of spatial and time-period fixed effects, common factors can also be measured 

by time-specific cross-sectional averages of the observable variables in the model or by 
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principal components. A detailed summary of the econometric literature in this field can be 

found in Pesaran (2015a, section 29.4). The idea to replace time-period effects by cross-

sectional averages dates back to Pesaran (2006). In view of Eq. (9), he suggests to use one or 

more variables from the set of cross-sectional averages, �̅�𝑡 = 1

𝑁
∑ 𝑌𝑖𝑡

𝑁
𝑖=1 , �̅�𝑡−1 = 1

𝑁
∑ 𝑌𝑖𝑡−1

𝑁
𝑖=1 , and 

�̅�𝑘𝑡 = 1

𝑁
∑ 𝑋𝑖𝑘𝑡

𝑁
𝑖=1  (k=1,..,K), as common factors such that each common factor has N spatial 

specific estimates, one for each unit in the sample. Together with the remaining N spatial fixed 

effects, the total number of common factor parameters to be estimated, if all cross-sectional 

avarages are included, then increases to N+(2+K)N. Just as time-period fixed effects, these 

cross-sectional averages may be treated as exogenous explanatory variables based on the 

assumption that the contribution of each unit to the cross-sectional averages at a particular point 

in time goes to zero if N goes to infinity (Pesaran 2006, assumption 5 and remark 3). Since the 

numbers of parameters to be estimated increases rapidly with the number of common factors, 

most empirical studies try to keep the number of cross-sectional averages to a minimum. 

Cicarelli and Elhorst (2018) find that, using cigarette demand data of 69 Italian regions over 

the period 1877-1913, controlling for �̅�𝑡 and �̅�𝑡−1 only already effectively filters out the 

common time trends in the data. The authors of this paper used Matlab routines to estimate their 

model. However, it is also possible to estimate the parameters in Eq. (9) using the xlsme 

command in Stata (Belotti et al. 2017), illustrated in the textbox below. 
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The second possibility is to approach the unobservable common factors by one or more 

principal components. In that case the Γ parameters represent the factor loadings of the principal 

components. Shi and Lee (2017) developed a QML estimator for the model in Eq. (9), including 

a spatially autocorrelated error term 𝑢𝑡 = 𝜆𝑊𝑢𝑡 + 𝜀𝑡. This estimator does not require any 

specification of the distribution function of the disturbance term. The coefficients estimates are 

bias-corrected for the Nickell bias and the impact of this bias on the other coefficients in the 

equation. For this purpose, a Matlab routine called SFactors has been developed, which the first 

author (Shi) made available at his web site www.w-shi.net. A potential disadvantage of 

principal components is that they are often difficult to interpret, especially if they are compared 

with cross-sectional averages. Every principal component requires the estimation of 2N 

parameters.  

 To find out which set of common factors is able to filter out common factors most 

effectively, the cross-sectional dependence (CD) test developed by Pesaran (2015b) may be 

used. This test is based on the correlation coefficients between the time-series observations of 

each pair of units with respect to a particular variable, in this case the residuals of Eq. (9), 

The command in Stata running a dynamic spatial panel data model with spatial fixed effects 

and common factor �̅�𝑡 reads as 

xsmle Y X �̅�1𝑡 … �̅�𝑁𝑡 wmat(W) model(sdm) durbin(X) dlag(3) fe type(ind) effects 

nsim(1000) 

The option type(ind) controls for spatial fixed effects and the variable list �̅�1𝑡 … �̅�𝑁𝑡 controls 

for the cross-sectional average of the dependent variable with N unit-specific coefficients. 

Time dummies should not be included to avoid (near) perfect multicollinearity. The data 

structure to read in the cross-sectional averages takes the following form: 

Unit Time Unit 1 Unit 2 … Unit N 

1 1 �̅�1 0 … 0 

2 1 0 �̅�1 … 0 

⋮ ⋮ ⋮ ⋮  ⋮ 
N 1 0 0  �̅�1 

⋮ ⋮ ⋮ ⋮  ⋮ 
1 T �̅�𝑇 0 … 0 

2 T 0 �̅�𝑇 … 0 

⋮ ⋮ ⋮ ⋮  ⋮ 
N T 0 0 … �̅�𝑇 

 

http://www.w-shi.net/
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resulting in N(N−1) correlations. Denoting these estimated correlation coefficients between the 

time-series for units i and j as 𝜅𝑖𝑗, the test statistic is defined as 𝐶𝐷 =

√2𝑇/(𝑁(𝑁 − 1) ∑ ∑ 𝜅𝑖𝑗
𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1 . The N(N−1) mutual correlation coefficients, each calculated 

over T observations, explain respectively the division by N(N−1) and the multiplication by T in 

the expression √2𝑇 𝑁(𝑁 − 1)⁄ . The number two is added since the correlation matrix is 

symmetric. Consequently, it is sufficient to calculate the CD statistic over the upper triangular 

elements of the correlation matrix only and to multiply the outcome by two so as to also 

represent the impact of the lower triangular elements. The null hypothesis of the CD-test 

assumes the existence of weak cross-sectional dependence in the data (Pesaran, 2015b, 

Theorem 3), better known as local spatial dependence, while the alternative hypothesis reflects 

strong cross-sectional dependence, among which common factors. The CD statistic is a two-

sided test statistic whose limiting distribution converges to the standard normal distribution, 

and thus −1.96 and 1.96 as critical values at the 5% significance level, provided that N goes to 

infinity faster than T or when T is fixed, reflecting the case in most spatial econometric studies. 

 

5 Direct, indirect, and spatial spillover effects 

 

Many empirical studies use point estimates of one or more spatial regression model 

specifications to test the hypothesis as to whether or not spatial spillovers exist. One of the key 

contributions of LeSage and Pace’s book (2009, p. 74) is the observation that this may lead to 

erroneous conclusions, and that a partial derivative interpretation of the impact from changes 

to the variables of different model specifications represents a more valid basis for testing this 

hypothesis. 

 By rewriting the spatial econometric model with dynamic effects in space and time in 

Eq. (9) as  

 

𝑌𝑡 = (𝐼𝑁 − 𝜌𝑊)−1(𝜏 + 𝜂𝑊)𝑌𝑡−1 + (𝐼𝑁 − 𝜌𝑊)−1(𝑋𝑡𝛽 + 𝑊𝑋𝑡𝜃) + 𝑅,   (10) 

 

where R is a rest term covering all the remaining terms (intercept, spatial and time-period fixed 

effects, common factors, and/or the error terms), the matrix of partial derivatives of the 

expectation of 𝑌𝑡, 𝐸(𝑌𝑡), with respect to the kth explanatory variable of 𝑋𝑡 in unit 1 up to unit N 

can be seen to be 

 



 13 

[
𝜕𝐸(𝑌𝑡)

𝜕𝑋1𝑘𝑡
…  

𝜕𝐸(𝑌𝑡)

𝜕𝑋𝑁𝑘𝑡
] = (𝐼𝑁 − 𝜌𝑊)−1(𝐼𝑁𝛽𝑘 + 𝑊𝜃𝑘).      (11) 

 

This N×N matrix of partial derivatives denotes the effects of a change of a particular explanatory 

variable in a particular unit on the dependent variable of all other units in the short term. Note 

that this N×N matrix is actually the product of two N×N matrices. The elements of the first 

matrix, the inverse of (𝐼 − 𝜌𝑊), better known as the spatial multiplier matrix, are not worked 

out further since a simple analytical expression for this inverse does not exist. Similarly, the 

long-term effects can be seen to be 

 

[
𝜕𝐸(𝑌𝑡)

𝜕𝑋1𝑘𝑡
…  

𝜕𝐸(𝑌𝑡)

𝜕𝑋𝑁𝑘𝑡
] = ((1 − 𝜏)𝐼𝑁 − (𝜌 + 𝜂)𝑊)−1(𝐼𝑁𝛽𝑘 + 𝑊𝜃𝑘).    (12) 

 

LeSage and Pace (2009) and Debarsy et al. (2012) define the direct effect as the average of the 

diagonal elements of the matrix on the right-hand side of Eqs. (11) or (12), and the indirect 

effect as the average of either the row sums or the column sums of the off-diagonal elements of 

these matrices (since the numerical magnitudes of these two calculations of the indirect effect 

are the same, it does not matter which one is used). If the spatial weight matrix W does not 

change over time, the outcomes are independent from the time index; this explains why the 

right-hand sides of these equations do not contain the symbol t. A more appealing synonym for 

the indirect effect is spatial spillover effect, a term that therefore will be used in the remainder 

of this chapter.  

Using the expressions in Eqs. (11) and (12), it is also possible to indicate the 

disadvantages of certain parameter restrictions adopted in previous studies (see Elhorst 2014 

for an overview). Especially the SAR, SEM and SAC models are of limited use in empirical 

research due to initial restrictions on the spillover effects they can potentially produce. In the SAR 

(θ=λ=0) and the SAC (θ=0) models the ratio between the spillover effect and the direct effect is 

the same for every explanatory variable; if this ratio happens to be p percent for one variable, it 

is also p percent for any other variable, both in the short and in the long term. In the SEM model 

the spillover effects are even set to zero by construction; if both ρ=0 and θk=0, short-term spillover 

effects do not occur, while long-term spillover effects do not occur if both ρ=−η and θk=0. This 

loss of flexibility makes these models less suitable for empirical research focusing on spillover 

effects. Only in the SLX, SDEM, SDM and GNS models can they take any value. These findings 

are summarized in the last column of Table 1. Finally, the disadvantage of imposing the 

restriction η=−τρ is that the ratio between the indirect effect and the direct effect of a particular 
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explanatory variable remains constant over time; if this ratio happens to be p percent for one 

variable in the short term, it is also p percent in the long term.  

 

6 Empirical illustration 

 

Baltagi (2005) estimates a demand model for cigarettes based on a panel from 46 U.S. states over 

the period 1963-1992 in which real per capita sales of cigarettes by persons of smoking age (14 

years and older) measured in packs of cigarettes per capita (Cit) is regressed on the average retail 

price of a pack of cigarettes measured in real terms (Pit) and on real per capita disposable income 

(Yit). Moreover, all variables are taken in logs. The dataset can be downloaded freely from 

www.wiley.co.uk/baltagi/, while an adapted version of this dataset is available at www.spatial-

panels.com. More details, as well as reasons to include state-specific effects (𝜇𝑖) and time-specific 

effects (𝜉𝑡), are given in Baltagi (2005). The spatial weights matrix is specified as a row-

normalized binary contiguity matrix whose elements are one (before row-normalization) if two 

states share a common border, and zero otherwise. 

 Column (1) of Table 2 reports the estimation results when adopting a non-dynamic spatial 

Durbin model without spatial and time-period fixed effects, and column (2) when including these 

effects. To investigate whether or not the fixed effects are jointly significant, one may test the 

hypothesis H0: 𝜇1 =. . . = 𝜇𝑁 = 𝜉1 =. . . = 𝜉𝑇 = 𝛼, where α is the intercept of the model without 

fixed effects. To test this (null) hypothesis, one may perform a likelihood ratio (LR) test, which is 

based on the log-likelihood function values of both models. The number of degrees of freedom is 

equal to the number of restrictions that needs to be imposed on the fixed effects to get one overall 

intercept, which in this particular case is N+T−1. The outcome of this test 2(1691.4−475.5)=2431.8 

with N+T−1=46+30−1=75 degrees of freedom justifies the extension of the model with spatial and 

time-period effects. Note that one may also separately test for the inclusion of spatial fixed 

effects and time-period fixed effects. 

 It is to be noted that the coefficient of any variable that does not change over time or only a 

little cannot be estimated when controlling for spatial fixed effects. Similarly, the coefficient of 

any variable that does not change across space or only a little cannot be estimated when controlling 

for time-period fixed effects. For many empirical studies this is a reason not to control for fixed 

effects, for example, because such time-invariant or space-invariant variables
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Table 2 Estimation results of cigarette demand using different model specifications 

Determinants (1) (2) (3) (4) (5) 

 Non-dynamic  

spatial Durbin model 

no fixed effects 

Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with fixed effects 

Dynamic spatial Durbin  

model with cross- 

sectional averages* 

Dynamic spatial  

Durbin model with 

principal components** 

Intercept   2.631                (15.82)     

Log(C)-1     0.865             (67.14)   0.831             (61.54)   0.677               (40.04) 

WLog(C)   0.337                (11.09)   0.264               (8.24)   0.076               (2.03)   0.001             (12.55)   0.097                 (2.73) 

WLog(C)-1   −0.015             (−0.39)   0.077               (1.98)  -0.027               (-0.87) 

Log(P)  −1.251              (−21.80) −1.001          (−24.36) −0.266           (−11.50) −0.307          (−13.26) −0.326             (−15.82) 

Log(Y)   0.554                (14.96)   0.603             (10.27)   0.100                (3.35)   0.103               (1.34)   0.280                  (9.64) 

WLog(P)    0.780                (11.15)   0.093               (1.13)   0.170                (3.88)   0.292             (10.53)   0.247                  (8.12) 

WLog(Y) −0.444               (11.09) −0.314             (−3.93) −0.022             (−0.57)   0.059               (1.67)   0.028                  (0.72) 

R2   0.435   0.902   0.977   0.935   0.983 

LogL   475.5 1691.4 2623.3 3146.4 3293.9 

CD-test   25.25   −2.28     0.29   −2.82   −2.82 

Notes: t-values in parentheses; * cross-sectional averages at time t and t-1 of the dependent variables; ** two principal components
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are the main focus of the analysis. However, if one or more relevant explanatory variables are 

omitted from the regression equation, when they should be included, the estimator of the 

coefficients of the remaining variables is biased and inconsistent. This also holds true for fixed 

effects and is known as the omitted regressor bias. 

 Instead of fixed effects we can also treat µ and 𝜉 as random effects. Hausman’s specification 

test can then be used to test the random effects model against the fixed effects model. However, 

whether the random effects model is an appropriate specification if the population may be said to 

be sampled exhaustively, such as all counties of a state or all regions in a country, remains 

controversial. A detailed discussion of this issue can be found in Elhorst (2014, section 3.4). 

 The main shortcoming of a non-dynamic spatial Durbin model is that it cannot be used to 

calculate short-term effect estimates of the explanatory variables. This is made clear by Table 3, 

which reports the corresponding effects estimates of the models presented in Table 2; since a non-

dynamic model only produces long-term effects estimates, the cells reporting short-term effects 

estimates are left empty. 

 The direct effects estimates of the two explanatory variables reported in column (2) of Table 

3 are significantly different from zero and have the expected signs. Higher prices restrain people 

from smoking, while higher income levels have a positive effect on cigarette demand. The price 

elasticity amounts to −1.013 and the income elasticity to 0.594. Note that these direct effects 

estimates are different from the coefficient estimates of −1.001 and 0.603 reported in column (2) 

of Table 2 due to feedback effects that arise as a result of impacts passing through neighboring 

states and back to the states themselves. 

 The spatial spillover effects (indirect effects estimates) of both variables are negative and 

significant. Own-state price increases will restrain people not only from buying cigarettes in 

their own state, but to a limited extent also from buying cigarettes in neighboring states 

(elasticity −0.220). By contrast, whereas an income increase has a positive effect on cigarette 

consumption in the own state, it has a negative effect in neighboring states. We come back to 

this result below. Further note that the non-dynamic spatial Durbin model without spatial and 

time-period effects (column(1) of Table 3) indicates a positive rather than a negative spatial 

spillover effect of price increases, and that only the latter result would be consistent with Baltagi 

and Levin (1992), who found that price increases in a particular state —due to tax increases 

meant to reduce cigarette smoking and to limit the exposure of non-smokers to cigarette 

smoke— encourage consumers in that state to search for cheaper cigarettes in neighboring 

states. However, there are two reasons why this comparison is invalid. First, whereas Baltagi 

and Levin’s (1992) model is dynamic, it is not spatial. They consider the 
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Table 3 Effects estimates of cigarette demand using different model specifications 

Determinants (1) (2) (3) (4) (5) 

 Non-dynamic  

spatial Durbin model 

no fixed effects 

Non-dynamic  

spatial Durbin model 

with fixed effects 

Dynamic  

spatial Durbin model 

with fixed effects 

Dynamic spatial Durbin  

model with cross- 

sectional averages* 

Dynamic spatial  

Durbin model with 

principal omponents** 

Short-term direct  

effect Log(P) 

    −0.264         

 

 (−11.10) 

 

−0.307             (−13.32) −0.320              (−15.94) 

Short-term indirect  

effect Log(P) 

    0.160                (3.39) 0.292                (10.92) 0.233                 (7.66) 

Short-term direct  

effect Log(Y) 

    0.101                 (3.39) 0.010                  (1.34) 0.281                   (9.89) 

Short-term indirect  

effect Log(Y) 

    −0.017              (−0.44) 0.060                (1.72) 0.058                (1.52) 

Long-term direct  

effect Log(P) 

−1.217        (−22.96) −1.012        (−24.95) −1.940              (−8.03) −1.716                (−4.67) −0.976              (−16.12) 

Long-term indirect  

effect Log(P) 

0.509                 (7.38) −0.220             (−2.30) 0.561               (0.47) 1.459                   (1.04) 0.668                   (6.37) 

Long-term direct  

effect Log(Y) 

0.529               (15.12) 0.591              (10.44) 0.768                (1.87) 0.109                   (0.45) 0.883                     (10.32) 

Long-term indirect  

effect Log(Y) 

−0.363              (−7.70) −0.198              (−2.20) 0.297               (0.14) 0.676                 (0.76) 0.332                 (3.81) 

Notes: t-values in parentheses; * cross-sectional averages at time t and t-1 of the dependent variables; ** two principal components 
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price of cigarettes in neighboring states, but not any other spatial interaction effects. Second, 

whereas this model contains spatial interaction effects, it is not (yet) dynamic. For these reasons 

it is interesting to consider the estimation results of the dynamic spatial panel data models. 

 Columns (3), (4) and (5) of Table 3 reports the direct and indirect effects of the dynamic 

model, both in the short term and long term, based on the corresponding parameter estimates 

reported in columns (3), (4) and (5) of Table 2. Column (3) represents a classical dynamic 

spatial panel data model with spatial and time-period fixed effects. In column (4) the time-

period fixed effects are replaced with cross-sectional averages of the dependent variable 

observed at time t and t−1, �̅�𝑡 = 1

𝑁
∑ 𝑌𝑖𝑡

𝑁
𝑖=1  and �̅�𝑡−1 = 1

𝑁
∑ 𝑌𝑖𝑡−1

𝑁
𝑖=1 . In column (5), both the spatial 

and time-period effects are replaced by two principal components. A spatially lagged error term 

is not included. 

 To investigate whether the extension of the non-dynamic model to the dynamic spatial 

panel data model increases the explanatory power of the model, one may test whether the 

coefficients of the variables 𝑌𝑡−1 and 𝑊𝑌𝑡−1 are jointly significant using an LR-test. The 

outcome of this test for the model in column (3) with the lowest log-likelihood function value of 

the three dynamic models amounts to 2(2623.3−1691.4)=1863.8 with 2 degree of freedom, and 

evidently justifies the extension of the model with dynamic effects. 

 Another way to look at this are the results of the CD-test statistic. When testing for cross-

sectional dependence based on the consumption patterns of the 46 states over the period 1963-

1992, this statistic amounts to 101.52 with an average pairwise correlation coefficient of 0.58. This 

outcome is highly statistically significant, indicating that cross-sectional dependence needs to be 

accounted for. When controlling for endogenous and exogenous interaction effects this statistic 

drops down to 25.25 (column (2) of Table 2), and when additionally controlling for fixed effects 

in space and time it drops further down to −2.28 (column (3) of Table 2). However, only when 

also controlling for habit persistence, i.e. the coefficient estimate of the variable 𝑌𝑡−1 amounts to 

0.865 and appears to be highly significicant, does the CD test statistic take a value within the 

interval [−1.96,+1.96] (0.29, see column (3) of Table 2). It indicates that only this dynamic model 

is able to effectively factor out the observed cross-sectional dependence in the data. 

 It is tempting to conclude that the estimation results of the other two dynamic models are 

comparable, but when taking a closer look especially at the coefficient estimates of the spatial 

interaction effects in Table 2 we do see differences. Although the spatial autoregressive coefficient 

of WLog(C) is significant in all three models, its magnitude is almost negligible when controlling 

for cross-sectional averages. Whereas the spatiotemporal coefficient η of WLog(C)-1 is positive 
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and significant when controlling for cross-sectional averages, it is negative and insignificant when 

controlling for spatial and time-period fixed effects or principal components. Even though the 

spatial interaction coefficient of the price of cigarettes, WLog(P), is significant in all three models, 

its magnitude ranges from 0.170 to 0.292. Finally, whereas the spatial interaction coefficient of 

income, WLog(Y), is insignificant in all three models, its sign is sometimes negative and sometimes 

positive. 

 In line with this, also the short and long term direct and spatial spillover effects and their 

significance levels, reported in Table 3, are different. The explanation is that the short-term direct 

and spatial spillover effects depend on three parameters, among which two are spatial interaction 

effects (Eq. (11)), and their long term counterparts on five parameters, among which three 

spatial interaction effects (Eq. (12)). Any change in the magnitude and the significance levels 

of these coefficients, therefore works through in the effects estimates derived from them. The 

biggest difference concerns the long-term price and income spillover effects. Whereas these 

two effects are positive and significant when controlling for principal components, they are 

insignificant when controlling for spatial and time-period fixed effects or cross-sectional 

averages, even if the magnitude of these effects as in the model with spatial and time-period fixed 

effects are almost similar. 

 Since the dynamic model with spatial and time-period fixed effects appears to be the only 

model that effectively filtered out common time trends, i.e., only for this model does the CD-test 

applied to the residuals of Eq. (9) takes a value within the interval [−1.96,+1.96], the focus below 

will be on the effects estimates produced by this model. It should be noted, however, that two 

other recent studies found different results. Cicarelli and Elhorst (2018) find that the dynamic 

model with cross-sectional averages outperforms its counterpart with spatial and time-period 

fixed effects. Similarly, Elhorst et al. (2018) find that the dynamic model with principal 

components outperforms its counterpart with spatial and time-period fixed effects. The 

conclusion must be that the best model to control for common time trends might differ from 

one empirical study to another. Since the log-likelihood function values of the models in Table 

2 with cross-sectional averages and common factors exceed that of the model with spatial and 

time-period fixed effects, while their CD-test statistics still take values outside the interval 

[−1.96,+1.96], another reading is that the spatial weight matrix is not correctly specified. Using 

the same data set, Halleck Vega and Elhorst (2015) parameterize this matrix and find that it is 

denser than the binary contiguity matrix, while Kelejian and Piras (2014) find that this matrix 

is endogenous. It indicates that the log-likelihood function values of the models with cross-

sectional averages and common factors might increase even further when a parameterized 
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and/or an endogeneous spatial weight matrix is adopted. This is an interesting issue for further 

research. 

 Consistent with microeconomic theory, the short-term direct effects appear to substantially 

smaller than the long-term direct effects; −0.264 versus −1.940 for the price variable and 0.101 

versus 0.768 for the income variable. This is because it takes time before price and income 

changes fully settle. The long-term direct effects in the dynamic spatial Durbin model, on their 

turn, appear to be greater (in absolute value) than their counterparts in the non-dynamic spatial 

Durbin model: −1.940 versus −1.012 for the price variable and 0.768 versus 0.591 for the 

income variable. Apparently, the non-dynamic model underestimates the long-term effects. The 

short-term spatial spillover effect of a price increase turns out to be positive; the elasticity 

amounts to 0.160 and is highly significant (t-value 3.39). This finding is in line with the original 

finding of Baltagi and Levin (1992) in that a price increase in one state encourages consumers 

to search for cheaper cigarettes in neighboring states. The positive spatial spillover effect of a 

price increase we found earlier for the non-dynamic spatial Durbin model demonstrates that a 

non-dynamic approach falls short here. Although greater and again positive, we do not find 

empirical evidence that the long-term price spatial spillover effect is also significant. A similar 

result is found by Debarsy et al. (2012). It is to be noted that they estimate the parameters of 

the model by the Bayesian MCMC estimator developed by Parent and LeSage (2010), whereas 

we use the consistent bias-corrected ML estimator developed by Lee and Yu (2015). 

Furthermore, the spatial weights matrix used in that study is based on lengths of state borders 

in common between each state and its neighboring states, whereas we use a binary contiguity 

matrix. 

 The long-term spatial spillover effect of the income variable derived from the dynamic 

spatial panel data model appears to be positive, which suggests that an income increase in a 

particular state has a positive effect on smoking not only in that state itself, but also in 

neighboring states. Furthermore, it is smaller than the direct effect, which makes sense since 

the impact of a change will most likely be larger in the place that instigated the change. 

However, the income spatial spillover effect is not significant. A similar result is found by 

Debarsy et al. (2012). Interestingly, the spatial spillover effect of the income variable in the 

non-dynamic spatial panel data model appeared to be negative and significant. Apparently, the 

decision whether to adopt a dynamic or a non-dynamic model again represents an important 

issue. Some researchers prefer simpler models to more complex ones (Occam’s razor). One 

problem of complex models is overfitting, the fact that excessively complex models are affected 

by statistical noise, whereas simpler models may capture the underlying process better and may 
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thus have better predictive performance. However, if one can trade simplicity for increased 

explanatory power, the complex model is more likely to be the correct one. 

 

7 Conclusion 

 

Spatial econometric models that include lags of the dependent variable and of the independent 

variables in both space and time provide a useful tool to quantify the magnitude of direct and 

indirect effects, both in the short term and long term. A demand model for cigarettes based on 

panel data from 46 U.S. states over the period 1963 to 1992 is used to empirically illustrate this. 

Direct effects should be used to test the hypothesis as to whether a particular variable has a 

significant effect on the dependent variable in its own economy rather than the coefficient 

estimate of that variable. Similarly, indirect effects should be used to test whether or not spatial 

spillovers exist rather than the coefficient estimate of the spatially lagged dependent variable 

and/or the coefficients estimates of the spatially lagged independent variables.  

One difficulty is that it cannot be seen from the coefficient estimates and the 

corresponding standard errors or t-values (derived from the variance-covariance matrix) 

whether the direct and indirect effects in a spatial econometric model are significant. This is 

because these effects are composed of different coefficient estimates according to complex 

mathematical formulas and the dispersion of these effects depends on the dispersion of all 

coefficient estimates involved. However, due to the availability of software written in Stata, R 

and Matlab, they are no major obstacles any more for applied researchers to report and discuss 

direct and indirect effects estimates in addition to the point estimates of the parameters of the 

model. In addition, there are no obstacles any more to control for common factors other than 

time-period fixed effects, including applied researchers familiar with Stata only. 
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